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Outline
• A brief introduction to digital filters
• How to achieve high-speed with 

less power
• The frequency-response masking 

technique
• Conclusion
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Digital Filters
• What is the digital filter?

• Two types of filters – Finite Impulse 
Response (FIR) and Infinite Impulse 
Response (IIR) filters.

ΔfGain

Frequency
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Advantages and Disadvantages
• Advantages  :

– FIR: exact linear-phase characteristic, 
intrinsically stable implementation.

– IIR: computationally efficient.
• Disadvantages :

– FIR: requires high-order transfer function 
compared with IIR filters.

– IIR: sensitive to finite-length arithmetic, harder 
to implement using fixed-point arithmetic.
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Why FIR ?
• Waveform distortion caused by phase.

• Filtering of Electrocardiogram Signal (ECG)
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Applications
• Analog-to-digital converter. 
• High quality digital audio system.
• Digital TV, HDTV.
• Wireless Communication.
• Medical instruments.
• Frequency spectrum analysis.
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The FIR Filter
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Complexity of the FIR Filter (1)
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• Complexity is related to the implementation cost.
– Multipliers, adders, and delays (registers).
– Filter length.
– Filter specifications: passband(s), stopband(s),  

passband and stopband ripples.
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Achieving High-Speed with Less 
Power

• High-speed
– Reduce the filter length, i.e. the number of 

coefficients.
– Reduce coefficient word-length.
– Remove the multipliers if possible.

• Low-power
– Reduce the filter length.
– Lower the coefficient sensitivity.
– Use simple multipliers.
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Computationally Efficient Filter Design 
Techniques

• Prefilter-Equalizer
– Mainly for narrowband filters 

• Interpolated Finite Impulse Response 
(IFIR)
– For narrowband filters

• Frequency-Response Masking (FRM)
– For arbitrary bandwidth narrow transition 

width filters
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Frequency-Response Masking 
Technique

• It is a filter structure that realizes arbitrary 
bandwidth sharp FIR filter specifications.

• Basic structure of an FRM filter.

Input Output
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The FRM Technique (continued)
• A complementary band-edge shaping filter pair.
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Implementation of Complementary Filter 
Pair
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Frequency Responses of Subfilters
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Input Output
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Implementation of FRM Filter
FMa(z) and FMc(z) must produce 
equal phase shift. If they do not, 
leading delays should be added to 
equalize their phase shifts.

Fa(z) is an odd length filter.
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Frequency Response of an FRM 
Filter
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Design Equations for Case A

x⎢ ⎥⎣ ⎦where       denotes the largest integer less 

than x; ωp and ωs are the passband and stopband 

edges of overall filter, respectively.
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Design Equations for FMa(z) and FMc(z)

• For FMa(z) :

• For FMc(z) :
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Design Equations for Case B

x⎡ ⎤⎢ ⎥where      denotes the smallest integer 

larger than x; ωp and ωs are the passband

edge and stopband edge, respectively.
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• For FMa(z) :

• For FMc(z) :

Design Equations for FMa(z) and FMc(z)

,

,
2

Mc p p

Mc s
m

M

ω ω

π θω

=

+
=

( )
,

,

2 1
Ma p

Ma s s

m
M
π φ

ω

ω ω

− +
=

=

IEEE CAS Workshop, 2 March 2007, Vancouver

Transition Width of Masking Filters

• The sum of the transition widths of two 
masking filters equals to 1/M.
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The Complexity of Overall Filter
• The complexity of overall filter is the total 

number of multipliers needed by three subfilters, 

( ) ( )

0

0 0 0

( , ) ( , )
2

2 2
4 2 4

p s p s
Total a Ma Mc

s p s p

LL L L L
M

M
L L L
M m M M m

M M

φ δ δ φ δ δ
π γγ

πβ πβ
π π ω ω ω ω π

= + + = + +
−

= + +
+ − + + −

There is no closed-form solution for the above
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Complexity of the FRM Filters
• The total number of multipliers L is given by

• The near optimal interpolation factor can be 
obtained: 

• The minimum complexity is:

1( 4 )a Ma Mc oL L L L M L
M

β= + + ≈ +

1
2

optM
β

≈

The FRM is only effective if the normalized transition 
bandwidth is less than 0.063.

min 4 oL Lβ≈
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An Example
• Design an FIR lowpass filter

Normalized passband edge: 0.3
Normalized stopband edge: 0.305
Maximum passband deviation: 0.01
Minimum stopband attenuation: 40 dB

• The estimated length of the minimax design is 
383, i.e. 192 multipliers. 

• The lengths of filters in an FRM design are 45, 
38, and 30, respectively, i.e. 57 multipliers. A 
70% savings in terms of the number of 
multipliers compared to the minimax design.
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Frequency Response of the Overall 
Filter
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Passband Ripple
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Two Masking Filters
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Multi-Stage FRM
• A two-stage FRM structure
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The Frequency Responses of the Various 
Subfilters in a Two-stage FRM
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An Example of a 2-Stage Design
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hx(208)= 2-1-2-4
hx(192)= 2-2+2-3  =hx(224)

hx(176)= 2-3+2-4  =hx(240)

hx(160)= 2-6+2-9  =hx(256)

hx(144)=-2-4-2-7  =hx(272)

hx(128)=-2-4-2-6  =hx(288)

hx(112)=-2-6-2-9  =hx(304)

hx(96) = 2-5+2-10 =hx(320) 

hx(80) = 2-5+2-8  =hx(336)

hx(64) = 2-7+2-8  =hx(352)

hx(48) =-2-6+2-9  =hx(368)

hx(32) =-2-6       =hx(384)

hx(16) =-2-7-2-9  =hx(400)

hx(0)  = 2-8+2-9  =hx(416)

hxa(24)= 2-2+2-6
hxa(20)= 2-2-2-6 = hxa(28)

hxa(16)= 2-3+2-6 = hxa(32)

hxa(12)= 2-5+2-6 = hxa(36)

hxa(8) =-2-7      = hxa(40)

hxa(4) =-2-5+2-8 = hxa(44)

hxa(0) =-2-6      = hxa(48)

hMa(2) =-2-6-2-8  = hMa(12)

hMa(7) = 2-1+2-3
hMa(6) = 2-3+2-4 = hMa(8)

hMa(5) =-2-3+2-9  = hMa(9)

hMa(4) = 2-5+2-6  = hMa(10)

hMa(3) = 2-8+2-10 = hMa(11)

hMa(1) = 2-6+2-9  = hMa(13)

hMa(0) =-2-8-2-9  = hMa(14)

List of Coefficients
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hxc(52)= 2-2+2-3 
hxc(48)= 2-2-2-8  =hxc(56)

hxc(44)= 2-7+2-8  =hxc(60)

hxc(40)=-2-4-2-6  =hxc(64)

hxc(36)=-2-6-2-10 =hxc(68)

hxc(32)= 2-5+2-7  =hxc(72)

hxc(28)= 2-7+2-8  =hxc(76)

hxc(24)=-2-6-2-7  =hxc(80)

hxc(20)=-2-6+2-9  =hxc(84)

hxc(16)= 2-7+2-9  =hxc(88)

hxc(12)= 2-8+2-9  =hxc(92)

hxc(8) =-2-8-2-9  =hxc(96)

hxc(4) =-2-7+2-10 =hxc(100)

hxc(0) = 2-10      =hxc(104)

hMc(11)= 2-1+2-8
hMc(10)= 2-2+2-4  = hMc(12)

hMc(9) =-2-7-2-8  = hMc(13)

hMc(8) =-2-4-2-5  = hMc(14)

hMc(7) = 2-7       = hMc(15)

hMc(6) = 2-5+2-6 = hMc(16)

hMc(5) =-2-7 = hMc(17)

hMc(4) =-2-6-2-7  = hMc(18)

hMc(3) = 2-8 = hMc(19)

hMc(2) = 2-7+2-8  = hMc(20)

hMc(1) =-2-8 = hMc(21)

hMc(0) =-2-8 = hMc(22)

List of Coefficients
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The Passband Ripple



NUS Kit notes - 19

IEEE CAS Workshop, 2 March 2007, Vancouver

The Frequency Response of the Overall 
Filter
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A Three-Stage Structure
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Other Multi-Stage Structure
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Conclusion
• Frequency-response masking technique 

provides a cost efficient way for the design of 
high-speed low-power FIR digital filters.

• FRM significantly reduces the number of 
coefficients low-power and high-speed.

• The savings in terms of number of multipliers 
increase with the decrease of transition 
bandwidth.

• FRM filters have low coefficient sensitivity and 
its coefficients are easy to quantize into powers-
of-two terms.

• FRM filters require less number of bits further 
reduction in power consumption.
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