Chapter 5 Peer-to-Peer Protocols and Data Link Layer

PART I: Peer-to-Peer Protocols ARQ Protocols and Reliable Data Transfer

Selective Repeat ARQ

- Go-Back-N ARQ inefficient because multiple frames are resent when errors or losses occur
- Selective Repeat retransmits only an individual frame
- Timeout causes individual corresponding frame to be resent
- NAK causes retransmission of oldest un-acked frame
- Receiver maintains a receive window of sequence numbers that can be accepted
- Error-free, but out-of-sequence frames with sequence numbers within the receive window are buffered
- Arrival of frame with Rnext causes window to slide forward by 1 or more

Selective Repeat ARQ

Selective Repeat ARQ

Transmitter

Receiver

Buffers

```
Rnext+ 1
```

```
Rnext+ 2
```


max Seq \# accepted

Send \& Receive Windows

Transmitter

Moves k forward when ACK arrives with Rnext $=$ Slast $+k$

$$
k=1, \ldots, W_{s}-1
$$

Receiver

Moves forward by 1 or more when frame arrives with

Seq. \# = Rnext

What size W_{s} and W_{r} allowed?

- Example: $M=2^{2}=4, W_{s}=3, W_{r}=3$

Frame 0 resent

Time

Old frame 0 accepted as a new frame because it falls in the receive window

$\mathbf{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{r}}=\mathbf{2}^{\boldsymbol{m}}$ is maximum allowed

- Example: $M=2^{2}=4, W_{s}=2, W_{r}=2$

Frame 0 resent

Old frame 0 rejected because it falls outside the receive window

Why $\mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{r}}=\mathbf{2}^{m}$ works

- Transmitter sends frames 0 to Ws-1; send window empty
- All arrive at receiver
- All ACKs lost
- Transmitter resends frame 0

- Receiver window starts at $\left\{0, \ldots, W_{r}\right\}$
- Window slides forward to $\left\{\mathrm{W}_{\mathrm{s}}, \ldots, \mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{r}}-1\right\}$
- Receiver rejects frame 0 because it is outside receive window

Applications of Selective Repeat ARQ

- TCP (Transmission Control Protocol): transport layer protocol uses variation of selective repeat to provide reliable stream service
- Service Specific Connection Oriented Protocol: error control for signaling messages in ATM networks

Efficiency of Selective Repeat

- Assume P_{f} frame loss probability, then number of transmissions required to deliver a frame is:
- tf $/\left(1-\mathrm{P}_{\mathrm{f}}\right)$

$$
\eta_{S R}=\frac{\frac{n_{f}-n_{o}}{t_{f} /\left(1-P_{f}\right)}}{R}=\left(1-\frac{n_{o}}{n_{f}}\right)\left(1-P_{f}\right)
$$

Example: Impact Bit Error Rate on Selective Repeat

$n_{f}=1250$ bytes $=10000$ bits, $n_{a}=n_{o}=25$ bytes $=200$ bits
Compare S\&W, GBN \& SR efficiency for random bit errors with $p=0,10^{-6}, 10^{-5}, 10^{-4}$ and $R=1 \mathrm{Mbps} \& 100 \mathrm{~ms}$

Efficiency	0	10^{-6}	10^{-5}	10^{-4}
S\&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%
SR	98%	97%	89%	36%

- Selective Repeat outperforms GBN and S\&W, but efficiency drops as error rate increases

Comparison of ARQ Efficiencies

Assume n_{a} and n_{o} are negligible relative to $n f$, and $L=2\left(\right.$ tprop $\left.+t_{\text {proc }}\right) R / n f_{f}=(\mathrm{W}-1)$, then

Selective-Repeat:

$$
\eta_{S R}=\left(1-P_{f}\right)\left(1-\frac{n_{o}}{n_{f}}\right) \approx\left(1-P_{f}\right)
$$

Go-Back-N:
For $P \approx \approx 0, S R \& G B N$ same

$$
\eta_{G B N}=\frac{1-P_{f}}{1+\left(W_{S}-1\right) P_{f}}=\frac{1-P_{f}}{1+L P_{f}}
$$

Stop-and-Wait:
For $P f \rightarrow 1, G B N \& S W$ same

$$
\eta_{S W}=\frac{\left(1-P_{f}\right)}{1+\frac{n_{a}}{n_{f}}+\frac{2\left(t_{\text {prop }}+t_{\text {proc }}\right) R}{n_{f}}} \approx \frac{1-P_{f}}{1+L}
$$

ARQ Efficiencies

Delay-Bandwidth product $=10,100$

