

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

0

© F. Malobert

F. Maloberti Department of Electronics University of Pavia - Italy franco.maloberti@unipv.it

© F. Maloberti

Summary

- Introduction
- Sigma-Delta Architectures
- DAC Resolution Reduction
- Time Interleaved Technique
- OTA Swing Reduction
- Syntesis of the Noise Transfer Function
- Conclusions

© F. Maloberti

2

Introduction

Technology advancements and the electronics market evolution more and more favor applications with nomadic features:

- ★ Limited power refueling;
- * Autonomous operation (no power specifically provided with capability to acquire the power that needs and modulate its activity depending on the available power budget).

Nomadic electronics impose an optimum trade-off between power and performance \Rightarrow Minimum power and its aware use.

Hot Topics

- ★ Ultra-low power analog conditioning;
- ★ Ultra-low power data conversion;
- ★ Power aware digital design;
- ★ Re-design of basic digital cells and power optimization of algorithms.

© F. Maloberti

3

Introduction (ii)

For the design of data converter an effective use of power is measured by the figure of merit (*FoM*)

$$FoM = \frac{P}{2^{ENOB} \cdot 2 \cdot f_B}$$

ENOB = equivalent number of bits; f_B input bandwidth.

The *FoM* is not a solid way to asses the power effectiveness as it depends on technology and the frequency range of operation.

Nevertheless, obtaining a *FoM* in the range of *1 pJ-conv* or less is a good sign of an effective use of power.

© F. Maloberti

4

Sigma-Delta Architectures

 $\Sigma \Delta$ was for high-resolution, low-bandwidth analog-to-digital converters. Now, $\Sigma \Delta$ is also used for low-power high-bandwidth medium-resolution with small *OSR*.

The low power goal can be obtained by a proper choice of three design parameters: the oversampling ratio, the order of the modulator and the number of bits of the quantization.

- ★ High sampling frequency augments the need of high bandwidth and slew-rate in the used OTAs.
- \star High-order requires a large number of OTAs.
- ★ Multi-bit quantizers increases the resolution but multi-bit DACs can cause harmonic distortion.

© F. Maloberti

5

Design Strategies

Use *DEM* and multi-bit architectures with a maximum number of bits in the *ADC*.

Minimize the number of *OTA*: share functions or use a single op-amp to obtain high order transfer functions.

Reduce the clock frequency by using time interleaving and N-path architectures (+ syntesis of the NTF).

Limit the *OTA* voltage swings for benefiting the slew-rate and using architectures with reduced complexity.

Reduction of the DAC Resolution

A $2^{2.5} \simeq 6$ increases of the number of quantization levels is equivalent to a sampling frequency doubling in a second-order modulator.

More comparators but lower speed in the op-amps.

Use of Dynamic element matching (DEM) of the DAC elements.

Solution: use many levels in the ADC but reduces the number of levels of the DAC.

6

Reduction of the DAC Resolution (ii)

7

© F. Malobert

Leslie Sing method is an option ...

Truncation, Shaping and Error Cancellation

Reduces the DAC resolution by truncation and shaping of the truncation error (Maloberti Yu - JSSC Dec.05).

8

© F. Maloberti

Truncation, Shaping and Error Cancellation (ii)

9

© F. Maloberti

10

Truncation, Shaping and Error Cancellation (iii)

© F. Maloberti

11

Truncation, Shaping and Error Cancellation (iv)

- CMOS 90nm digital process
- Area: 0.4mm²
- Digital Part <5% Layout Area
- Supply 1.2V 2.2 mW
- ➢ Signal Band 1 MHz
- ≻ OSR=20
- ➤ SNDR =64dB
- FoM =0.92 pJ/conv

Time Interleaved Technique

12

© F. Malobert

Time-interleaved (*TI*) technique $(z \rightarrow z^M)$ is attractive for $\Sigma \Delta$ as the *OSR* increases without speeding-up analog blocks.

Reducing by two the clock diminishes power by 3-4 (MOS in saturation)!

© F. Maloberti

13

Time Interleaved: Key issue

The recursive operation of $\Sigma \Delta$ modulators makes it difficult the transformation of a $\Sigma \Delta$ into its equivalent *TI* structures.

Limitations:

• Quantizer domino (occurs when a certain quantizer output is connected to another quantizer input via an analog block without a delay).

Solution:

- △ Convert to digital incomplete analog inputs.
- \triangle Correct the incomplete result in the digital domain.

4-paths

Kye-Shin Lee; F. Maloberti, F. TCAS II 04

Kye-Shin Lee; Sunwoo Kwon, F. Maloberti, F. ISCAS 04

Time Interleaved: Incomplete Conversion

14

© F. Maloberti

15

2-path Time Interleaved: Schematic

No op-amps for the second path

Use two DACs in the second input

Kye-Shin Lee; Yunyoung Choi, F. Maloberti, ISSCC 06

EXTRA PROPERTY AND A

2-path Time Interleaved: Circuit Schematic

16

Spectrum of the Output

17

Chip Micro-photograph

- Technology
 0.18um CMOS,
 1-poly / 5-metal,
 MIM Caps.
- Core Area
 1.1 mm²

18

© F. Maloberti

19

Summary of Performances

Supply voltage	1.8V	
Effective sampling frequency	132MHz	
Signal bandwidth	1.1MHz	
Oversampling ratio	60	
Reference voltage	0.8V	
Input range (differential)	1.6V _{pp}	
Peak SNR	81dB	FoM = 0.44 pJ/conv
Peak SNDR	78dB	
DR	85dB	
Power consumption	4.2mW (analog) 1.2mW (digital)	
Chip core area	1.1 mm ²	
Technology	0.18µm CMOS]

Comparing Results

20

© F. Maloberti

FoM

1.65

3.87

3.62

3.42

0.56

1.34

0.48

21

© F. Malobert

Reduction of the Op-amp Swing

Reducing the output swing minimizes power consumption of the *OTA*:

- ★ the slew-rate requirements are relaxed
- ★ the power consumed for charging capacitors is limited
- ★ using power effective OTAs like single-stage telescopic schemes

© F. Maloberti

22

Use of Feedforward

The output of the first integrator is almost quantization noise

© F. Maloberti

23

Use of Feedforward (ii)

If the feedforward moves after the quantizer

The swing at the input of the quantizer is also reduced. (!) Less levels in the flash required!!

New Solution

24

© F. Maloberti

Digital feedforward on the second "input"

Compensation of the quantization noise with extra path

PERSONAL PROPERTY AND A DESCRIPTION OF A DE

Comparing Solutions

25

© F. Maloberti

26

Experimental results

Sunwoo Know, F. Maloberti, F. ISSCC 06

© F. Maloberti

27

Experimental results (ii)

Sampling frequency	144MHz
Signal bandwidth	2.2MHz
Oversampling ratio	32.7
Peak SNR	84dB
Peak SNDR	79dB
Dynamic range	88dB
Input range	$2V_{pp}$ (differential)
Power consumption	5.1mW (A), 8.7mW(D)
Power supply	1.8V (A), 2.5V(D)
Active area	2.32mm ²
Technology	0.18µm CMOS

Syntesis of the NTF

28

© F. Malobert

The $z^{-1} \rightarrow z^{-N}$ transformation of an *N*-path scheme increases the order of the *NTF* polynomial. For example, the noise transfer function

 $(1\pm z^{-1})^k$ becomes

 $(1\pm z^{-N})^k$ by using *N*-paths.

Consider a second order modulator and a $z \rightarrow z^2$ transformation

$$NTF' = (1 - z^{-2})^2 = 1 - 2z^{-2} + z^{-4}$$

which has the same order as the fourth order noise transfer function:

$$NTF_4 = (1 - z^{-1})^4 = 1 - 4z^{-1} + 6z^{-2} - 4z^{-3} + z^{-4}$$

but is missing the terms $-4z^{-1}$, $8z^{-2}$, and $-4z^{-3}$.

Syntesis means generating the missing terms by suitable additions.

ETTER PROPERTY AND A

Two-path BP Sigma-Delta

29

 $NTF = 1 + z^{-1} + z^{-2} \rightarrow (1 + z^{-1} + z^{-2})^3$

© F. Maloberti

30

Experimental Results

Ying Feng, F. Maloberti, ISSCC 05

EXPLANATION DATA DATA

Extension of the technique

31

© F. Maloberti

86 dB DR Cross-Coupled Time-Interleaved $\Sigma \Delta$ ADC for MEMS Microphone with 320 μ A Current Consumption

© F. Maloberti

32

Chip Photo

Experimental results

33

© F. Maloberti

34

Summary of results

MEASUREMENT RESULTS

Sampling Frequency	3.2 MHz
Signal Band	16 kHz
Output Bits	4
Peak SNR	80 dB
SNDR, V _{in} @- 35 dBv	51 dB
Power Consumption	600 μW @1.8V
Dynamic Range	86 dB
Area	1.8 mm × 1.9 mm

Very low current figure of merit!

© F. Maloberti

Conclusions

Data Converters for nomadic systems may need good resolution (SNR) but also ...

Low harmonic distortion

Low, **IOW IOW** power and voltage.

Solutions described here determine the following recommendation: Use digital circuitry for improving analog performances.

THANK YOU!