

Efficient Mining of Data Through Reuse in a Public Safety Network

Ljiljana Trajković ljilja@cs.sfu.ca

Communication Networks Laboratory http://www.ensc.sfu.ca/cnl School of Engineering Science Simon Fraser University, Vancouver, British Columbia Canada

- Introduction
- Traffic data and analysis tools:
 - data collection
 - statistical analysis
 - clustering tools
 - prediction analysis
- Case study:
 - public safety wireless network: E-Comm
- Conclusions and references

M.A.Sc. and M.Eng. students at SFU:

- E-Comm data analysis:
 - Duncan Sharp
 - Hao (Leo) Chen
 - Bozidar Vujičić
 - Nikola Cackov
 - Svetlana Vujičić
 - Nenad Lasković
- ChinaSat data analysis:
 - Qing (Kenny) Shao
 - Savio Lau

Network traffic measurements

- Focus of networking research during:
 - mid to late 1980's
 - early 1990's
- Motivation for traffic measurements:
 - understand traffic characteristics in deployed networks
 - develop traffic models
 - evaluate performance of protocols and applications
 - perform trace driven simulations

Case studies: deployed networks

- Analysis of traffic from operational networks:
 - provides useful information about the user behavior patterns
 - enables network operators to better understand the behavior of network users
 - helps provide better quality of service
- Traffic prediction: important to assess future network capacity requirements and to plan future network developments

- Introduction
- Traffic data and analysis tools:
 - data collection
 - statistical analysis
 - clustering tools
 - prediction analysis
- Case study:
 - wireless network: E-Comm
- Conclusions and references

- Most available traffic traces are from wired networks within research communities:
 - Bellcore, LBNL, Auckland University
- Few traces have been collected from wireless or satellite commercial networks
- Various factors affect Internet traffic patterns:
 - Web, Proxy, Napster, MP3, Web mail

- Introduction
- Traffic data and analysis tools:
 - data collection
 - statistical analysis
 - clustering tools
 - prediction analysis
- Case study:
 - wireless network: E-Comm
- Conclusions and references

- Self-similarity implies a "fractal-like" behavior: data on various time scales have similar patterns
- A wide-sense stationary process X(n) is called (exactly second order) self-similar if its autocorrelation function satisfies:
 - $r^{(m)}(k) = r(k), k \ge 0, m = 1, 2, ..., n,$

where m is the level of aggregation

- Implications:
 - no natural length of bursts
 - bursts exist across many time scales
 - traffic does not become "smoother" when aggregated (unlike Poisson traffic)

- Properties:
 - slowly decaying variance
 - long-range dependence
 - Hurst parameter (H)
- Processes with only short-range dependence (Poisson):
 H = 0.5
- Self-similar processes: 0.5 < H < 1.0
- As the traffic volume increases, the traffic becomes more bursty, more self-similar, and the Hurst parameter increases

Long-range dependence: properties

- High variability:
 - when the sample size increases, variance of the sample mean decays more slowly than expected
- Burstiness over a range of timescales:
 - long runs of large values followed by long runs of small values, repeated in aperiodic patterns

Self-similar traffic patterns

Genuine MPEG traffic trace

The two traces have identical mean.

Genuine MPEG traffic trace:

W. Leland, M. Taqqu, W. Willinger, and D. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," *IEEE/ACM Trans. Networking*, vol. 2, pp. 1–15, 1994.

Synthetically generated Poisson model:

W. Leland, M. Taqqu, W. Willinger, and D. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," *IEEE/ACM Trans. Networking*, vol. 2, pp. 1–15, 1994.

Various estimators:

- variance-time plots
- R/S plots
- periodograms
- wavelets

Their performance often depends on the characteristics of the data trace under analysis

- Introduction
- Traffic data and analysis tools:
 - data collection
 - statistical analysis
 - clustering tools
 - prediction analysis
- Case study:
 - wireless network: E-Comm
- Conclusions and references

- Clustering analysis groups or segments a collection of objects into subsets or clusters
- Objects within a cluster are more similar to each other than objects in distinct clusters
- An object can be described by a set of measurements or by its relations to other objects
- Network users are classified into clusters, according to the similarity of their behavior patterns

- Groups collection of objects into subsets (clusters):
 - resulting intra-cluster similarity is high while inter-cluster similarity is low
- The inter-cluster distance reflects dissimilarity between clusters:
 - Euclidean distance between two cluster centroids (mean value of objects in a cluster, viewed as cluster's center of gravity)
- The intra-cluster distance expresses coherent similarity of data in the same cluster:
 - average distance of objects from their cluster centroids
- Better clustering:
 - large inter-cluster and small intra-cluster distances

- Overall clustering quality: defined as difference between minimum inter-cluster and maximum intra-cluster distances
 - larger indicator implies better overall clustering quality
- Silhouette coefficient (x):

 $(b(x) - a(x)) / max \{a(x), b(x)\}$

a(x) and b(x) are average distances between data point x and other data points in clusters A and B , respectively

independent of number of clusters K

- We classify the calling patterns of talk groups by using two known clustering tools:
 - AutoClass tool
 - K-means algorithm

P. Cheeseman and J. Stutz, "Bayesian classification (AutoClass): theory and results," in *Advances in Knowledge Discovery and Data Mining*, U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds., AAAI Press/MIT Press, 1996.

L. Kaufman and P. J. Rousseeuw, *Finding Groups in Data: An Introduction to Cluster Analysis*. New York: John Wiley & Sons, 1990.

Clustering algorithms: AutoClass

- AutoClass is an unsupervised classification tool based on the Bayesian approach
- The goal of an unsupervised classification is to find the most probable set of class descriptions given the data and the prior expectations
- AutoClass begins by creating a random classification and then manipulates it into a high probability classification through local changes
- It repeats the process until it converges to a local maximum
- It starts over again and continues for a specified number of tries
- Each new try begins with a certain number of classes and may conclude with a smaller number of classes

Clustering algorithms: K-means

- The K-means algorithm is commonly used for data clustering
- Based on the input parameter k, it partitions a set of n objects into k clusters so that the resulting intra-cluster similarity is high and the inter-cluster similarity is low
- Similarity of clusters is measured with respect to the mean value of the objects in a cluster (viewed as the cluster's center of gravity)
- The algorithm is well-known for its simplicity and efficiency

- Introduction
- Traffic data and analysis tools:
 - data collection
 - statistical analysis
 - clustering tools
 - traffic prediction
- Case study:
 - wireless network: E-Comm
- Conclusions and references

Traffic prediction

- Traffic prediction: important to assess future network capacity requirements and to plan future network developments
- A network traffic trace consists of a series of observations in a dynamical system environment
- Traditional prediction: considers aggregate traffic and assumes a constant number of network users
- Approach that focuses on individual users has high computational cost for networks with thousands of users
- Employing clustering techniques for predicting aggregate network traffic bridges the gap between the two approaches

Traffic prediction: ARMA model

Predicting traffic using AutoRegressive Moving-Average (ARMA) model:

 $X(t) = \phi_1 X(t-1) + \dots + \phi_p X(t-p) + e(t) + \theta_1 e(t-1) \dots + \theta_q e(t-q)$ $\phi_P(B)\omega_t = \theta_q(B)\mathcal{E}_t$

where:

- AR and MA parts: $\phi(B)$ and $\theta(B)$
- B = the back-shift operator: $B^i X_t = X_{t-i}$
- Model:
 - past values: AutoRegressive (AR) structure
 - past random fluctuant effect: Moving Average (MA) process

Traffic prediction: ARIMA model

- Auto-Regressive Integrated Moving Average (ARIMA) model:
 - general model for forecasting time series
 - past values: AutoRegressive (AR) structure
 - past random fluctuant effect: Moving Average (MA) process
- ARIMA model explicitly includes differencing
- ARIMA (p, d, q):
 - autoregressive parameter: p
 - number of differencing passes: d
 - moving average parameter: q

Traffic prediction: SARIMA model

- Seasonal ARIMA is a variation of the ARIMA model
- Seasonal ARIMA (SARIMA) model:

 $(p,d,q)\times(P,D,Q)_{S}$

- captures seasonal pattern
- SARIMA additional model parameters:
 - seasonal period parameter: S
 - seasonal autoregressive parameter: P
 - number of seasonal differencing passes: D
 - seasonal moving average parameter: Q

SARIMA models: selection criteria

- Order (p,d,q) selected based on:
 - time series plot of traffic data
 - autocorrelation and partial autocorrelation functions
- Validity of parameter selection:
 - Akaike's information criterion AIC
 - Akaike's information criterion corrected AICc
 - Bayesian information criterion BIC

Roadmap

- Introduction
- Traffic data and analysis tools:
 - data collection
 - statistical analysis
 - clustering tools
 - prediction analysis
- Case study:
 - wireless network: E-Comm
- Conclusions and references

Case study: E-Comm network

- E-Comm network: an operational trunked radio system serving as a regional emergency communication system
- The E-Comm network is capable of both voice and data transmissions
- Voice traffic accounts for over 99% of network traffic
- A group call is a standard call made in a trunked radio system
- More than 85% of calls are group calls
- A distributed event log database records every event occurring in the network: call establishment, channel assignment, call drop, and emergency call

E-Comm network: utilization

- Using network activity data to model the utilization of a trunked radio system
- Data and network models
- OPNET simulation results

N. Cackov, B. Vujičić, S. Vujičić, and Lj. Trajković, "Using network activity data to model the utilization of a trunked radio system," in *Proc. SPECTS 2004*, San Jose, CA, July 2004, pp. 517–524.

N. Cackov, J. Song, B. Vujičić, S. Vujičić, and Lj. Trajković, "Simulation of a public safety wireless networks: a case study," *Simulation*, vol. 81, no. 8, pp. 571–585, Aug. 2005.

E-Comm network: coverage and user agencies

E-Comm network coverage

E-Comm network architecture

- Users are organized in 617 talk groups:
 - one-to-many type of conversations (group call)
 - multi-system call represents single group call involving more than one system/cell
- Push-to-talk (PTT) mechanism for network access:
 - user presses the PTT button
 - system locates other members of the talk group
 - system checks for availability of channels:
 - channel available: call established
 - all channels busy: call queued/dropped
 - user releases PTT:
 - call terminates

- Presence of daily cycles:
 - minimum utilization: ~ 2 PM
 - maximum utilization: 9 PM to 3 AM
- 2002 sample data:
 - cell 5 is the busiest
 - others seldom reach their capacities
- 2003 sample data:
 - several cells (2, 4, 7, and 9) have all channels occupied during busy hours

Performance analysis

- Modeling and Performance Analysis of Public Safety Wireless Networks
- WarnSim: a simulator for public safety wireless networks (PSWN)
- Traffic data analysis
- Traffic modeling
- Simulation and prediction

J. Song and Lj. Trajković, "Modeling and performance analysis of public safety wireless networks," in *Proc. IEEE IPCCC*, Phoenix, AZ, Apr. 2005, pp. 567–572.

N. Cackov, J. Song, B. Vujičić, S. Vujičić, and Lj. Trajković, "Simulation of a public safety wireless networks: a case study," *Simulation*, vol. 81, no. 8, pp. 571–585, Aug. 2005.

WarnSim overview

- Simulators such as OPNET, ns-2, and JSim are designed for packet-switched networks
- WarnSim is a simulator developed for circuit-switched networks, such as PSWN
- WarnSim:
 - publicly available simulator
 - http://www.vannet.ca/warnsim
 - effective, flexible, and easy to use
 - developed using Microsoft Visual C# .NET
 - operates on Windows platforms

Traffic trace generator

🗸 WarnSim: Wide Area	Radio Network Simulator	
<u>W</u> indow <u>H</u> elp		
Simulation steps		Call sources
1 Network topology	ID: 1 Call Holding: exponential Call Int-Arr: lognormal Name: Agency A Scale: 1000 Location: 0.55 $f(x)$ Coverage: sample_coverage.csv Scale: 8.05 Start at: 0 Start at: 0 Start at: 0	$ \begin{array}{c} $
2 Traffic trace	Traffic Trace From Traffic Generator	
3 Sim parameter	Trace ID: 1 Trace name: Agency A	Import
4 Sim run	Call holding time Call inter-arrival time Distribution: exponential Scale: 1000	Remove
5 Sim results	Scale: loglogistic normal uniform weibull	Configure
		Traffic trace
	Start time: 0 (Unit: millisecond)	
	CLoad predefined call coverage configuration	Save
	File name: E:\WamSim\sample_coverage.csv Browse	4 😅
	OK Cancel	Load

March 2, 2007

Modeling and characterization of traffic

- Statistical concepts and analysis tools
- Analysis of traffic data:
 - call inter-arrival times
 - call holding times
- Traffic modeling and characterization

B. Vujičić, N. Cackov, S. Vujičić, and Lj. Trajković, "Modeling and characterization of traffic in public safety wireless networks," in *Proc. SPECTS 2005*, Philadelphia, PA, July 2005, pp. 214–223.

Erlang traffic models

- *P_B* : probability of rejecting a call
- *P_c* : probability of delaying a call
- *N* : number of channels/lines
- *A* : total traffic volume

- Erlang B model assumes:
 - call holding time follows exponential distribution
 - blocked call will be rejected immediately
- Erlang C model assumes:
 - call holding time follows exponential distribution
 - blocked call will be put into a FIFO queue with infinite size

Kolmogorov-Smirnov test

- Goodness-of-fit test: quantitative decision whether the empirical cumulative distribution function (ECDF) of a set of observations is consistent with a random sample from an assumed theoretical distribution
- ECDF is a step function (step size 1/N) of N ordered data points Y₁, Y₂, ..., Y_N:

$$E_N = \frac{n(i)}{N}$$

n(i): the number of data samples with values smaller than Y_i

Parameters

- Hypothesis:
 - null: the candidate distribution fits the empirical data
 - alternative: the candidate distribution does not fit the empirical data
- Input parameters: significance level σ and tail
- Output parameters:
 - p-value
 - k: test statistic
 - cv: critical (cut-off) value

- Significance level σ: determines if the null hypothesis is wrongly rejected σ percent of times, if it is in fact true
 - default value $\sigma = 0.05$
- or defines sensitivity of the test:
 - smaller σ implies larger critical value (larger tolerance)
- tail: specifies whether the K-S performs two sided test (default) or tests from one or other side of the candidate distribution

Output parameters

• Test statistic k is the maximum difference over all data points: $k = \max_{1 \le i \le N} \left| F(Y_i) - \frac{i}{N} \right|$

where *F* is the CDF of the assumed distribution

- The null hypothesis is accepted if the value of the test statistic is smaller than the critical value
- p-value is probability level when the difference between distributions (test statistics) becomes significant:
 - if p-value $\leq \sigma$: test rejects the null hypothesis
- If test returns critical value = NaN, the decision to accept or reject null hypothesis is based only on p-value

- Records of network events:
 - established, queued, and dropped calls in the Vancouver cell
- Traffic data span periods during:
 - **2001, 2002, 2003**

Trace (dataset)	Time span	No. of established calls
2001	November 1–2, 2001	110,348
2002	March 1–7, 2002	370,510
2003	March 24–30, 2003	387,340

 Call holding and call inter-arrival times from the five busiest hours in each dataset (2001, 2002, and 2003)

2001		2002		2003		
Day/hour	No.	Day/hour	No.	Day/hour	No.	
02.11.2001 15:00–16:00	3,718	01.03.2002 04:00–05:00	4,436	26.03.2003 22:00–23:00	4,919	
01.11.2001 00:00-01:00	3,707	01.03.2002 22:00–23:00	4,314	25.03.2003 23:00–24:00	4,249	
02.11.2001 16:00–17:00	3,492	01.03.2002 23:00–24:00	4,179	26.03.2003 23:00–24:00	4,222	
01.11.2001 19:00–20:00	3,312	01.03.2002 00:00-01:00	3,971	29.03.2003 02:00–03:00	4,150	
02.11.2001 20:00–21:00	3,227	02.03.2002 00:00-01:00	3,939	29.03.2003 01:00–02:00	4,097	

Example: March 26, 2003

Statistical distributions

- Fourteen candidate distributions:
 - exponetial, Weibull, gamma, normal, lognormal, logistic, log-logistic, Nakagami, Rayleigh, Rician, t-location scale, Birnbaum-Saunders, extreme value, inverse Gaussian
- Parameters of the distributions: calculated by performing maximum likelihood estimation
- Best fitting distributions are determined by:
 - visual inspection of the distribution of the trace and the candidate distributions
 - K-S test on potential candidates

Maximum likelihood estimation (MLE)

- Introduced by R. A. Fisher in 1920s
- The most popular method for parameter estimation
- Goal: to find the distribution parameters that make the given distribution that follow the most closely underlying data set
- Conduct an experiment and obtain *N* independent observations

•
$$\theta_1, \theta_2, ..., \theta_k$$
 are k unknown constant parameters which
 $L(x_1, x_2, ..., x_N | \theta_1, \theta_2, ..., \theta_k) = L = \prod_{i=1}^N f(x_i; \theta_1, \theta_2, ..., \theta_k)$
 $i = 1, 2, ..., N$

Call inter-arrival times: pdf candidates

Call inter-arrival times: K-S test results (2003 data)

Distribution	Parameter	26.03.2003, 22:00–23:00	25.03.2003, 23:00–24:00	26.03.2003, 23:00–24:00	29.03.2003, 02:00–03:00	29.03.2003, 01:00–02:00
	h	1	1	0	1	1
Exponential	р	0.0027	0.0469	0.4049	0.0316	0.1101
	k	0.0283	0.0214	0.0137	0.0205	0.0185
	h	0	0	0	0	0
Weibull	р	0.4885	0.4662	0.2065	0.286	0.2337
	k	0.0130	0.0133	0.0164	0.014	0.0159
	h	0	0	0	0	0
Gamma	р	0.3956	0.3458	0.127	0.145	0.1672
	k	0.0139	0.0146	0.0181	0.0163	0.0171
	h	1	1	1	1	1
Lognormal	р	1.015E-20	4.717E-15	2.97E-16	3.267E-23	4.851E-21
	k	0.0689	0.0629	0.0657	0.0795	0.0761

K-S test: call inter-arrival times 2001

Significance level $\sigma = 0.1$

Distribution	Parameter	02.11.2001, 20:00–21:00	02.11.2001 16:00–17:0	, 02.11.20 0 15:00-1	001, (6:00 (01.11.2001, 19:00–20:00	01.11.2001, 00:00–01:00
	h	1	1	0		1	1
exponential	р	0.0384	0.000	01 0.5	5416	0.0122	0.0135
	k	0.0247	0.036	59 0.0	0131	0.0277	0.0259
Weibull	h	0	1	0		0	1
	р	0.3036	0.040)9 0.4	1994	0.1574	0.0837
	k	0.0171	0.023	0.0	0136	0.0195	0.0206
	h	0	1	0		1	1
gamma	р	0.3833	0.006	52 0.3	3916	0.0644	0.0953
	k	0.0159	0.028	37 0.0	0148	0.0227	0.0202
Significance level σ		0.01	0.04	0.05	0.0	0.09	0.1

Significance level σ	0.01	0.04	0.05	0.08	0.09	0.1
02.11.2001, 16:00–17:00: cv	0.0275	0.0237	0.0230	0.0215	0.0211	0.0207
01.11.2001, 00:00-01:00: cv	0.0267	0.0229	0.0223	0.0208	0.0204	0.0201

Call inter-arrival times: best-fitting distributions (cdf)

Call inter-arrival times: estimates of H

 Traces pass the test for time constancy of α: estimates of H are reliable

2001		2002		2003		
Day/hour	Н	Day/hour	Н	Day/hour	Н	
02.11.2001 15:00–16:00	0.907	01.03.2002 04:00–05:00	0.679	26.03.2003 22:00–23:00	0.788	
01.11.2001 00:00-01:00	0.802	01.03.2002 22:00–23:00	0.757	25.03.2003 23:00–24:00	0.832	
02.11.2001 16:00–17:00	0.770	01.03.2002 23:00–24:00	0.780	26.03.2003 23:00–24:00	0.699	
01.11.2001 19:00–20:00	0.774	01.03.2002 00:00-01:00	0.741	29.03.2003 02:00–03:00	0.696	
02.11.2001 20:00–21:00	0.663	02.03.2002 00:00-01:00	0.747	29.03.2003 01:00–02:00	0.705	

Call holding times: pdf candidates

Call holding times: best-fitting distributions (cdf)

Call holding times: K-S test results (2003 data)

- No distribution passes the test when the entire trace is tested (significance levels = 0.1 and 0.01)
- Lognormal distribution passes test (significance level = 0.01) for:
 - 5-6 sub-traces from 15 randomly chosen 1,000-sample subtraces
 - passes the test for almost all 500-sample sub-traces
- Test rejects null hypothesis when the sub-traces are compared with candidate distributions:
 - exponential
 - Weibull
 - gamma

Call holding times: estimates of H

- All (except one) traces pass the test for constancy of $\boldsymbol{\alpha}$
- only one unreliable estimate (*): consistent value

2001		2002		2003		
Day/hour	Н	Day/hour	Н	Day/hour	Н	
02.11.2001 15:00–16:00	0.493	01.03.2002 04:00–05:00	0.490	26.03.2003 22:00–23:00	0.483	
01.11.2001 00:00-01:00	0.471	01.03.2002 22:00–23:00	0.460	25.03.2003 23:00–24:00	0.483	
02.11.2001 16:00–17:00	0.462	01.03.2002 23:00-24:00	0.489	26.03.2003 23:00–24:00	0.463 *	
01.11.2001 19:00–20:00	0.467	01.03.2002 00:00-01:00	0.508	29.03.2003 02:00–03:00	0.526	
02.11.2001 20:00–21:00	0.479	02.03.2002 00:00-01:00	0.503	29.03.2003 01:00–02:00	0.466	

Call inter-arrival and call holding times

	200	2002 2003			3	
	Day/hour	Avg. (s)	Day/hour	Avg. (s)	Day/hour	Avg. (s)
inter-arrival	02.11.2001	0.97	01.03.2002	0.81	26.03.2003	0.73
holding	15:00–16:00	3.78	04:00-05:00	4.07	22:00–23:00	4.08
inter-arrival	01.11.2001	0.97	01.03.2002	0.83	25.03.2003	0.85
holding	00:00–01:00	3.95	22:00–23:00	3.84	23:00–24:00	4.12
inter-arrival	02.11.2001	1.03	01.03.2002	0.86	26.03.2003	0.85
holding	16:00–17:00	3.99	23:00-24:00	3.88	23:00–24:00	4.04
inter-arrival	01.11.2001	1.09	01.03.2002	0.91	29.03.2003	0.87
holding	19:00–20:00	3.97	00:00-01:00	3.95	02:00-03:00	4.14
inter-arrival	02.11.2001	1.12	02.03.2002	0.91	29.03.2003	0.88
holding	20:00–21:00	3.84	00:00-01:00	4.06	01:00-02:00	4.25

Avg. call inter-arrival times: 1.08 s (2001), 0.86 s (2002), 0.84 s (2003) Avg. call holding times: 3.91 s (2001), 3.96 s (2002), 4.13 s (2003)

Busy hour: best fitting distributions

		Distribution							
Puer hour		Call inter-	arrival times		Call holding times				
Dusy noul	Wei	bull	Gar	nma	Logno	Lognormal			
	а	b	а	b	μ	σ			
02.11.2001 15:00-16:00	0.9785	1.1075	1.0326	0.9407	1.0913	0.6910			
01.11.2001 00:00-01:00	0.9907	1.0517	1.0818	0.8977	1.0801	0.7535			
02.11.2001 16:00-17:00	1.0651	1.0826	1.1189	0.9238	1.1432	0.6803			
01.03.2002 04:00-05:00	0.8313	1.0603	1.1096	0.7319	1.1746	0.6671			
01.03.2002 22:00-23:00	0.8532	1.0542	1.0931	0.7643	1.1157	0.6565			
01.03.2002 23:00-24:00	0.8877	1.0790	1.1308	0.7623	1.1096	0.6803			
26.03.2003 22:00-23:00	0.7475	1.0475	1.0910	0.6724	1.1838	0.6553			
25.03.2003 23:00-24:00	0.8622	1.0376	1.0762	0.7891	1.1737	0.6715			
26.03.2003 23:00-24:00	0.8579	1.0092	1.0299	0.8292	1.1704	0.6696			

- E-Comm network and traffic data:
 - data preprocessing and extraction
- Data clustering
- Traffic prediction:
 - based on aggregate traffic
 - cluster based

H. Chen and Lj. Trajković, "Trunked radio systems: traffic prediction based on user clusters," in *Proc. IEEE ISWCS 2004*, Mauritius, Sept. 2004, pp. 76–80.

B. Vujičić, L. Chen, and Lj. Trajković, "Prediction of traffic in a public safety network," in *Proc. ISCAS 2006*, Kos, Greece, May 2006, pp. 2637–2640.

- 2001 data set:
 - 2 days of traffic data
 - 2001-11-1 to 2001-11-02 (110,348 calls)
- 2002 data set:
 - 28 days of continuous traffic data
 - 2002-02-10 to 2002-03-09 (1,916,943 calls)
- 2003 data set:
 - 92 days of continuous traffic data
 - 2003-03-01 to 2003-05-31 (8,756,930 calls)

Traffic data: preprocessing

- Collected data contain continuous data records from 92 days: March 1st 2003 – May 31st 2003
- Original database: ~6 GBytes, with 44,786,489 record rows:
 - contains event log tables recording network activities
 - aggregated from distributed database of individual network management systems
 - sorted in 92 event log tables, each containing one day's events
- 9 (out of original 26) fields are of interest for our analysis

Traffic data: preprocessing

- Data pre-processing:
 - cleaning the database
 - filtering the outliers
 - removing redundant records
 - extracting accurate user calling activity
- After the data cleaning and extraction, number of records was reduced to only 19% of original records

Traffic data: sample

Date	Time	Ms	Duration	S ys_id	Chl_id	Caller	Callee	C_type	C_state	Multi
2003-03-20	00:00:01	450	3730	8	4	6155	1801	0	0	0
2003-03-20	00:00:01	469	3730	6	7	6155	1801	0	0	0
2003-03-20	00:00:01	560	3730	3	7	6155	1801	0	0	0
2003-03-20	00:00:01	570	3730	2	7	6155	1801	0	0	0
2003-03-20	00:00:01	640	3730	1	7	6155	1801	0	0	0
2003-03-20	00:00:01	880	5260	9	6	13314	251	0	0	0
2003-03-20	00:00:01	910	5260	7	6	13314	251	0	0	0
2003-03-20	00:00:01	970	5260	6	8	13314	251	0	0	0
2003-03-20	00:00:01	980	2520	7	7	13911	418	0	0	0
2003-03-20	00:00:02	29	5270	4	2	13314	251	0	0	0
2003-03-20	00:00:02	109	5260	2	8	13314	251	0	0	0
2003-03-20	00:00:02	139	5270	1	8	13314	251	0	0	0
2003-03-20	00:00:02	9	2510	6	1	13911	418	0	0	0
2003-03-20	00:00:02	149	2510	2	9	13911	418	0	0	0
2003-03-20	00:00:05	289	3560	8	5	6011	2035	0	0	0
2003-03-20	00:00:05	309	3550	6	3	6011	2035	0	0	0
2003-03-20	00:00:05	389	3560	3	2	6011	2035	0	0	0
2003-03-20	00:00:05	449	3550	2	2	6011	2035	0	0	0
2003-03-20	00:00:05	480	3550	1	9	6011	2035	0	0	0
2003-03-20	00:00:05	550	3440	1	12	7614	945	0	0	0
2003-03-20	00:00:05	550	3440	2	3	7614	945	0	0	0
2003-03-20	00:00:05	949	9780	6	4	15840	418	0	0	0
2003-03-20	00:00:05	959	9780	7	2	15840	418	0	0	0
2003-03-20	00:00:06	679	3040	2	6	13931	471	0	0	0
2003-03-20	00:00:06	709	3040	1	2	13931	471	0	0	0
2003-03-20	00:00:06	130	9780	2	4	15840	418	0	0	0
2003-03-20	80:00:00	109	6640	9	2	13420	251	0	0	0
2003-03-20	80:00:00	179	6630	7	3	13420	251	0	0	0
2003-03-20	80:00:00	200	6640	6	5	13420	251	0	0	0
2003-03-20	80:00:00	270	6630	4	5	13420	251	0	0	0
2003-03-20	80:00:00	329	6640	1	4	13420	251	0	0	0
2003-03-20	80:00:00	340	6640	2	7	13420	251	0	0	0

Traffic data: sample

• Traffic data after cleaning and extraction:

Date	Time	Ms	Duration	Caller	Callee	C_type	C_state	Multi	#Sys	System List
2003-03-20	00:00:01	450	3730	6155	1801	0	0	0	5	8,6,3,2,1
2003-03-20	00:00:01	980	2520	13911	418	0	0	0	3	7,6,2
2003-03-20	00:00:01	880	5260	13314	251	0	0	0	6	9,7,6,4,2,1
2003-03-20	00:00:05	550	3440	7614	945	0	0	0	2	1,2
2003-03-20	00:00:05	289	3560	6011	2035	0	0	0	5	8,6,3,2,1
2003-03-20	00:00:05	949	9780	15840	418	0	0	0	3	6,7,2
2003-03-20	00:00:06	810	2350	8022	817	0	0	0	1	1
2003-03-20	00:00:06	819	1590	13902	497	0	0	0	4	10,9,8,4
2003-03-20	00:00:06	440	3030	13931	471	0	0	0	5	10,9,4,2,1
2003-03-20	80:00:00	109	6640	13420	251	0	0	0	6	9,7,6,4,1,2

Sample of processed data: 2003-03-01

No	Time (hh:mm:ss)(ms)	Call duration (ms)	System ID	Channel ID	Caller	Callee
1	00:00:00 30	1340	1	12	13905	401
6	00:00:00 489	1350	7	4	13905	401
29	00:00:03 620	7550	2	7	13233	249
31	00:00:03 760	7560	1	3	13233	249
37	00:00:04 260	7560	7	6	13233	249
38	00:00:04 340	7560	6	6	13233	249

Data preparation

Date	Original	Cleaned	Combined
2003/03/01	466,862	204,357	91,143
2003/03/02	415,715	184,973	88,014
2003/03/03	406,072	182,311	76,310
2003/03/04	464,534	207,016	84,350
2003/03/05	585,561	264,226	97,714
2003/03/06	605,987	271,514	104,715
2003/03/07	546,230	247,902	94,511
2003/03/08	513,459	233,982	90,310
2003/03/09	442,662	201,146	79,815
2003/03/10	419,570	186,201	76,197
2003/03/11	504,981	225,604	88,857
2003/03/12	516,306	233,140	94,779
2003/03/13	561,253	255,840	95,662
2003/03/14	550,732	248,828	99,458
Total 92 Days	44,786,489	20,130,718	8,663,586
		44.95%	19.34%

Original (red) Cleaned (green) Combined (blue)

day

number of records

- The hourly number of calls is a common metric employed in telecommunication industry
- It is a footprint of users' calling behavior
- Time scales:
 - finer than an hour are too small to record the calling activity
 - larger than an hour are too coarse to capture user behavior patterns
- Traffic data were collected during 92 days (2,208 hours)
- The 2,208 hourly calls captured each talk group's calling behavior

Calling patterns: talk groups 1 and 2

Calling patterns are used for classification:

CAS Society Worskhop, Spring 2007

User clustering with K-means: k = 3

- First cluster (heavy network users):
 - 17 talk groups, contributing to 59% of the calls, with an average number of calls ranging from 94 to 208 per hour
 - They are dispatch groups that assign and schedule other talk groups for specific tasks
- Second cluster (average network users):
 - 31 talk groups, contributing to 26% of the calls
- Third cluster (least frequent network users):
 - 569 talk groups, contributing to only 15% of the calls
 - They represent over 90% of all talk groups

User clusters with K-means: k = 3

1000

hour

March 2, 2007

500

CAS Society Worskhop, Spring 2007

1500

2000

User clusters with K-means: k = 6

March 2, 2007

CAS Society Worskhop, Spring 2007

- Larger values of silhouette coefficient produce better results:
 - values between 0.7 and 1.0 imply clustering with excellent separation between clusters
- Cluster sizes:
 - 17, 31, and 569 for K =3
 - 17, 33, 4, and 563 for K =4
 - 13, 17, 22, 3, 34, and 528 for K =6
- K = 3 produces the best clustering results (based on overall clustering quality and silhouette coefficient)
- Interpretations of three clusters have been confirmed by the E-Comm domain experts

K-means clustering: cluster distances and silhouette coefficient

к	Average intra- cluster distance	Average inter- cluster distance	Maximum intra- cluster distance	Minimum inter- cluster distance	Overall clustering quality	Silhouette coefficient
3	1882.14	4508.38	2971.76	1626.40	-1345.36	0.7756
4	1863.00	3889.12	2971.76	1556.68	-1415.07	0.7684
6	2059.67	3284.52	3299.43	594.21	-2705.21	0.7640
9	1020.08	3520.04	3065.25	808.28	-2256.96	0.7492
12	1372.67	3582.98	3278.14	731.26	-2546.88	0.7435
16	983.63	1815.79	3571.27	248.19	-3323.07	0.7337
20	1355.80	2458.39	3604.33	314.49	-3289.84	0.7386

K-means clustering: number of calls in the three clusters

72

Time (hour)

ò

24

48

CAS Society Worskhop, Spring 2007

96

120

144

168

K-means clusters of talk groups: k = 3

Cluster size	Minimum number of calls	Maximum number of calls	Average number of calls	Total number of calls	Total number of calls (%)
17	0-6	352-700	94-208	5,091,695	59
31	0-3	135-641	17-66	2,261,055	26
569	0	1-1613	0-16	1,310,836	15

Prediction based on aggregate traffic

- The aggregate network traffic consists of all network users' traffic
- The R system was used to identify, estimate, and verify the SARIMA model for the aggregate users' traffic
- Both 24-hour (one day) and 168-hour (one week) intervals were selected as seasonal period parameters
- Based on m past traffic data samples, we forecast the future n traffic data samples
- The prediction quality was measured using the normalized mean square error nmse:

$$nmse(a,b) = \sum_{i=m+1}^{m+n} \frac{(a_i - b_i)^2}{a_i^2},$$

• where: a_i is the observed and b_i is the predicted data

SARIMA models: selection criteria

- Order (0,1,1) is used for seasonal part (P,D,Q):
 - cyclical seasonal pattern is usually random-walk
 - may be modeled as MA process after one-time differencing
- Model's goodness-of-fit is validated using null hypothesis test:
 - time plot analysis and autocorrelation of model residual

Prediction quality

- Models (2,0,9)×(0,1,1)₂₄ and (2,0,1)×(0,1,1)₁₆₈ have smallest criterion values based on 1,680 training data
- Normalized mean square error (nmse) is used to measure prediction quality by comparing deviation between predicted and observed data
- The nmse of forecast is equal to ratio of normalized sum of variance of forecast to squared bias of forecast
- Smaller values of nmse indicate better prediction model

SARIMA models: summary of selection criteria

(p,d,q) x (P,D,Q)s	m	nmse	AIC	AICc	BIC
(2,0,9) x (0,1,1)24	1680	0.379	22744.6	22744.9	22826.8
(2,0,1) x (0,1,1)168	1680	0.174	23129.8	23129.8	23161.9
(1,0,1) x (0,1,1)168	1680	0.175	23145.1	23145.1	23170.8
(2,0,9) x (1,1,1)24	1680	0.525	25292.1	25292.4	25382.1
(1,0,2) x (1,1,1)24	1680	0.411	25332.6	25332.6	25371.2
(2,0,1) x (0,1,1)24	1680	0.408	25360.5	25360.6	25392.6
(3,0,1) x (0,1,1)24	1680	0.404	25361.2	25361.2	25399.7

Prediction: based on the aggregate traffic

No.	р	d	q	Р	D	Q	S	m	n	nmse
A1	2	0	9	0	1	1	24	1512	672	0.3790
A2	2	0	1	0	1	1	24	1512	672	0.3803
A3	2	0	9	0	1	1	168	1512	672	0.1742
A4	2	0	1	0	1	1	168	1512	672	0.1732
B1	2	0	9	0	1	1	24	1680	168	0.3790
B2	2	0	1	0	1	1	24	1680	168	0.4079
B3	2	0	9	0	1	1	168	1680	168	0.1736
B4	2	0	1	0	1	1	168	1680	168	0.1745
C1	2	0	9	0	1	1	24	2016	168	0.3384
C2	2	0	1	0	1	1	24	2016	168	0.3433
C3	2	0	9	0	1	1	168	2016	168	0.1282
C4	2	0	1	0	1	1	168	2016	168	0.1178

Models forecast future n traffic data based on m past traffic data samples

Prediction: based on the aggregate traffic

- Two groups of models, with 24-hour and 168-hour seasonal periods:
 - SARIMA (2, 0, 9) x (0, 1, 1)_{24 and 168}
 - SARIMA (2, 0, 1) x (0, 1, 1)_{24 and 168}
- Comparisons:
 - rows A1 with A2, B1 with B2, and C1 with C2
 - SARIMA (2, 0, 9) × (0, 1, 1)₂₄ gives better prediction results than SARIMA (2, 0, 1)×(0, 1, 1)₂₄
- Models with a 168-hour seasonal period provided better prediction than the four 24-hour period based models, particularly when predicting long term traffic data

Prediction of 168 hours of traffic based on 1,680 past hours: sample

Comparison of the 24-hour and the 168-hour models

- Solid line: observation
- o: prediction of 168-hour seasonal model
- *: prediction of 24-hour seasonal model

Prediction with user clustering

- Raw network log data collected over 92 days: March 1st 2003 – May 31st 2003
- Footprint of network usage for talk groups: the hourly number of calls
- AutoClass and the K-means algorithm were used to classify network talk groups into clusters
- The behavior of each user cluster was predicted using Seasonal Autoregressive Integrated Moving Average (SARIMA)
- We used aggregation to predict the overall network behavior

Traffic prediction based on user clusters

- The developed aggregate users based prediction assumes that the adopted model is static: the number of network users and their behavior pattern are constant in time
- This assumption does not hold when planning further network expansions and cannot be used to forecast network traffic
- We employed a user clusters based prediction approach to predict the network traffic by accumulating the prediction results from user clusters
- In large networks with many users, it is impractical to predict individual users' traffic and then aggregate the predicted data
- With user clusters, traffic prediction is reduced to predicting and aggregating users' traffic from few clusters

Prediction of 48 hours of traffic based on 1,680 past hours

Orig. (blue), Clus. Pred. (red), non-Clus. (green)

Prediction of 168 hours of traffic based on 1,680 past hours

March 2, 2007

Traffic prediction with user clusters: examples $(2,0,1) \times (0,1,1)$

Cluster	S	m	n	nmse
1	168	1,920	24	0.2241
2	168	1,920	24	0.3818
3	168	1,920	24	0.1163
*	168	1,920	24	0.0969
Α	168	1,920	24	0.1175
1	24	1,920	24	0.2508
2	24	1,920	24	0.2697
3	24	1,920	24	0.3020
*	24	1,920	24	0.1941
Α	24	2,920	24	0.2052
1	24	1,680	168	0.5477
2	24	1,680	168	0.6883
3	24	1,680	168	0.2852
*	24	1,680	168	0.4079
Α	24	1,680	168	0.4093

Prediction results with user clusters

- For each group, rows 1, 2, and 3: traffic prediction results for user clusters 1, 2, and 3
- Row *: the aggregate user traffic prediction obtained without clustering the users
- Row A: the aggregate prediction of network traffic based on the three user clusters
- The performance of the clusters based prediction (nmse: 0.1175) is comparable to the best prediction based on aggregate traffic (nmse: 0.0969)
- Prediction of traffic in networks with a variable number of users is possible, as long as the new user groups could be classified into the existing user clusters

Prediction based on user clusters model $(2, 0, 1) \times (0, 1, 1)$

Test no.	S	m	n	nmse cluster 1	nmse cluster 2	nmse cluster 3	nmse aggregate	nmse cluster	nmse optimized
1	24	240	24	0.323	0.548	0.308	0.254	0.241	n/a
2	24	240	48	0.394	0.712	0.445	0.343	0.332	n/a
3	24	1200	72	1.774	1.976	0.270	0.884	0.886	0.846
4	24	1200	96	1.319	0.866	0.260	0.611	0.613	0.610
5	24	1200	120	0.840	0.703	0.245	0.463	0.467	n/a
6	24	1200	144	0.665	0.647	0.236	0.396	0.399	n/a
7	168	1008	336	0.616	0.466	0.190	0.285	0.260	n/a
8	168	1008	504	0.439	0.446	0.190	0.237	0.224	n/a
9	168	1176	24	3.401	0.747	0.168	0.365	0.507	0.436
10	168	1512	504	0.348	0.375	0.155	0.180	0.178	n/a
11	168	1680	24	0.367	0.444	0.115	0.132	0.129	n/a
12	168	1680	48	0.380	0.467	0.095	0.114	0.116	n/a

Traffic prediction with user clusters

- nmse > 1.0 for cluster 1 (tests 3, 4, and 9) and for cluster
 2 (test 3) implies that prediction is worse than prediction based on the mean value of past data
- Mean value prediction leads to better prediction results shown in column "nmse optimized" (optimized clusterbased prediction) for:
 - Test 3: clusters 1 and 2
 - Test 4: cluster 1
- Prediction based on clusters performs better than the prediction based on aggregate traffic:
 - Tests 1, 2, 7, 8, 10, and 11

Traffic prediction with user clusters

- 57% of cluster-based predictions perform better than aggregate-traffic-based prediction with SARIMA model (2,0,1)×(0,1,1)₁₆₈
- Prediction of traffic in networks with a variable number of users is possible, as long as the new user groups could be classified into the existing user clusters

Traffic prediction: summary

- We analyzed traffic data collected from an operational trunked radio network
- By applying data mining techniques (K-means algorithm and AutoClass) on traffic data, we discovered user clusters based on patterns of calling behavior expressed by hourly number of calls
- Network traffic was predicted using the SARIMA model based on aggregate user traffic and based on user clusters
- Proposed cluster-based prediction produces comparable results to prediction based on aggregate traffic
- It is applicable to networks with variable number of users where prediction based on aggregate traffic could not be applied

- Introduction
- Networks and traffic data:
 - data collection
 - statistical analysis
 - traffic prediction
- Case study:
 - wireless network: E-Comm
- Conclusions and references

Conclusions

- We re-used simulation tools and analytical methods to analyze traffic data from the E-Comm network:
- Network:
 - network performance was evaluated using simulation tools (OPNET and WarnSim)
- Traffic characterization and modeling:
 - models of inter-arrival and call holding times were developed
- Users:
 - clustering algorithms (K-means and AutoClass) were employed to classify network users into user clusters
- Traffic prediction:
 - SARIMA models were used to predict network traffic based on aggregate user traffic and based on three user clusters

http://www.ensc.sfu.ca/~ljilja/publications_date.html

- B. Vujičić, L. Chen, and Lj. Trajković, "Prediction of traffic in a public safety network," in Proc. ISCAS 2006, Kos, Greece, May 2006, pp. 2637–2640.
- N. Cackov, J. Song, B. Vujičić, S. Vujičić, and Lj. Trajković, "Simulation of a public safety wireless networks: a case study," *Simulation*, vol. 81, no. 8, pp. 571–585, Aug. 2005.
- B. Vujičić, N. Cackov, S. Vujičić, and Lj. Trajković, "Modeling and characterization of traffic in public safety wireless networks," in *Proc. SPECTS 2005*, Philadelphia, PA, July 2005, pp. 214–223.
- J. Song and Lj. Trajković, "Modeling and performance analysis of public safety wireless networks," in *Proc. IEEE IPCCC*, Phoenix, AZ, Apr. 2005, pp. 567–572.
- H. Chen and Lj. Trajković, "Trunked radio systems: traffic prediction based on user clusters," in *Proc. IEEE ISWCS 2004*, Mauritius, Sept. 2004, pp. 76–80.
- D. Sharp, N. Cackov, N. Lasković, Q. Shao, and Lj. Trajković, "Analysis of public safety traffic on trunked land mobile radio systems," *IEEE J. Select. Areas Commun.*, vol. 22, no. 7, pp. 1197–1205, Sept. 2004.
- Q. Shao and Lj. Trajković, "Measurement and analysis of traffic in a hybrid satelliteterrestrial network," in *Proc. SPECTS 2004*, San Jose, CA, July 2004, pp. 329–336.
- N. Cackov, B. Vujičić, S. Vujičić, and Lj. Trajković, "Using network activity data to model the utilization of a trunked radio system," in *Proc. SPECTS 2004*, San Jose, CA, July 2004, pp. 517–524.