Towards Self-Powered Wireless Biomedical Devices

Professor Yong LIAN, IEEE Fellow
Area Director, Integrated Circuits and Embedded Systems
Department of Electrical and Computer Engineering
National University of Singapore

Editor-in-Chief, IEEE Transactions on Circuits & Systems II
Founder, ClearBridge VitalSigns Pte Ltd

Outlines

• An introduction to Wireless Body Sensor networks
• Self-powered wireless sensor devices: a dream or reality?
• Challenges in the design of self-powered sensors and possible solutions
• Some design examples of low power wireless biomedical sensors
• Conclusions

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Wireless Body Sensor Networks

- A latest evolution of healthcare system.
- Seamless integration with home, working, and hospital environments.

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Wireless Biomedical Sensors (WBS)

- Sensor types: wearable/injectable/ingestible/implantable
- Function: context-sensitive measurement of parameters leading to faster acquisition of accurate and actionable information

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Wireless Health

• The use of body sensor networks to facilitate personalized and prevention-oriented healthcare
• Reducing healthcare cost in ageing society
• Improving productivities for healthcare providers, patients, and payers.
• Huge market size and potential new market segment in wireless health

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Estimated Market Size for Wireless Health

• Current wireless home health market: around $304 million
• Expected to grow to: $4.4 billion in 2013 with estimated growth rates of 96% in 2010, 126% in 2011, 95% in 2012 according to CTIA(The Wireless Association)
• Expected wireless wearable sensors: more than 400 million devices by 2014 and revenue around $5 billion according ABI Research.

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Self-Powered Wireless Biomedical Sensor: a Dream or Reality?

• Available commercial wireless sensors

<table>
<thead>
<tr>
<th>Platform</th>
<th>Power(Rx/Tx)</th>
<th>Sleep power</th>
</tr>
</thead>
<tbody>
<tr>
<td>TelosB</td>
<td>18.8/17.4 mA</td>
<td>0.02-426 µA</td>
</tr>
<tr>
<td>MicaZ</td>
<td>18.8/17.4 mA</td>
<td>0.02-426 µA</td>
</tr>
<tr>
<td>SHIMMER</td>
<td>40/60 mA</td>
<td>50-1400 µA</td>
</tr>
<tr>
<td>IRIS</td>
<td>15.5/16.5 mA</td>
<td>20 nA</td>
</tr>
<tr>
<td>Sun SPOT</td>
<td>18.8/17.4 mA</td>
<td>0.02-426 µA</td>
</tr>
</tbody>
</table>

Two key limitations:
• Size and capacity
• Lifetime

Energy Harvesting

• Energy harvesting options

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy sources</th>
<th>Power density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant</td>
<td>Photovoltaic</td>
<td>12000µW/cm²</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Electrostatic, piezoelectric</td>
<td>3.89µ-830µW/cm³</td>
</tr>
<tr>
<td>Thermal</td>
<td>Thermoelectric</td>
<td>2000µW/cm² @12°C gradient</td>
</tr>
<tr>
<td>Magnetic</td>
<td>Electromagnetic</td>
<td>0.01µ-0.3µW/cm²</td>
</tr>
<tr>
<td>Chemical</td>
<td>Glucose</td>
<td>2-4mW/cm²</td>
</tr>
</tbody>
</table>

ThermoLife®
(5 °C gradient: 30 µW).

IMEC Wrist
TEG(300µW at 22°C).

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Human Energy Scavenging

- Wearable devices can generate 0.3mW – 8 W from breathing, finger motion, blood pressure, body heat, walking.
- Implantable nanowire devices:
 - Current density: ~8.9nA/cm²
 - Output voltage: ~96mV
 - Power density: 2.7mW/cm³

Challenges in Designing of Self-Powered WBS
Challenges in Designing of Self-Powered WBS

- Complicated system contains analog, mixed-signal, digital, RF, and power blocks.
- Energy scavenging from body and ambient are unstable.
- Limited power budget
 - Less than few mW for wearable devices.
 - Less than 1 mW for implants

Possible Solutions

- Asynchronous architecture.
- Sub-threshold circuits.
- Wireless communication using human body – intra body communication.
 - Event driven ADC with continuous-time digital signal processing achieves upto 80% dynamic power saving in terms of number digital outputs for audio signals.

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Design Examples

- 1-V 450nW programmable ECG sensor interface
- 1-V 2.3µW ECG-on-Chip
- 1-V 22µW 32-channel ECoG chip
- 0.5V 18µW 16-channel neural recording chip
- 250mV digital filter for QRS detection

NanoWatt ECG Recording Chip

- Fully integrated, configurable chip for ECG recording
- 450 to 900nW
- Low voltage on-chip tunable band-pass filter (4.5mHz-290Hz)
- Programmable
- 12-bit ADC
- On-chip oscillator

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Measured Performance of ECG Chip

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Voltage</td>
<td>1 V</td>
</tr>
<tr>
<td>Core Current</td>
<td>450 nA (QRS mode)</td>
</tr>
<tr>
<td>3 dB Bandwidth</td>
<td>4.5 mHz ~ 292 Hz (Tunable)</td>
</tr>
<tr>
<td>Mid-band Gain</td>
<td>45.6 / 49 / 53.5 / 60 dB</td>
</tr>
<tr>
<td>Input Referred Noise</td>
<td>< 0.6% (@ full output swing)</td>
</tr>
<tr>
<td>Amplifier THD</td>
<td>> 71.2 dB</td>
</tr>
<tr>
<td>CMRR</td>
<td>> 84 dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>12 bits</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>< ±0.8 LSB</td>
</tr>
<tr>
<td>ADC Sampling Rate</td>
<td>< ±1.4 LSB</td>
</tr>
<tr>
<td>ADC SFDR</td>
<td>74 dB</td>
</tr>
<tr>
<td>ADC SNDR</td>
<td>63 dB</td>
</tr>
</tbody>
</table>

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Performance Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Yin'07</th>
<th>Wattanapanitch'07</th>
<th>Wu'06</th>
<th>NUS ECG Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±1.7 V</td>
<td>2.8 V</td>
<td>1 V</td>
<td>1 V</td>
</tr>
<tr>
<td>Process Technology</td>
<td>1.5 µm CMOS</td>
<td>0.5 µm CMOS</td>
<td>0.35 µm CMOS</td>
<td>0.35 µm CMOS</td>
</tr>
<tr>
<td>Current (TB-FEA)</td>
<td>8 µA</td>
<td>743 nA</td>
<td>330 nA</td>
<td>337 nA</td>
</tr>
<tr>
<td>Mid-band Gain</td>
<td>39.3 / 45.6 dB</td>
<td>40.9 dB</td>
<td>40.2 dB</td>
<td>45.6 / 49 / 53.5 / 60 dB</td>
</tr>
<tr>
<td>-3 dB BPF Bandwidth</td>
<td>0.015 Hz ~ 4 kHz (Tunable)</td>
<td>0.392 Hz ~ 295 Hz (Fixed)</td>
<td>0.003 Hz ~ 245 Hz (Fixed)</td>
<td>0.0045 Hz ~ 292 Hz (Tunable)</td>
</tr>
<tr>
<td>Input Referred Noise</td>
<td>3.6 µVrms</td>
<td>1.66 µVrms</td>
<td>2.7 µVrms</td>
<td>2.04 µVrms</td>
</tr>
<tr>
<td>Noise Efficiency Factor</td>
<td>4.9</td>
<td>3.21</td>
<td>3.8</td>
<td>2.66</td>
</tr>
<tr>
<td>Output @ 1% THD</td>
<td>~48% Full Swing</td>
<td>~29% Full Swing</td>
<td>~85% Full Swing</td>
<td>100% Full Swing</td>
</tr>
<tr>
<td>CMRR</td>
<td>N/A</td>
<td>66 dB</td>
<td>64 dB</td>
<td>≥71.2 dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>N/A</td>
<td>75 dB</td>
<td>62 ~ 63 dB</td>
<td>≥84 dB</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>N/A</td>
<td>N/A</td>
<td>11-bit</td>
<td>12-bit</td>
</tr>
<tr>
<td>ADC Sampling Rate</td>
<td>N/A</td>
<td>N/A</td>
<td>1 KS/s</td>
<td>1 KS/s</td>
</tr>
<tr>
<td>ADC DNL</td>
<td>N/A</td>
<td>N/A</td>
<td><±1.5 LSB</td>
<td><±0.8 LSB</td>
</tr>
<tr>
<td>ADC INL</td>
<td>N/A</td>
<td>N/A</td>
<td><±2 LSB</td>
<td><±1.4 LSB</td>
</tr>
<tr>
<td>Total Power</td>
<td>27.2 µW (Amplifier)</td>
<td>2.08 µW (Amplifier)</td>
<td>2.3 µW</td>
<td>445 nW ~ 895 nW</td>
</tr>
</tbody>
</table>

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
ECG-on-Chip

- 2.3 μW fully integrated programmable ECG chip for signal conditioning, ADC, QRS detection, memory, and MCU interface

<table>
<thead>
<tr>
<th>Analog Frontend</th>
<th>Supply Voltage</th>
<th>1.0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass-band</td>
<td>0.05 ~ 100 Hz</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>46 ~ 60 dB</td>
<td></td>
</tr>
<tr>
<td>Input-referred</td>
<td>2.5 μV rms (0.05 ~ 460 Hz)</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>< 0.6%</td>
<td></td>
</tr>
<tr>
<td>THD @ FS Output</td>
<td>< 0.6%</td>
<td></td>
</tr>
<tr>
<td>Sampling Freq</td>
<td>256 Hz</td>
<td></td>
</tr>
<tr>
<td>ADC ENOB</td>
<td>> 10.2</td>
<td></td>
</tr>
<tr>
<td>Power @ 1.0 V</td>
<td>0.75 μW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QRS + FIFO + SPI + PO</th>
<th>Supply Voltage</th>
<th>1.5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal SRAM</td>
<td>2 Kb</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>SPI slave & master</td>
<td></td>
</tr>
<tr>
<td>Power @ 1.5 V</td>
<td>1.5 μW</td>
<td></td>
</tr>
</tbody>
</table>

Application (1): Wireless ECG Plaster

![Diagram of Wireless ECG Plaster system](image)

1. ECG Plaster
2. Wireless Adapter
3. Smart Phone Software

- Electrode
- Smart Medical Chip
- Telemmedicine
- Remote Monitoring Center
- Medical Server
- 3G/WiFi
- Internet

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Prototype of NUS ECG Sensor

- ECG data received by PDA
- Wearable ECG Device
- Detected QRS and heart rate

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Detection of QRS for Exercise ECG under Running by NUS Algorithm (NanoWatt)

- Original ECG
- Detected QRS

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
32-Channel EEG Chip

- 32-channel EEG recording chip (lowest power consumption < 20µW)
- Reconfigurable with amplifiers, filters, 10-bit ADC
- Intracranial EEG recording (ECoG)

Applications: Wearable EEG Sensor

- Wearable wireless EEG for seizure detection, brain-computer-interface, gaming, education, cognitive enhancement.

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Multi-Channel Neural Recording Chip

- 0.5V 18-μW 16-Channel chip for implantable neural recording
- 10kHz bandwidth with on-chip filter, programmable gain, and 10-bit ADC
- Power consumption: 30 times less than current state of the art.

A Design Example: Sub-1 mW Wireless ECoG Sensor

- Applications
 - Prediction of seizure and monitoring of epilepsy patients, deep brain stimulation, and Brain-Computer-Interface
- Implantable ECoG requirements:
 - Low noise(<1.5μV_{rms}) and low power
 - Multiple channels: at least 32-channel
 - Small chip area and long battery life
Wireless ECoG Sensor

Sensor Front-End

Programmable Multi-channel amplifier

Tunable filter

ADC

Transceiver

Electrodes

Microprocessor

Memory

Power management unit

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Front-End Architecture

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Low Power Low Noise Preamplifier

- Fully balanced tunable pseudo-resistors
- Low signal distortion

Challenges on SAR ADC

- Low supply voltage → rail-to-rail range to boost SNDR.
- To support multiple channels → sufficient input BW.
- Power limited application → energy efficient.
Dual-Capacitive-Array SAR ADC

- A hybrid between the two conventional designs.
- Additional S/H array for quantization.
 - First 5 bits (MSB) are obtained from 5-bit S/H array
 - Remaining 5 bits from 10-bit DAC array

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Performance Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dension’07</th>
<th>Yazicioglu’08</th>
<th>Zou’08</th>
<th>This work*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>1.8 V</td>
<td>3 V</td>
<td>1 V</td>
<td>1 V</td>
</tr>
<tr>
<td>Process</td>
<td>0.8 µm CMOS</td>
<td>0.5 µm CMOS</td>
<td>0.35 µm CMOS</td>
<td>0.35 µm CMOS</td>
</tr>
<tr>
<td>Current (front-end amplifier)</td>
<td>1.2 µA</td>
<td>2.3 µA</td>
<td>337 nA</td>
<td>385 nA</td>
</tr>
<tr>
<td>Input referred noise</td>
<td>0.93 µV (0.5~100 Hz)</td>
<td>0.57 µV (0.5~100 Hz)</td>
<td>2.04 µV (0.05~300 Hz)</td>
<td>1.15 µV (0.5~150 Hz)</td>
</tr>
<tr>
<td>NEF</td>
<td>4.9</td>
<td>4.1</td>
<td>2.66</td>
<td>2.24</td>
</tr>
<tr>
<td>ADC resolution/ Sampling rate</td>
<td>--</td>
<td>11-bit / 8 kS/s</td>
<td>12-bit / 1 kS/s</td>
<td>10-bit / 10 kS/s</td>
</tr>
<tr>
<td>Total power</td>
<td>2.2 µW</td>
<td>198 µW</td>
<td>0.9 µW</td>
<td>22 µW</td>
</tr>
<tr>
<td>No. of channel</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>Average power per channel</td>
<td>2.2 µW (amplifier)</td>
<td>24.75 µW</td>
<td>0.9 µW</td>
<td>0.69 µW</td>
</tr>
<tr>
<td>Area per channel (analog part only)</td>
<td>1.4 mm²</td>
<td>0.45 mm²</td>
<td>0.64 mm²</td>
<td>0.08 mm²</td>
</tr>
</tbody>
</table>

*ISSCC2010

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Sub-mW Wireless Transceiver

- ECoG front-end consumes only 22µW (NanoWatt per channel)
- Most power goes to wireless transceiver, e.g. 20mW++ for commercially available wireless transceiver (ZigBee).
- Sub-mW wireless transceiver is necessary for implantable solution → reduced battery size or extended battery life.

Proposed Pulse-Based Ultra-Wideband Transceiver

To turn LNA “ON” or “OFF”

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg
Conclusions

- It is possible to design self-powered wireless biomedical sensors for both wearable and implantable applications.
- Many challenges in system architecture, low voltage circuit techniques.
- Call for revolutionary signal processing flow that improves energy efficiency.
- Be aware of challenges beyond CMOS: system integration, packaging, etc.
Acknowledgment

• Students:
 – Wen Sin Liew, Xiaodan Zou, Xiaoyuan Xu, Jun Tan, Fei Zhang, Ying Wei, Chacko John Deepu, Lei Wang, Xiaoyang Zhang, Xiaofei Chang, Muhammad Cassim Mahmud Munshi, Zhe Zhang, Chao Xue, Qi Zhang, Daren Zhang.

• Sponsorship
 – National University of Singapore research funding
 – Agency of Science, Technology and Research (ASTAR)

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg

Thank You.

Contact: Prof. Yong LIAN
eleliany@nus.edu.sg

Prof. Yong LIAN, Dept. of ECE, NUS, Email: eleliany@nus.edu.sg