Five-Colour Theorem and Beyond

Bojan Mohar

Simon Fraser University

Coast-To-Coast Seminar IRMACS - SFU

March 6, 2012

Four-Colour Theorem.

Four-Colour Theorem.

Four-Colour Theorem.

Four-Colour Theorem.

Four-Colour Theorem.

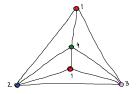
Four-Colour Theorem and its controversy

Four-Colour Theorem*

Four-Colour Theorem and its controversy

Four-Colour Theorem*

Every planar graph can be properly coloured with four colours.



K. Appel, W. Haken (1977), Every Planar Map is Four Colorable Part I. Discharging, III. J. Math. 21: 429–490. K. Appel, W. Haken, J. Koch (1977), Every Planar Map is Four Colorable Part II. Reducibility, III. J. Math. 21: 491–567.

[2] K. Appel, W. Haken (1989), Every Planar Map is Four-Colorable, AMS.

[3] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas (1997), The Four-Colour Theorem, JCTB 70: 2-44.

B. Mohar

5-C-T

List colouring

List of admissible colours: $\forall v \in V(G)$: $L(v) \subset \{1, 2, 3, ...\}$ List colouring ϕ :

- $\forall v \in V(G): \phi(v) \in L(v)$
- $\forall uv \in E(G): \phi(u) \neq \phi(v)$

k-list-colouring: *L*-colouring where each vertex has k admissible colours.

Not every bipartite graph is always 2-list-colourable (i.e. not 2-choosable).

B. Mohar

5-C-T

5-Colour Theorem

5-Colour Theorem (Thomassen, 1994). Planar graphs are 5-list-colourable.

Remark: Not all planar graphs are 4-choosable (Voigt, 1993).

Book proof

Theorem. G near-triangulation

- ▶ $|L(a)|, |L(b)| \ge 1$ for two adjacent vertices on the infinite face
- $|L(u)| \ge 3$ for other vertices on the infinite face
- $|L(u)| \ge 5$ for the vertices not on the infinite face.

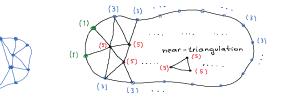
Then G is L-colourable.

Book proof

Theorem. G near-triangulation

- ▶ $|L(a)|, |L(b)| \ge 1$ for two adjacent vertices on the infinite face
- $|L(u)| \ge 3$ for other vertices on the infinite face
- $|L(u)| \ge 5$ for the vertices not on the infinite face.

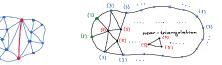
Then G is L-colourable.



A near-triangulation

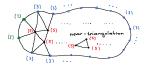
Number of admissible colors

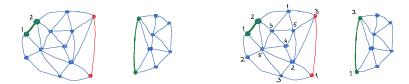
Case 1 - Chords



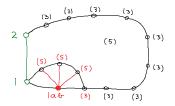
Case 1 - Chords

Case 1 - Chords

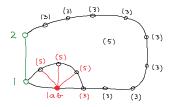


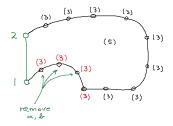


Case 2 - No chords

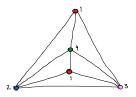


Case 2 - No chords





Precolouring extension

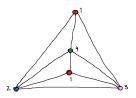


Two red vertices are coloured the same in every 4-colouring.

Question (Thomassen, 1990's)

► Precoloured vertices X of a planar graph, dist(x, y) ≥ 100, ∀x, y ∈ X. Can we extend to a 5-colouring?

Precolouring extension



Two red vertices are coloured the same in every 4-colouring.

Question (Thomassen, 1990's)

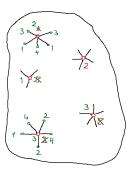
- ▶ Precoloured vertices X of a planar graph, $dist(x, y) \ge 100$, $\forall x, y \in X$. Can we extend to a 5-colouring?
- ▶ Precoloured vertices X of a planar graph, $dist(x, y) \ge 10^{10}$, $\forall x, y \in X$. Can we extend to a 5-colouring?

Not for 4-colouring!!

B. Mohar	5-C-T	
----------	-------	--

Theorem (Albertson, 1998).

G 4-colourable, $X \subset V(G)$ at distance \geq 4 from each other. Then every 5-colouring of *X* extends to a 5-colouring of the whole graph.



Albertson's Conjecture

Curious about the list-coloring version, Mike Albertson asked a question that became known as *Albertson's Conjecture*.

Question (Albertson, 1998). *G* planar, $X \subset V(G)$ at distance $\geq 10^{10}$ from each other, $|L(v)| \geq 5$, $\forall v \in V(G)$. Is it true that every *L*-colouring of *X* extends to an *L*-colouring of the whole graph.

Some other extensions

There are other relaxations where 5-coloring results exist:

- Graphs drawn with crossings (far apart from each other).
- Precolored vertices (far apart).
- Locally planar graphs (arbitrary surfaces), no short non-contractible cycles.
- Longer precolored path on the infinite face (3 vertices).
- Precolored edges or triangles . . .

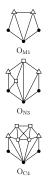
Recent results for list-colourings

- Locally planar graphs (arbitrary surfaces), no short non-contractible cycles (DeVos, Kawarabayashi, M., 2008).
- Crossings at distance \geq 19 from each other (Dvorak, Lidicky, M.)
- Albertson's Conjecture (Dvorak, Lidicky, M., Postle).
- Any combination of the above ingredients.

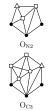
Crossings far apart

- Precoloured path $P \subset H$ on the outer face with up to 4 vertices
- Special subgraphs: Crossings, vertices with only 4 colours, 3-3 edges, far apart dist(A, B) ≥ r(A) + r(B) + 7
- Every obstruction is colourable
- 1/3/4/5 available colours.

Obstructions



 $O_{\rm N1}$



 $O_{\rm C5}$

Some more ingredients

T-critical w.r.t. *L*: $T \subset G$, s.t. $\forall e \in E(G) \setminus E(T) : \exists L$ -colouring of *T* that extends to G - e but does not extend to *G*.

Lemma. If G is T-critical (w.r.t. L), then

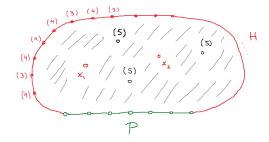
$$\omega_{\mathcal{T},L}(G) \leq |\mathcal{T}| - \frac{|\mathcal{V}(G) \setminus \mathcal{V}(\mathcal{T})|}{2|\mathcal{T}| + 2} - \frac{9}{2}.$$

where $\omega_{T,L}(G)$ "counts" large faces and vertices in T with ≥ 4 colors.

Corollary. T connected subgraph of G, vertices in $V(G) \setminus V(T)$ have ≥ 5 available colours (but no restrictions on T). If G is not L-colourable, then G contains a subgraph F on $\leq 72|V(T)|^2$ vertices that is not L-colourable.

Basic setup

- ► G plane graph, outer cycle H
- $P \subset H$ a path in H that is precoloured
- ▶ X (other) precoloured vertices, far apart
- ▶ 5 available colours for $V(G) \setminus (V(H) \cup X)$
- ▶ 3/4/5 available colours for $V(H) \setminus (V(P) \cup X)$, no 3-3 edges!

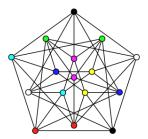


Theorem. (Extending a colouring of a path) If G is P-critical w.r.t. L, then $\omega_{P,L}(G) \le |P| - 3$.

This generalises Thomassen's theorem for |P| = 2 since $\omega_{P,L}(G) \ge 0$.

Outline of the proof of Albertson's Conjecture

- ▶ Reduction to the case with |X| = 1: Using reduction techniques from our earlier paper (crossings far apart) and assuming we have a minimal counterexample.
- P ⊂ H a path in H that is precoloured. Since ω_{P,L}(G) ≤ |P| − 3 and H has no 3-3 edges, we have a bound on the length of H (every vertex of H with list of size 4 contributes to ω).
- ▶ Reduction to the case when |X| = 1 and P has length ≤ 2. Part of the proof is computer supported.
- Here we characterise possible obstructions (infinite families) and then show that we can stay away from them.



Questions?