Lab 3: measurement of Laser Gaussian Beam Profile
v5.1 (Dec. 11, 2013)

- Lab 3: basic experience working with laser
 (1) To create a beam expander for the Argon laser
 (2) To measure the spot size and profile of the Argon laser
 Measure before and after the beam expansion
- Do this by moving a knife edge through the beam
- Have a computer controlled knife that moves through beam
Knife Edge measurement of Gaussian Beam

- Consider a Gaussian shaped beam

\[I(r) = I_0 \exp\left(-\frac{2r^2}{w^2}\right) = \frac{2P}{\pi w^2} \exp\left(-\frac{2r^2}{w^2}\right) \]

Where \(P \) = total power in the beam
\(w = \frac{1}{e^2} \) beam radius at point \(w(z) \)
- This is in cylindrical coordinates
- \(r \) is the radius of the central area

GAUSSIAN IRRADIANCE PROFILE for TEM\(_{00}\) mode, showing definitions of beam radius \(w \).
Knife Edge and Gaussian

- Straight knife edge cutting into a Gaussian shaped beam
- Measure the total power seen when knife move in x direction
- Must convert to Cartesian coordinates & integrate
- Assume $-\infty$ is when the knife fully below the beam

\[
I(x) = \frac{2P}{\pi w^2} \int_{-\infty}^{x} \exp\left(-\frac{x^2}{w^2}\right) dx \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{w^2}\right) dy
\]

Where P is the total power of the beam

$I(x)$ is the intensity measured at position x

- In x direction the beam is cut: Integrate from x to $-\infty$
- In y direction get full beam: integrate from $-\infty$ to $+\infty$
- To solve this use the error function or integral of the normal

\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^2} ds
\]

- Two ways of fitting this:
 - Fit the power measured: that is the integral
 - Fit the derivative
Fitting the power measured

- The power measured at the detector is the integral
- \(x_0 = \) centre of beam
- Then the power measured is given by for \(x > x_0 \)

\[
I(x) = \frac{P}{2} \text{erf}\left(\frac{(x - x_0)}{w}\right)
\]

For \(x < x_0 \)

\[
I(x) = \frac{P}{2} \left[1 + \text{erf}\left(\frac{(-x + x_0)}{w}\right)\right]
\]

- Must also assume some background light level \(B \)
- In Excel use the Normdist (Normal distribution function)
- This is slightly different from erf function
- Fit with the excel function of the following formula

\[
I(x) = P \cdot \text{normdist}(-x,-x_0,w/1.414,1) + B
\]

Where \(x \) is the position (starting with \(x \) below \(x_0 \))
- \(x_0 \) is the fitted centre point of the beam
- \(w = \frac{1}{e^2} \) size of beam you fit
- \(1 \) is to make it the integration of the normal distribution
- \(B \) is the background or offset level

- Set up a spreadsheet with initial estimates of each parameter
- Have columns with \(x \), \(I(x) \), fitted \(I(x) \),
- \(I_{\text{fit}}(x) - I(x) = \text{error} \) (called the error of fit or residual)
- \(\text{error}^2 = (I_{\text{fit}}(x) - I(x))^2 \) (called the residual squared in statistics)
- Set a column to sum the \(\text{error}^2 \) (sum of the squares)
Running the Fit

- Want to minimize the sum of the squares
- In stats were shown this gives the best statistical fit to data
- Use the Excel solver function to do this
- Set solver to minimize the sum of squares cell
- Then use solver under tools tab to fit
- Set to minimizing sum of squares cell
- Use sum of squares as fit as minimization,
- Set P, \(x_0 \), \(w \) and \(B \) as variables to be changed for fit
- Solver need initial estimates – these important for getting fit
- Getting good initial values for the fit
 - \(P \) - use the measured \(I \) before the knife edge cuts (start of data)
 - \(x_0 \) – use \(x \) for \(P/2 \) point from the data (nearly right)
 - \(B \) – use background light level
 - \(w \) (spot size) is the difficult one to estimate and the hardest to get.
- See the difference discussion next page to estimate
- Plots help evaluate the fit
 - Plot \(I(x) \) vs \(x \) for both data and fit
 - Suggest put both on the same plot so you tell how good a fit
 - Useful to plot the errors against position (called residuals)
 - Thus plot residuals \(I_{fit}(x)-I(x) \) vs \(x \)
 - Ideal fit residuals should be small
 - Residuals should be on both sides of 0 line (ie + and -)
- See sample excel layout in appendix B
- See Appendix A for running solver
Fit the difference of Power Measured

- The derivative
- Take a derivative of the measurements
- Best if take a simple derivative

\[
\frac{dI_j}{dx} = \frac{[I(x_{j+1}) - I(x_j)]}{[x_{j+1} - x_j]}
\]

- Plot \(dI/dx\) vs \(x\) for your data
- Then the plot is a Gaussian shape with the formula:

\[
\frac{dI(x)}{dx} = \frac{P}{w\sqrt{\pi}} \exp\left(-\frac{(x-x_0)^2}{w^2}\right)
\]

- Note need to be careful with the derivatives units you use
- Suggest you plot the derivative but not fit it
- Derivatives are very prone to errors (small errors magnified)
- Plotting shows if the curve shape you are getting
- Check does it really look like a Gaussian
- This is best way to estimate \(w\)
- Take the plot and find half the peak \(dI/dx\) value
- Width of curve at half point is the FWHM of laser beam
- Then convert FWHM to \(w\) (1/e²)
- FWHM*0.849 = \(w\)
- Gives a good estimate of \(w\) for curve fit
- See the plots in Appendix B
Appendix 1: Solver in excel

Adding solver to excel
For the lab 3 you will probably want to use the excel solver add on in excel (matlab is not friendly for this)
Students who are using MS office 2007/2010 may find that the solver was not loaded into the excel and does not appear in the data menu. In earlier versions a pull down tab showed it still needed to be installed but 2007 (and 2010) does not. Check your data tab ribbon – will show solver on the furthest right if installed.
To get the solver:
The instructions are hard to find in help also. Attached is a screen shot of the help instructions on MS web site and the add-ins list window showing where the solver is once installed.
Using Solver:
Excel help is not good in describing this
Here are links to several good sites that give nice examples of how to use the solver for a problem where you are adjusting several variables to minimize one parameter (sum of squares in the lab)
General instructions
http://chandoo.org/wp/2011/05/11/using-solver-to-assign-item/

Using solver in nonlinear fits (as in this lab)

Solver is useful for your work in other labs
Appendix B
Printout of excel sheet for laser profile fitting.

Nd:YAG Glenn

final round. (this is used to roughly profile the laser beam and decide on the resolution for the axis needed)

<table>
<thead>
<tr>
<th>step</th>
<th>l(z)</th>
<th>diff</th>
<th>fitted l(z)</th>
<th>fitted l(z)</th>
<th>2370.972</th>
<th>111.4439</th>
<th>B</th>
<th>0.667357</th>
<th>W</th>
<th>44.3335</th>
<th>157.5817</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>93.4</td>
<td>2.4</td>
<td>92.16568</td>
<td>1.523558</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>91</td>
<td>3</td>
<td>90.60434</td>
<td>0.95829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>98</td>
<td>3.4</td>
<td>88.05237</td>
<td>0.253396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>84.6</td>
<td>4</td>
<td>85.42711</td>
<td>0.684115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>00.8</td>
<td>5.1</td>
<td>01.00203</td>
<td>0.644066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>75.4</td>
<td>5.4</td>
<td>76.06417</td>
<td>0.41744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>70</td>
<td>7.5</td>
<td>69.67464</td>
<td>0.105861</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>61.5</td>
<td>7.7</td>
<td>61.35911</td>
<td>0.029003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>54.8</td>
<td>8.3</td>
<td>54.27452</td>
<td>0.276125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>45.5</td>
<td>8.4</td>
<td>45.57412</td>
<td>0.391724</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>38.1</td>
<td>8.4</td>
<td>37.54127</td>
<td>0.312174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>29.7</td>
<td>7.5</td>
<td>29.67945</td>
<td>0.000422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>22.2</td>
<td>6</td>
<td>22.65480</td>
<td>0.180257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>16.2</td>
<td>4.9</td>
<td>16.60266</td>
<td>0.162615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>11.0</td>
<td>3.03</td>
<td>11.15236</td>
<td>0.172441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>7.67</td>
<td>2.69</td>
<td>7.941225</td>
<td>0.073563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>4.95</td>
<td>1.82</td>
<td>5.169711</td>
<td>0.03959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>3.16</td>
<td>1.18</td>
<td>3.333504</td>
<td>0.00546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>1.98</td>
<td>0.84</td>
<td>1.947875</td>
<td>0.001032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1.14</td>
<td>0.443</td>
<td>1.135296</td>
<td>0.01105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>0.67</td>
<td>0.237</td>
<td>0.648959</td>
<td>0.0023957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>0.46</td>
<td>0.125</td>
<td>0.376827</td>
<td>0.008496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>0.345</td>
<td>0.075</td>
<td>0.216076</td>
<td>0.014143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>0.27</td>
<td>0.038</td>
<td>0.137608</td>
<td>0.017528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>0.232</td>
<td>0.025</td>
<td>0.099017</td>
<td>0.017584</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>0.203</td>
<td>0.026</td>
<td>0.060996</td>
<td>0.014892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>0.177</td>
<td>0.027</td>
<td>0.072935</td>
<td>0.01083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>0.155</td>
<td>0.023</td>
<td>0.095589</td>
<td>0.006474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>0.123</td>
<td>0.023</td>
<td>0.066169</td>
<td>0.002889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>0.093</td>
<td>0.023</td>
<td>0.067645</td>
<td>0.000821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>0.074</td>
<td>0.019</td>
<td>0.067484</td>
<td>0.003858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>0.055</td>
<td>0.0145</td>
<td>0.067388</td>
<td>0.000153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>0.046</td>
<td>0.0103</td>
<td>0.067367</td>
<td>0.000722</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>0.032</td>
<td>0.0073</td>
<td>0.067365</td>
<td>0.002197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>0.029</td>
<td>0.0047</td>
<td>0.067365</td>
<td>0.002197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>0.0182</td>
<td>0.00237</td>
<td>0.067365</td>
<td>0.002946</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum sq</td>
<td>5.470255</td>
<td></td>
</tr>
</tbody>
</table>