Testing and Design-for-Testability Techniques for 3D Integrated Circuits

Krishnendu Chakrabarty
Department of Electrical and Computer Engineering
Duke University
Acknowledgments

• Students: Brandon Noia, Sergej Deutsch, Mukesh Agrawal
• Collaborators: Erik Jan Marinissen (IMEC), Yuan Xie (Penn State Univ), Paul Franzon (NC State Univ), Sung Jyu Lim (Georgia Tech) Sreepad Pant (Georgia Tech)
• Sponsors: National Science Foundation, Semiconductor Research Corporation, Intel, Cisco
Outline

• Motivation
 – Drivers for 3D integration

• Technology Primer
 – Through Silicon Vias (TSVs), wafer thinning, stacking

• 3D IC Test Challenges
 – What to test? When to test? How to test?
 – Defects in 3D manufacturing

• Emerging Solutions
 – Pre-Bond Testing
 – Post-Bond Testing

• Conclusions
Roadblocks Ahead for IC Designers

Wire Delay

Intra-die

Inter-die

Variability

Power

Reliability
Motivation (Tanay Karnik, Intel)
Microprocessor Bandwidth Needs

- As CPU core count increases, I/O bandwidth (BW) requirements will increase for all segments
- Current system bandwidth requirements (Y2010)
 - Client BW = ~50GB/s
 - Server BW = ~100GB/s
 - High-end Server BW = ~200GB/s

High-end microprocessors will need 1 TB/s bandwidth by 2020
1TB/s x 20 pJ/bit = 160 W
Vertical (3D) Integration isn’t new!
We can also do heterogeneous stacks!
3D Stacking is not new

Wire-bonding (WB) 3D stacking (System-in-Package or SiP)

Package-on-Package (POP) 3D stacking

Nokia N95

5MP Camera
GPS
Wireless
Bluetooth
Video player
Audio player

...
But Through-Silicon Vias (TSVs) are New!

Traditional stacking with:
• 3D chip stacking with wire-bonds:
 Heterogeneous technologies
 Dense integration, small footprint

New stacking technology:
• Through-Silicon Vias (TSVs):
 Metal vias that provide interconnects
 from front-side to back-side
 through silicon substrate

<table>
<thead>
<tr>
<th>Diameter</th>
<th>5 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>50 µm</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>10:1</td>
</tr>
<tr>
<td>Minimum pitch</td>
<td>10 µm</td>
</tr>
</tbody>
</table>
Applications

Memory-on-Logic (JEDEC Wide I/O DRAM)

- 4 channels (a-c)
- 4 x 128 bit = 512 bit I/O
- 4 x 4.25 Gbytes/s = 17 Gbytes/s bandwidth
- Up to 4 stacked dies (Rank 0-3)

3D-SIC

2.5D-SIC
Applications

Future applications:

• Logic-on-logic

• Multi-tower stacks (both logic-on-logic and memory-on-logic)
Benefits of TSV based 3D ICs

- Wire Length Reduction!

- Performance/power improvement
- Higher throughput (bandwidth)
- Mixed-technology integration
- Potentially lower cost

TSV I/O (ESD) energy per operation: 7 pJ
TSV I/O (no ESD) energy per operation: 2 pJ
What is TSV-Based 3D Integration?

And so these men of Hindustan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right
And all were in the wrong.

"The Blind Men and the Elephant" by John Godfrey Saxe (1816–1887).
Difficult to process wafers thinned below 100 microns
- Mount wafers on temporary wafer handlers (carriers)
- Thinning and backside processing

Option 1: Mount IC wafer face-down on carrier, bond “face-up” (B2F)
- Scalable solution, supports more stacked layers

Option 2: Bond wafer to 3D stack in “face-down” configuration (F2F)
- More interconnects between active device on two layers
- Number of stacked dies limited to 2
Steps in F2F Bonding

- Align
- Bonding
- Thinning (grinding)
- Backside via and bump process

TSV prefabricated, but buried

Heat sink

Bulk Si (IC 1)

Bulk Si (IC 2)

C4 Bump

TSV
Steps in B2F Bonding

temporary carrier bonding → back-side thinning → expose Cu nails → permanent bonding → temp, carrier de-bonding
3D IC Integration and Options

• Different vertical interconnects

• Different stacking strategies

Die-to-Wafer

Wafer-to-Wafer

Die-to-Wafer
From Two to Three (or More?) Test Insertions

2D Flow

- wafer fab
 - wafer test
 - assembly & packaging
 - final test

3D Flow

- wafer fab 1
 - pre-bond wafer test 1
 - post-bond wafer test
 - assembly & packaging
 - final test

- wafer fab 2
 - pre-bond wafer test 2

- wafer fab 3
 - pre-bond wafer test 3

- 3D stacking

Known Good Die (KGD) test

0. Pre-Bond Wafer Test
- KGD for stacking
- ATE + wafer probe station

1. Wafer Test
- Prevent packaging costs
- ATE + wafer probe station

2. Final Test
- Guarantee outgoing product quality
- ATE + socket + handler

Test Content, Test Delivery, Test Resource Optimization and Reuse (Cost Minimization)
Key Questions

• What is different from today’s ICs?
• What are the major roadblocks/show-stoppers?
• How much can we leverage from today's solutions and what needs to be developed from scratch?
• Determine appropriate test content (what to test?)
 – Pre-bond (known good die): Types of tests for TSVs and die logic
 – Post-bond: TSVs, die logic (cores and memories), tests for failing new defect types
• Determine test delivery pathways (how to test?)
• Select test flows: cost/benefit analysis (when to test?)
3D Test Challenges

• Micro-bump probe access: Current technology is not able to probe on micro-bumps/TSVs
 – Probe needles much larger than TSV/micro-bump size and pitch
• Probe card applies a force (weight) of 3-10 g per probe ⇒ probe force (weight) per wafer as high as 60-120 kg!
 – TSVs have low fracture strength
• Post-bond access: No direct access to non-bottom dies
• New defects due to TSV manufacturing process
New Defect Types

- Alignment, stacking, and thinning: extra manufacturing
- Foreign particles caught between wafers during bonding
 - Voids, peeling, and delamination
- Wafers must be precisely aligned for bonding
 - Alignment problems lead to imperfect via connections
- Edge effects
 - Inter-wafer gap greater at the edges (weaker bond)
 - Bonded edges vulnerable to chipping, peeling, delamination
- Cracking during the stacking process: loading forces, backside grinding, die thinning
- Random open defects: dislocations, oxygen trapped on the surface, voids formation, and mechanical failures

Known good stack (KGS) test needed!
TSV Testing

• **How to test the TSVs?** Pre-bond, post-bond
 – Underfill, pinhole defects, opens: pre-bond
 – Misalignment, mechanical/thermal stress: post-bond thermal effects
 – Boundary scan solution: flops at both ends? Functional tests?

Examples of TSV Defects
(IMEC, Belgium)
Thermo-Mechanical Stress due to TSVs

- Coefficient of Thermal Expansion mismatch:
 - $CTE_{Cu} = 17 \times 10^{-6} \, K^{-1}$
 - $CTE_{Si} = 3 \times 10^{-6} \, K^{-1}$
- Residual stress in Si

Consequences:
- Stress-induced defects
 - Cracks
 - Voids
- Mobility variation

- Variations affect critical paths: Delay test patterns?
- TSV-induced stress failure in wires (electromigration)
- Microbump-induced stress: +40% current shift in nFET transistors, open defects
Pre-Bond Testing: TSV Defects and Capacitance

- Certain defects can alter capacitance of TSVs
 - Breaks (stuck-open or resistive)
 - Insulator defects (non-uniformity, impurity)
- Capacitance can be indirectly measured through tuned sense amplifier
- Can detect defects pre-bond, before thinning
TSV Capacitance Testing
(ITRI, Taiwan)

- Determine acceptable capacitance range for TSV
- Treat each TSV as DRAM cell
- Charge TSVs, discharging and checking bounds via sense amplifier
- Factors: discharge current, discharge time, sense amplifier threshold
- Calibration? High overhead (per TSV)?
Probing “TSV Networks”

\[
C_{net} = C_1 + C'2 + \cdots + C_n
\]

\[
R_{net} = R_p + \left(\frac{1}{R_1+R_c} + \frac{1}{R_2+R_c} + \cdots + \frac{1}{R_n+R_c} \right)^{-1}
\]
Probing TSV Networks
Probe-Head Electronics

- Charge sharing circuit
 - C_1 significantly (order of magnitude) larger than expected net capacitance.
- Capacitance measurement (net), resistance measurement (per TSV)

Capacitance Measurements:

1. S_2 closed, S_1 open, 0 loaded to all GSFs, charge C_1
2. S_2 open, S_1 closed, discharge C_1
3. Monitor rate of change of V_1
Capacitance Measurements

1. S2 closed, S1 open, 0 loaded to all GSFs, GSFs closed
Capacitance Measurements

2. S2 open, S1 closed, GSFs open
3. Monitor rate of change of V1
Resistance Measurements

1. Discharge C, TSV network.
2. 1 loaded to all GSF, S2 open, S1 closed.
3. Open one or more GSF, charge C to threshold, measure charge time.
Pre-Bond Scan Test

• How to test the die logic?

• Reconfigurable scan chains: enable pre-bond scan test of die logic through TSV networks
 – Post-bond configuration: test data enters/exits die through interface with lower dies in stack or external test pins
 – Pre-bond configuration – Boundary GSFs become new scan chain I/O
 – Multiplexers: switch between scan chain modes
Internal and Die Boundary Scan Chains

Post-bond Scan Input

Boundary Receiving Scan Flop

SF

SF

SF

Boundary Sending GSF

TSV

Other Boundary Scan Flops

Logic

Post-bond Scan Output

Boundary Sending Scan Flop

SF

SF

SF

Boundary BIDIR Receiving GSF

TSV

Other Boundary GSFs
Post-Bond Test Data
Scan Chain Reconfiguration Muxes

Post-bond Scan Input

Boundary Receiving Scan Flop

SF

SF

SF

Boundary Sending GSF

TSV

Boundary Receiving Scan Flop

Post-bond Scan Output

Other Boundary Scan Flops

SF

SF

SF

Other Boundary GSFs

Boundary BIDIR Receiving GSF

TSV
Pre-Bond Test Data
Feasibility Considerations

• Must provide current necessary for scan test through TSVs

• Relatively high TSV network capacitance must not significantly increase test time

• Area overhead of proposed method must be small

• Boundary scan registers needed for high pre-bond fault coverage?
Evaluation: Benchmark Circuit

- Fast Fourier Transform circuit from OpenCores benchmarks split between 4 dies
 - 45nm technology
 - 299,273 gates and 19,962 flops
 - 463 to 936 TSVs between dies
 - 5 μm TSV diameter

- Stuck-at fault coverage as low as 44.76% without boundary registers, as high as 99.97% with

- Boundary GSFs and reconfiguration circuitry: 2.2% of total number of gates
Average Current (Hspice Simulations)

- Avg. current of 300 µA corresponds to density of 1528 A/cm²
- TSVs reliable with sustained current density of 15,000 A/cm²
Peak Current

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Die 0</th>
<th>Die 1</th>
<th>Die 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Current</td>
<td>1 mA</td>
<td>1 mA</td>
<td>1.1 mA</td>
</tr>
<tr>
<td>Avg. Current (Stuck-at)</td>
<td>300 µA</td>
<td>294 µA</td>
<td>327 µA</td>
</tr>
<tr>
<td>Avg. Current (Transition)</td>
<td>432 µA</td>
<td>341 µA</td>
<td>383 µA</td>
</tr>
<tr>
<td>Area Overhead</td>
<td>2.2 %</td>
<td>1.0 %</td>
<td>1.2 %</td>
</tr>
</tbody>
</table>

- Cantilever probe tip capable of supplying 3 A of current
 - Upper limit on instantaneous current drawn assuming peak current in all scan chains simultaneously
Non-Invasive Pre-Bond TSV Test: TSV Fault Modeling

a) Fault-free case: lumped capacitor $C = 60 \text{ fF}$
 ($R_{TSV} < 1 \text{ } \Omega \rightarrow \text{neglect } R_{TSV}$)

b) Resistive open fault: $R_O = 0 \ldots 3 \text{ k}\Omega$ at the location x

c) Leakage fault: $R_L = 0 \ldots 10 \text{ k}\Omega$

Main idea: parametric test for R_O and R_L
Ring Oscillator Configuration

- Assumption: bidir I/O cells
- Create ring oscillator using I/O cell and inverter
- Use TSV as capacitive load
- TE selects between functional and test operations
- BY selects between the TSV under test and bypass path

Determine R_f and R_0 by measuring oscillation period
Difference in Propagation Delay

\[V_{in} \rightarrow \text{I/O cell} \rightarrow V_{out} \]

\[\text{TSV 1} \]

Graph showing the input voltage \(V_{in} \) and output voltage \(V_{out} \) over time \(t \) (in ps), with different scenarios such as fault-free, 3 kΩ resistive open, and 3 kΩ leakage fault.
Ring Oscillator Configuration

- Measure difference $\Delta T = T_1 - T_2$ to reduce inaccuracy due to random process variations
- ΔT sensitive to defects in TSVs
 - $\Delta T\downarrow$ if resistive open
 - $\Delta T\uparrow$ if leakage
Overall Architecture

- S ring oscillators share one measurement logic
 + less area overhead
 - sequential test

- Measurement logic:
 - Binary counter
 - LFSR
Stack (Post-Bond) Testing: Test Delivery and DFT Hierarchy

- Core-level DFT
 - Scan chains, Compression, BIST
- Die-level DFT
 - Wrappers and test-access mechanisms (TAMs)
- SIC-level DFT
 - Wrapper at die boundary
 - KGD: Extra probe pads
 - KFS: Test Elevators
 - Switches
 - Board-level DFT (IEEE 1149.1)
Reconfiguration During Test Time

Test set-up example: **Intest of Die 2 using parallel TAM**

Die 1 (bottom)
- Switch box
- Bypass
- Scan chain
- WBR
- WPO*
- TDI
- TDO
- TRSTN*
- TMS
- TCK

Die 2
- Switch box
- Bypass
- Scan chain
- WBR
- WPO*
- TDI
- TDO
- TRSTN*
- TMS
- TCK

Die 3 (top)
- Switch box
- Bypass
- Scan chain
- WBR
- TDI
- TDO
- TRSTN*
- TMS
- TCK

Parallel Postbond
- Bypass Elevator

Parallel Postbond
- Intest Turn

Parallel Postbond
- Bypass Turn
3D DfT Architecture – Overview
(IEEE P1838)

Pre-Bond Testing

Post-Bond Testing
DFT: Post-Bond Testing Considerations

- Serial/parallel testing of die
 - How many dedicated test TSVs to use?
 - How to maximize test pin utilization?
 - What test schedule should be followed?

- Optimization of die testing architecture
 - How wide should each die TAM be?
DFT: Post-Bond Test Considerations

• Example: Die 1 and Die 3 tested in parallel...
 – Test data enters and exits stack through test pins on bottom die
 – On-die DFT architecture routes test data to/from die-internal TAM
 – TestElevators send test data up and down the stack
DFT: Post-Bond Test Considerations

- ...followed by testing of Die 2

- Tradeoffs:
 - Generally, more test pins required for parallel testing
 - Generally, more TSVs required for parallel testing
 - Parallel testing reduces test time
Optimization for Final Stack Test

- **Left:** All die tested serially, test time: 1700 cycles
- **Right:** Die 1 and 3 tested in parallel, test time: 1100 cycles
- **Challenge:** How to systematically and quickly search the space of 3D TAM and test scheduling solutions?
Test-Time Optimization

• Integer linear programming (ILP)
• Minimize test time (Objective function)
• Constraints: System of linear constraints
 – Limits on no. of package pins, no. of test elevators, whether dies are tested in series or in parallel,…
• A solution to the ILP model provides:
 – Minimum test time
 – Optimal 3D test architecture
 – Optimal test schedule
• Problem instances are small enough to be tackled using ILP (exact optimization)
Typical-Case Result: Complete Stack Test

- Extra test pins provide more pay-off than extra TSVs, but they can be used together for best results
Thermal-Aware Test Scheduling

• Compute a test schedule to:
 – Minimize total test time
 – Optimize 3D TAM Under thermal constraints

• Temperature estimation, Simulated annealing
Results

- **Test case**
 - 5-layer 3D IC, bonding interface
 - Ambient resistance: 4 °C/W
 - Ambient temperature: 25°C
 - Temperature limit: 90°C

<table>
<thead>
<tr>
<th>TAM limit (bit)</th>
<th>W/O thermal limit</th>
<th>With thermal limit</th>
<th>Test time overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test length (cycle)</td>
<td>Max temperature (°C)</td>
<td>Test length (cycle)</td>
</tr>
<tr>
<td>140</td>
<td>74,015,156</td>
<td>258.78</td>
<td>87,959,252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotspot (°C)</th>
<th>Proposed (°C)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.50</td>
<td>89.70</td>
<td>1.36%</td>
</tr>
</tbody>
</table>
Test Insertions

• 2-die stack

- Wafer 1 fabrication
- Pre-Bond Test 1
- Stacking
- Stack Test
- Assembly and Packaging
- Package Testing
- Wafer 2 fabrication
- Pre-Bond Test 2

4 test insertions
Test Flows

- Pre-bond test 1 skipped
Test Flows

• All test insertions skipped
• $2^4 = 16$ combinations of test insertions
Test Flows in a 3-Die Stack

- 3 test insertions for Die 1
- 3 test insertions for Die 2
- 2 test insertions for Die 3
- 8 test insertions
- 256 combinations
Multiple Types of Tests and Test-Cost Components

• Stuck-at, Transition, etc.?
• Cost varies on the type and method of test application
 – Cost due to logic implemented on DUT board, load board, etc.
 – Logistic cost associated if the test center is different from the manufacturing center
• Fault coverage?
• Number of possible flows?
• Rigorous mathematical model has been developed
How Many Test Flows?

- Exhaustively enumerate all possible candidates
- 2 pre-bond tests for each die to choose from
- 2 post-bond tests for Die 1 and Die 2, and only one for Die 3
Effect of Die Yield on Selection of Pre-Bond Tests on a 3-Die Stack

Is pre-bond test applied?

<table>
<thead>
<tr>
<th>Yield of Die 1</th>
<th>Yield of Die 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>applied</td>
</tr>
<tr>
<td>no</td>
<td>not applied</td>
</tr>
</tbody>
</table>
Effect of Die Yield on Selection of Pre-Bond Tests

![Graph showing the fraction of dies tested by pre-bond tests against die yield for different values of l.](image-url)
Effect of Die Yield on Overall Test Selection

![Bar chart showing the fraction of test insertions selected versus die yield. The chart compares stack test insertions and pre-bond test insertions.]
Conclusions

- 3D fabrication and assembly steps (TSVs, alignment, bonding, thinning, etc.) lead to unique problems.
- Known test methods can be utilized (extended) for some problems.
- Post-bond test access.
- Everything has been said before, but since nobody listens we have to keep going back and beginning all over again (Andre Gide).
- Out-of-the-box thinking needed for other test challenges.
- Pre-bond testing (KGD, TSV testing, die logic testing).

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I,
I took the one less traveled by,
And that has made all the difference.
(Robert Frost, The Road Not Taken)

One does not discover new lands without consenting to lose sight of the shore for a very long time.
(Andre Gide)