# Five-Colour Theorem and Beyond 

Bojan Mohar

Simon Fraser University

Coast-To-Coast Seminar IRMACS - SFU

March 6, 2012

## Four-Colour Theorem

Four-Colour Theorem.
Every planar map can be properly coloured with four colours.

## Four-Colour Theorem

Four-Colour Theorem.
Every planar map can be properly coloured with four colours.


## Four-Colour Theorem

Four-Colour Theorem.
Every planar map can be properly coloured with four colours.

## Four-Colour Theorem

Four-Colour Theorem.
Every planar map can be properly coloured with four colours.


## Four-Colour Theorem

Four-Colour Theorem.
Every planar map can be properly coloured with four colours.


## Four-Colour Theorem and its controversy

## Four-Colour Theorem*

Every planar graph can be properly coloured with four colours.

## Four-Colour Theorem and its controversy

## Four-Colour Theorem*

Every planar graph can be properly coloured with four colours.

[1] K. Appel, W. Haken (1977), Every Planar Map is Four Colorable Part I. Discharging, III. J. Math. 21: 429-490. K. Appel, W. Haken, J. Koch (1977), Every Planar Map is Four Colorable Part II. Reducibility, III. J. Math. 21: 491-567.
[2] K. Appel, W. Haken (1989), Every Planar Map is Four-Colorable, AMS.
[3] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas (1997), The Four-Colour Theorem, JCTB 70: 2-44.

## List colouring

List of admissible colours: $\forall v \in V(G): L(v) \subset\{1,2,3, \ldots\}$
List colouring $\phi$ :

- $\forall v \in V(G): \quad \phi(v) \in L(v)$
- $\forall u v \in E(G): \quad \phi(u) \neq \phi(v)$
$k$-list-colouring: L-colouring where each vertex has $k$ admissible colours.


Not every bipartite graph is always 2-list-colourable (i.e. not 2-choosable).

## 5-Colour Theorem



5-Colour Theorem (Thomassen, 1994).
Planar graphs are 5-list-colourable.

Remark: Not all planar graphs are 4-choosable (Voigt, 1993).

## Book proof

Theorem. $G$ near-triangulation

- $|L(a)|,|L(b)| \geq 1$ for two adjacent vertices on the infinite face
- $|L(u)| \geq 3$ for other vertices on the infinite face
- $|L(u)| \geq 5$ for the vertices not on the infinite face.

Then $G$ is $L$-colourable.


## Book proof

Theorem. $G$ near-triangulation

- $|L(a)|,|L(b)| \geq 1$ for two adjacent vertices on the infinite face
- $|L(u)| \geq 3$ for other vertices on the infinite face
- $|L(u)| \geq 5$ for the vertices not on the infinite face.

Then $G$ is $L$-colourable.


A near-triangulation
Number of admissible colors

## Case 1 - Chords



## Case 1 - Chords



## Case 1 - Chords



## Case 2 - No chords



## Case 2 - No chords



## Precolouring extension



Two red vertices are coloured the same in every 4-colouring.
Question (Thomassen, 1990's)

- Precoloured vertices $X$ of a planar graph, $\operatorname{dist}(x, y) \geq 100$, $\forall x, y \in X$. Can we extend to a 5-colouring?


## Precolouring extension



Two red vertices are coloured the same in every 4-colouring.
Question (Thomassen, 1990's)

- Precoloured vertices $X$ of a planar graph, $\operatorname{dist}(x, y) \geq 100$, $\forall x, y \in X$. Can we extend to a 5-colouring?
- Precoloured vertices $X$ of a planar graph, $\operatorname{dist}(x, y) \geq 10^{10}$, $\forall x, y \in X$. Can we extend to a 5-colouring?

Not for 4-colouring!!


Theorem (Albertson, 1998).
$G$ 4-colourable, $X \subset V(G)$ at distance $\geq 4$ from each other.
Then every 5-colouring of $X$ extends to a 5-colouring of the whole graph.


## Albertson's Conjecture



Curious about the list-coloring version, Mike Albertson asked a question that became known as Albertson's Conjecture.

Question (Albertson, 1998).
$G$ planar, $X \subset V(G)$ at distance $\geq 10^{10}$ from each other, $|L(v)| \geq 5$, $\forall v \in V(G)$.
Is it true that every $L$-colouring of $X$ extends to an $L$-colouring of the whole graph.

## Some other extensions

There are other relaxations where 5-coloring results exist:

- Graphs drawn with crossings (far apart from each other).
- Precolored vertices (far apart).
- Locally planar graphs (arbitrary surfaces), no short non-contractible cycles.
- Longer precolored path on the infinite face (3 vertices).
- Precolored edges or triangles ...


## Recent results for list-colourings

- Locally planar graphs (arbitrary surfaces), no short non-contractible cycles (DeVos, Kawarabayashi, M., 2008).
- Crossings at distance $\geq 19$ from each other (Dvorak, Lidicky, M.)
- Albertson's Conjecture (Dvorak, Lidicky, M., Postle).
- Any combination of the above ingredients.


## Crossings far apart

- Precoloured path $P \subset H$ on the outer face with up to 4 vertices
- Special subgraphs: Crossings, vertices with only 4 colours, 3-3 edges, far apart $\operatorname{dist}(A, B) \geq r(A)+r(B)+7$
- Every obstruction is colourable
- $1 / 3 / 4 / 5$ available colours.


$$
\begin{aligned}
& e \in M \\
& \triangle \triangle \triangle \\
& r(e)=0
\end{aligned}
$$

## Obstructions



## Some more ingredients

$T$-critical w.r.t. $L$ :
$T \subset G$, s.t. $\forall e \in E(G) \backslash E(T): \exists L$-colouring of $T$ that extends to $G-e$ but does not extend to $G$.

Lemma. If $G$ is $T$-critical (w.r.t. $L$ ), then

$$
\omega_{T, L}(G) \leq|T|-\frac{|V(G) \backslash V(T)|}{2|T|+2}-\frac{9}{2} .
$$

where $\omega_{T, L}(G)$ "counts" large faces and vertices in $T$ with $\geq 4$ colors.
Corollary. $T$ connected subgraph of $G$, vertices in $V(G) \backslash V(T)$ have $\geq 5$ available colours (but no restrictions on $T$ ). If $G$ is not L-colourable, then $G$ contains a subgraph $F$ on $\leq 72|V(T)|^{2}$ vertices that is not $L$-colourable.

## Basic setup

- G plane graph, outer cycle $H$
- $P \subset H$ a path in $H$ that is precoloured
- $X$ (other) precoloured vertices, far apart
- 5 available colours for $V(G) \backslash(V(H) \cup X)$
- 3/4/5 available colours for $V(H) \backslash(V(P) \cup X)$, no 3-3 edges!


Theorem. (Extending a colouring of a path)
If $G$ is $P$-critical w.r.t. $L$, then $\omega_{P, L}(G) \leq|P|-3$.

This generalises Thomassen's theorem for $|P|=2$ since $\omega_{P, L}(G) \geq 0$.

## Outline of the proof of Albertson's Conjecture

- Reduction to the case with $|X|=1$ : Using reduction techniques from our earlier paper (crossings far apart) and assuming we have a minimal counterexample.
- $P \subset H$ a path in $H$ that is precoloured. Since $\omega_{P, L}(G) \leq|P|-3$ and $H$ has no 3-3 edges, we have a bound on the length of $H$ (every vertex of $H$ with list of size 4 contributes to $\omega$ ).
- Reduction to the case when $|X|=1$ and $P$ has length $\leq 2$. Part of the proof is computer supported.
- Here we characterise possible obstructions (infinite families) and then show that we can stay away from them.


Questions?

