Chapter 5 Peer-to-Peer Protocols and Data Link Layer

PART I: Peer-to-Peer Protocols ARQ Protocols and Reliable Data Transfer

Selective Repeat ARQ

- Go-Back-N ARQ inefficient because *multiple* frames are resent when errors or losses occur
- Selective Repeat retransmits only an individual frame
 - Timeout causes individual corresponding frame to be resent
 - NAK causes retransmission of oldest un-acked frame
- Receiver maintains a *receive window* of sequence numbers that can be accepted
 - Error-free, but out-of-sequence frames with sequence numbers within the receive window are buffered
 - Arrival of frame with Rnext causes window to slide forward by 1 or more

Selective Repeat ARQ

What size W_s and W_r allowed?

• Example: $M=2^2=4$, $W_s=3$, $W_r=3$

$W_s + W_r = 2^m$ is maximum allowed

• Example: $M=2^2=4$, $W_s=2$, $W_r=2$

Old frame 0 rejected because it falls outside the receive window

Why $W_s + W_r = 2^m$ works

- Transmitter sends frames 0 to Ws-1; send window empty
- All arrive at receiver
- All ACKs lost
- Transmitter resends frame 0

- Receiver window starts at {0, ..., W_r}
- Window slides forward to {W_s,...,W_s+W_r-1}
- Receiver rejects frame 0 because it is outside receive window

Applications of Selective Repeat ARQ

- TCP (Transmission Control Protocol): transport layer protocol uses variation of selective repeat to provide reliable stream service
- Service Specific Connection Oriented Protocol: error control for signaling messages in ATM networks

Efficiency of Selective Repeat

- Assume P_f frame loss probability, then number of transmissions required to deliver a frame is:
 - tf / (1-Pf)

$$\eta_{SR} = \frac{\frac{n_f - n_o}{t_f / (1 - P_f)}}{R} = (1 - \frac{n_o}{n_f})(1 - P_f)$$

Example: Impact Bit Error Rate on Selective Repeat

 n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits

Compare S&W, GBN & SR efficiency for random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴ and R=1 Mbps & 100 ms

Efficiency	0	10 ⁻⁶	10 ⁻⁵	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%
SR	98%	97%	89%	36%

 Selective Repeat outperforms GBN and S&W, but efficiency drops as error rate increases

Comparison of ARQ Efficiencies

Assume n_a and n_o are negligible relative to n_f , and $L = 2(t_{prop}+t_{proc})R/n_f = (W_s-1)$, then

Selective-Repeat:

$$\eta_{SR} = (1 - P_f)(1 - \frac{n_o}{n_f}) \approx (1 - P_f)$$

Go-Back-N:

For P_f≈0, SR & GBN same

$$\eta_{GBN} = \frac{1 - P_f}{1 + (W_S - 1)P_f} = \frac{1 - P_f}{1 + LP_f}$$

For $P_f \rightarrow 1$, GBN & SW same

12

Stop-and-Wait:

$$\eta_{SW} = \frac{(1 - P_f)}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} \approx \frac{1 - P_f}{1 + L}$$

ARQ Efficiencies

Delay-Bandwidth product = 10, 100