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Complex Networks

« Alarge variety of natural and artificial systems can be represented in
terms of networks. For instance:
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Dynamics of Complex Networks:
Synchronization

P x
— Clock synchronization

 Huygens (1665): synchronization
of two weakly coupled clocks

« Current applications: ? ¥

— Epidemics — Secure communications
— Flocking - GPS — Neural networks




Cluster Synchronization
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o

¢ Identify the clusters?

o Are the clusters stable?

¢ Complex (large) networks

¢ Any dynamics (fixed pt, periodic,
quasiperiodic, chaotic

L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, R. Roy, "Cluster Synchronization and Isolated
Desynchronization in Complex Networks with Symmetries", Nature Communications, 5, 4079 (2014).

F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, R. Roy, "Complete characterization of stability of
cluster synchronization in complex dynamical networks", Science Advances 2, e1501737 (2016).



Control of Networks (1)

Power Grid Dynamics: maintaining frequency of
generators in the presence of perturbations




Control of Networks (2)

Control of Mammalian Circadian
*Rhythm

*The dynamics is multistable
(both fixed points and limit cycles)

*Problem: moving from one
attractor to the basin of attraction
of another attractor
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Control of Networks (3)

Control of Autophagy in a single cell

¢ Consider the Autophagic system in a single cell,
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One option: Optimal Control

Controllability

Consider the continuous
time system,

Xl

x(t) = f(x,t) + Bu(?)
K(tn) = X0

X(tf) = Xy t

Time(t)



One option: Optimal Control

Control Energy
Control Energy,
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ISsues

*The dynamics of complex networks is nonlinear
Control of nonlinear systems is difficult!

*Optimal control strategies for nonlinear systems are
typically obtained numerically

‘Numerical optimal control solutions for large high-
dimensional nonlinear systems are computationally
expensive



Target Control of Networks
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A network is described by two sets:
® A set of nodes, V (often these coincide with the states), and
® A set of edges, £ (these are the linearized dynamical relations between
nodes)

There are three types of nodes:

Driver Nodes: These can be
directly influenced by our
control inputs, wy,
k=1.....m.

Target Nodes: These are nodes

Figure: A 10 Node Network with a desired final condition.
n m -

_ Neither: These are nodes that

Xi = Z ijXj + Z bi u are neither driven nor targeted.

j=1 k=1
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A state, xj(t), i =1,...,n corresponds to a node v; € V.
We define our state vector as,

x(t)=<¢ . (4)

The adjacency matrix, A = {a;;}, contains the edges € £ where if a;; # 0,
the state of v; affects v;.

x(t) = Ax(t) + Bu(t)
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To start, we consider all nodes as target nodes.
We define the control energy as,

£= [ luoPer ©

to

The optimization problem is:

in J 1E 1/tf||u(t)||2dt
min S i
u(t) 2 2 Jt

such that x(t) = Ax(t) + Bu(t) (6)
x(to) = xo0, Xx(tr) = x¢

J(x(t),u(t)) is the cost function, or penalty function.
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The solution is,

u*(t) = BT AT -0 -1 (7)

where,
W — / Alt—7) BBT AT (tr—7) g 8- (xf B eA(tf—tg)xo)

W is the controllability Gramian.
More importantly, the minimum energy is,

Erin — / ()] 2de o

=p'Ws
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The controllability Gramian tends to be poorly conditioned when,
The time interval, tr — tp is ‘'small’, or

The percentage of nodes which are drivers is small.

Why does the condition of W matter?
Min-Max Theorem

1

i) < gTwig < £ (9)
3]
So,
1
g(max) _ 10
mn " (W) 1)

which can be prohibitively large.
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We define an output,

y(t) = Cx(t). y(t) € RP*L. p<n (11)
which is a linear combination of the states.

The output can be used to target nodes by choosing C such that each row
has only one nonzero element.

Problem Statement for MEOCS:

in J 1E 1/rf||u(t)||2dt
min = b= ¢
u(t) 2 2 0

(12)
such that x(t) = Ax(t) + Bu(t)

X(t0) = o, ¥(tr) =¥y
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The optimal control input,
-1
u(t) = BeA (=t C T (CWCT) 3 (13)
The minimum energy is,
~1
Ein =0T (CWCT) B=pTw;? (14)

where Wp Is a minor of W.

This method reduces the control space of the system.
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Y, . The system on the left uses the

k K K MECS formulation to place each
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A four dimensional example:

Then,
W,=cwc’ = [ Wos W24]
= _

Wao  Waa

Cauchy Interlacing Theorem:
Proves that the minimum eigenvalue of the minor of a matrix is larger than
the minimum eigenvalue of the original matrix.
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We define g as the number of non-targeted nodes (the dimension of the
complement of the target set).

We define p..gq) as the minimum eigenvalue of CW CT when n — g nodes are
targeted.

q

0 0
) = i (H”") — 1) (18

i=1
Mg = ( ?:1 -n;)l/q > 1 which explains the exponential improvements as the
target set is reduced
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Figure: @) The exponential increase of ji1 as g increases. b) The value of 714 is
larger than one.



Distance vs # of Targets
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== Slope =1.39
1
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Example: Regulating Autophagy
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mTORC
_/
X1(t)=(1=xp)g1 (1 —uy)(1 —up) —x1h(xp)h(x3) x1: [mTORC]
? A Xo(t) = (1 —=x2)h(x3)(1 —uz) —x2h(xy) x2: [ULKT1]
ULK1] | X3(t) = (1 —x3)k (1 —ug) — gox3xa (1 —us) x3: [AMPK]
C\[/ Xq(t) = (1 —xq)koh(xy) —k3xy x4t [Vps34]
X5(t) = kaxa — ksxs(1 —ue) xs5: # Autophagic Vesicle/10

----) environment
~anmnny drug input
— interaction

Regulating autophagy (P. Szymanska, et al. PloS one, 10(3)
e0116550, 2015)
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Conclusions

We consider control of large dimensional dynamical networks
with applications to biological, technological, ecological systems
and so on

By choosing targets, the control energy can be reduced
exponentially with respect to the size of the target set.

Optimal control of a nonlinear network (to some nonlocal point)
can be achieved by performing a sequence of local optimal
controls
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Mobile Robots moving in an
obstacle-populated environment
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Mobile Robots moving in an
obstacle-populated environment
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Mobile Robots moving in an
obstacle-populated environment
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