Breaking the 3D IC power delivery walls using voltage stacking

IEEE CAS DL program Mircea Stan <u>mircea@virginia.edu</u> HPLP lab. <u>http://hplp.ece.virginia.edu</u> ECE Dept., University of Virginia May 2013

Outline

- Why, What, How?
- 3D IC
- Power Walls
- Voltage Stacking
- Voltage Regulation for Stacking
- Voltage stacking in 3D IC

2

Integrated circuits – 2D

Si wafers

High-Performance Low-Power

3

Source: Wikipedia

What is 3D IC?

Multiple active layers - continue Moore's law

Why 3D IC? – Moore's law!

Could be Heterogeneous...

"Stacked" 2D (Conventional) ICs

5

Pouya Dormiani, Christopher Lucas ,"3D IC Technology"

CMOS process cross section

Source: E. Levine – IC Fabrication and Yield Control

High-Performance Low-Power

Benefits of 3D IC

Density high capacity Small footprint

Performance/Energy fast interconnect (latency) High bandwidth

"More than Moore"

Heterogeneous integration with Logic+memory+RF+optical etc.

7

Yuan Xie, "Cost/architecture/application Implication for 3D Stacking Technology

3D IC "Power Walls"

- Physical stacking in 3rd dimension exacerbates the two-dimensional power density explosion
- k-layered 3D IC : k-times supply current, Lower power pads
- TSV (Through siliconvias) : Adds resistance to the PDN impedance
- TSV Area Over-head

8

Power Density "Wall"

- Technology scaling => **Increased** Power Density
- Physical stacking in 3rd dimension exacerbates the twodimensional power density explosion
- Overhauling Heat Dissipation Capacity

Power Noise "Wall"

- EM effect, IR drop, Ldi/dt : 1 with increasing current density
- Voltage Scaling : Noise margin ↓
- Increased current demand => Lower PDN impedance needed

Source: Runjhie Zhang et al, "Some Limits of Power Delivery in the Multicore Era"

Thermal 3D IC bottleneck

- Power Pins at one end of the tiers, heat sink the other end
- Current starved components placed near heat sink, farthest from the power pins
- Current (3D)/Current(2D) = n, n number of layers
 Let R_{grid} = resistance of power grid
 V_{drop-3D} = n*Rgrid*Current(2D)
- Current starved layers getting lower voltage headroom

3D IC Power Delivery "Wall"

Power ~ O(Vol) Vdd = ct. I ~ O(Vol) but, C4s ~ O(Area) TSVs ~ O(Area) Unsustainable!

In the past: 2D power delivery wall

Power ~ O(Area) Vdd = ct. I ~ O(Area) but, pads ~ O(Perim) Unsustainable!

13

Source: http://gadgets.boingboing.net/2008/04/28/power-on-self-test-l.html

2D: Flip-chip to the rescue

Physical solution Power ~ O(Area) Vdd = ct.I~O(Area) C4s ~ O(Area) 2D Solved! Not 3D though...

C4 - Controlled Collapse Chip Connection

Source: Nextreme, Inc.

Power Pin "Wall"

- C4 Count ~ constant : current/pad
- For n layer 3DIC , Power pin count
- ~ 1/nth of 2D IC
- Electro migration can cause open/short circuit
 - => Chip failure

C4: controlled collapse chip connection

ITRS Roadmap 2009

Current Per Power Pin (2D), ITRS

Source: Nextreme, Inc

Off-Chip Versus On-Chip Regulation

- Reduces Off-Chip I²R losses in PDN parasitic
 - Fast On-Chip voltage scaling

Zhiyu Zeng et al, "Tradeoff analysis and optimization of power delivery networks with on chip voltage regulation", DAC 201 Concernent Conce

On-Chip-Regulation Efficiency "Wall"

- Off-Chip High Voltage => On-Chip Low Voltage : Power loss
- Switching Regulator : High efficiency, Difficult to integrate On-Chip
- LDO efficiency : constrained by V_{out}/V_{in}
- Switched Capacitor : Switch Conductance/ Switching Loss
- Existing regulation techniques not energy efficient to generate low voltage and exploit DVFS

3D IC: Voltage Stacking to the rescue

High-Performance Low-Power

Voltage Stacking

- 3D IC power delivery walls arise due to unsustainable increase in *current*
- Solution for delivering increased power without increase in current is to increase *voltage*
- Essentially the same idea used in macroscopic power distribution grids
- Simply increasing voltage for high voltage onchip require explicit on-chip DC/DC regulators
- Voltage stacking uses *implicit* power regulation based on Kirchoff's voltage law (Ohm's law)

19

Pros and Cons

- Power Pin : Implicit Regulation; k cores stacked need same/less number of power pins as single core
- Off-Chip I²R Power Loss : k² times
- IR Drop : k times
- Efficiency : Depending on "Imbalance" 1
- 3D IC : Physical layering of 3D IC naturally maps to voltage stacked solution reducing TSV count
- Inter-layer core activity mismatch : Internal voltage noise

Stacking for other power walls

Vdd

High-Performance Low-Powe

Fabricated chip die photo

A. Cabe, M. Stan, "Standby Power Reduction using Voltage Stacking" GLSVLSI 2011

Power Savings during Sleep

• 1 order of magnitude savings!

Implicit Regulation : Resistive Versus CMOS Stacked Load

Resistive load: V α I CMOS load : V $\alpha \sqrt{I}$

For CMOS load, less dependency of Voltage droop on load current

Voltage droop α I_{Load} difference between the stacked layers

24

Stacked CMOS Load

Charge conservation $I_{top} = I_{bottom}$ $I_{top} = \alpha_{top} C_{L}(V_{dd} - V_{mid})Fc$ $I_{bottom} = \alpha_{Bottom} C_{L}V_{mid} Fc$ $V_{1} = V_{dd} - V_{mid} = \alpha_{bottom} / (\alpha_{top} + \alpha_{bottom})$ $V_{2} = V_{mid} = \alpha_{top} / (\alpha_{top} + \alpha_{bottom})$ $\alpha_{top} \alpha_{bottom}$: Top and bottom core activity factors, F_{c} : Core frequency C_{L} : Capacitive load V_{mid} the output voltage delivered.

$$\alpha_{top} = \alpha_{Bottom}$$
 $V_{mid} = 0.5 V_{dd}$

Explicit Regulation needed ?

 $\alpha_{top} > \alpha_{Bottom}$ $V_{mid} > 0.5 V_{dd}$: Self-Regulation forces lower voltage headroom for high activity cores

Unregulated Voltage Stacking **oppose DVFS**

Explicit Regulator: **Sink/Source "imbalance"** and compensate for the natural "feedback"

On-Chip Regulator

• Switched Capacitor (SC) :

Assuming Current offset: V_{out} droops below V_{dd} Phase 1 : flycap1 charges to V_{dd} + ΔV while flycap2 to V_{dd} - ΔV Phase 2 : flycap1 and flycap2 swap, redirecting charge to V_{out}

Voltage Stacking for more than 2 Layers

Efficiency of V-S Regulated Technique

Higher efficiency in Voltage Stacking

Implicit vs. Explicit

Regulate the current difference, not the sum!

Lower imbalance leads to higher efficiency

Efficiency Comparison

Voltage Stacking Efficiency dependent on **mismatch** : More than 90% Efficiency for closely matched stacked load

Worst case V-S Efficiency ~ SC Efficiency

Positive Vs. Negative Imbalance

Positive imbalance: similar to conventional regulator (Sourcing I_{Load})

Negative imbalance: regulator absorbs current (Sinking I_{Load})

Feedback Control Circuitry

- $V_{out} = nV_{in} i_{out} Rout (f_{sw}, D_{i'}G_{i})$
- Hysteretic feedback scheme with lower and upper bounds to modulate the switching frequency

$V_{out} > V_{ref} + \Delta$ Toggle Low 1 C		
	_high	
Vref-Δ Vout Vref+Δ LOW LOW C	_low	
V _{out} < V _{ref-Δ} Low Toggle 1 C	_high	C

High-Performance Low-Power

Feedback with Conventional Load

Comparator o/p acting as frequency modulated clock

Efficiency : Improves at low power with feedback

Jain, R: 200mA switched capacitor voltage regulator on 32nm CMOS and regulation schemes to enable DVFS, *(EPE 2011)*

Open/Closed Loop for Stacked Load ?

- Comparison of open-loop/close-loop SC circuit for high power (left: 10mW-400mW, 2V→1V) and low power (right: 0.5mW-10mW, 1.2V→0.6V) loads
- Higher efficiency for Open loop regulation (low power loads)

Switch Capacitor Model

m:n No-Load Conversion ratio

R_{OUT} has 2 asymptotic limits : Slow Switching Limit (R_{SSL}) and Fast Switching Limit (R_{FSL})

R_{SSL} => Ideal Switches, Current Impulsive in nature, Impedance inversely proportional to Switching Frequency

R_{FSL} => Switches and capacitance resistance dominate, capacitance act as fixed voltage source, Impedance **independent** of Switching frequency

$$R_{OUT} \sim \sqrt{(R_{FSL}^2 + R_{SSL}^2)}$$

hpp High-Performance Low-Power

Source : Seeman, " A Design Methodology for Switched-Capacitor DC-DC Converter", PhD Dissertation , UC Berkeley , May 2009

Switch Capacitor Power Loss

- SSL impedance Loss : Charge transfer related loss =>
 I_{Load}².R_{SSL}
- FSL impedance Loss : Switch conductance loss =>
 I_{Load}².R_{FSL}
- Switch Drive Loss : Parasitic loss in the switches => V_{swing}².N.W_{switch}.C_{gate}.F_{sw}
- Bottom Plate Loss
- ESR Loss in Capacitor

Power Loss Optimization

- Intrinsic loss

 - Reduced by $\uparrow f_{sw}$

- Switch/parasitic loss
 - Reduced by \uparrow switch f_T
 - Increased by $\uparrow f_{sw}$

Source : Hanh-Phuc et al, "Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters"

Power Loss Breakdown

Efficiency Versus Design Knobs

Output Impedance with imbalance

 i_1 (Layer1 current) = i_2 (Layer 2 current) $R_{ssl} = 1/(2*f_{sw}*C_{fly})$ $R_{fsl} = 4R$

$$i_1 > i2 \text{ or } i_1 < i2$$

 $R_{ssl} = 1/(2*f_{sw}*C_{fly}) + [2(\Delta V/V_{in})]^2$
 $R_{fsl} = 4R[1+4 (\Delta V/V_{in})^2]$

Increase in $\mathrm{R}_{\mathrm{out}}$ with increase in imbalance and lowering of Vin

Output Impedance

More the imbalance, more V_{delta} and more the loss

Impact of Capacitor Parasitic

MOS Cap -> Highest Density(12nF/mm²), Max Bottom Plate Parasitic (7-10%) MIM Cap -> Lower Density (2nF/mm²), Less parasitic (2-3%)

Interleaving – Ripple Mitigation

No interleaving

Fly caps never come parallel, No energy loss through charge sharing Fly caps come parallel to each other sharing $2\Delta V$ of charge between them, leading to energy Loss 44

2-way interleaving

Power Loss with Interleaving

Energy Loss (interleaving 2 way) = $1/2*c*(1/2*vin+v_{del})^2+1/2*c*(1/2*vin-v_{del})^21/2*c*(vin1/2*(c*(1/2*vin+v_{del})+c*(1/2*vin-v_{del}))/c)^2-1/8*(c*(1/2*vin+v_{del})+c*(1/2*vin-v_{del}))^2/c$

As ΔV increases, Powerloss due to charge sharing increases

More interleaving, less ΔV and less the intrinsic loss, but more the extrinsic loss (from additional buffers and control circuitry needed for interleaving)

45

Finding Optimum Interleaved Stages

Tradeoff between P-P Ripple (performance) and Power Loss (Efficiency

High-Performance Low-Powe

Efficiency : Conventional Versus Stacked Load

Efficiency with varying conventional load (left) and stacked load (right). In Figure (b), X-axis indicates relative imbalance (%) between the domains.

3D IC scaling: more stacked layers

10V
0 mA
8.82V
50 mA
7.89V
0 mA
6.94V
0 mA
5.98V
0 mA
5.02V
0 mA
4.088∨
0 mA
3.14V
0 mA
2.19V
0 mA
1.25V
0 mA

10V
100 mA
8.87V
0 mA
7.91V
0 mA
6.94∨
0 mA
6V
0 mA
5.07V
100 mA
4.09∨
0 mA
3.13V
0 mA
2.17V
0 m 0
1.21V
1.21V 100 mA
1.21V 100 mA

Phase-Frequency Locked Clock

3D IC Power Delivery- TSV Bottleneck

- Smaller footprint : Fewer Power bumps
- Big P/G TSVs to deliver power to all the stacked layers, causing congestion
- TSVs contribute to IR drop, reducing supply rail integrity

Source: Sung Kyu Lim, " 3D IC Circuit Design with Through-Silicon-Via : Challenges and Opportunities ", GTCAD Laboratory

TSV Trade-Offs

hpp High-Performance Low-Power

5000

Clustered Voltage Stacking

Summary : Voltage Stacking in 3D IC

- 3D IC power delivery wall: at constant voltage cubic increase in power/current but only quadratic area/pins
- Voltage stacking can help break wall: quadratic current and linear voltage
- Implicit regulation + explicit for imbalance
- Clustered Voltage Stacking

Acknowledgments

- Funding from SRC, NSF, AMD, Intel
- Collaborators: Kaushik Mazumdar, Runjie Zhang, Kevin Skadron
- IEEE CAS
- Universities of Victoria, British Columbia, Washington and Portland State

55