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The basic motivation for this presentation is to 
provide a more complete generalization of  the 
physical sciences  towards a more unified  approach 
to  analytical integration. 
 
This would include the Navier-Stokes equations for 
the case of an incompressible flow with heat transfer 
and variable viscosity as well as for  problems related 
to linear  elasticity and Einstein field theory. 



GENERAL  OVERVIEW  FOR  

TODAY’S  PRESENTATION 
 



 

 I will begin with some newly discovered  facts about 
mathematical equations and introduce a very important 
new mathematical principle related to integral Calculus. 

 Describe a universal differential form representation for a 
class of mathematical equations that would include only 
algebraic and elementary functions  excluding all integrals 
and difference equations. 

 Explain how such a universal representation of these types 
of functions has uncovered a  unified approach to analytical 
integration. 

 Introduce the concept of  a numerically controlled system of 
analytics (NCSA)  table for Physics and Engineering Science 
as a direct application of this unified approach to analytical 
integration. 

 

 

 



 Provide a clear demonstration on how such a new 
mathematical approach can lead to  some very  
fundamental  applications to engineering, physics and  
other sciences as well. 

 We will use the Navier-Stokes equations and problems 
related to linear elasticity as well as the Einstein Field 
theory to illustrate our new method. 

 



 

 

 

The differential representation of a 

mathematical equation 



Let: 

                                    𝑓𝑘 𝑧𝑖 , 𝑥𝑗  =  0                1 ≤ 𝑘 ≤ ∞   

 

where  𝑧𝑖  for  1 ≤ 𝑖 ≤ 𝑚   are the dependent variables,  𝑥𝑗  for   1 ≤ 𝑗 ≤ 𝑛    

are the independent variables  and  𝑓𝑘  is built up by recursive compositions 

of  algebraic and elementary functions. 

 

Basic functions from Calculus such as the algebraic and elementary  

functions have their own unique differential representation. 

Here are a few well known examples: 

       𝑦 = 𝑥𝑛                   𝑥𝑑𝑦  −   𝑛𝑦𝑑𝑥 =  0 

      𝑦 =  𝑒𝑥                  𝑑𝑦 −  𝑦𝑑𝑥  =  0 

       𝑦 = ln 𝑥               𝑥𝑑𝑦 −  𝑑𝑥 =  0  

      𝑦 = 𝑇𝑎𝑛 𝑥           𝑑𝑦  −  1 + 𝑦2 𝑑𝑥 =   0 

 

So we ask the question:   

“Does a mathematical equation in 𝒇𝒌  also have its own unique 

differential representation ? ” 

 



Example  1: 

𝐟 𝐱, 𝐲  =   𝟎  =   𝒂𝟏𝒚 + 𝒂𝟐𝒆
𝒂𝟑𝒙𝑺𝒊𝒏 𝒂𝟒𝒙  

For simplicity, we use the half angle Tangent formula for expressing the Sine and 
Cosine function as rational combinations of the Tangent function: 

 𝑆𝑖𝑛 𝑢 =   
2 𝑇𝑎𝑛(𝑢/2)

1 +  𝑇𝑎𝑛2(𝑢/2)
       and     𝐶𝑜𝑠 𝑢 =   

1 −  𝑇𝑎𝑛2(𝑢/2)

1 +  𝑇𝑎𝑛2(𝑢/2)
 

We can introduce new indeterminate functions and their differentials as follow: 

𝑊1 =   𝑥                                𝑑𝑊1  =   𝑑𝑥 

𝑊2 =   𝑦                               𝑑𝑊2  =   𝑑𝑦 

𝑊3 =  𝑒𝑎3𝑥                         𝑑𝑊3  =   𝑎3𝑊3 𝑑𝑊1  

𝑊4 =   𝑇𝑎𝑛
𝑎4 𝑥

2
             2𝑑𝑊4  =  𝑎4 (1 + 𝑊4

2)𝑑𝑊1  

so that after multiplying by the least common denominator, our differential transform 
consists of two basic parts: 

(1).  Primary Expansion: 

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4  =  0 =    𝑎1𝑊2 1 + 𝑊4
2 +   2𝑎2𝑊3𝑊4 

(2).  Secondary Expansion: 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

                    𝑎3𝑊3𝑑𝑥   +   0 ∙ 𝑑𝑦  =   𝑑𝑊3 

        𝑎4 1 + 𝑊4
2 𝑑𝑥   +   0 ∙ 𝑑𝑦  =   2𝑑𝑊4 

 

 

 



Example  2: 

𝐟 𝐱, 𝐲  =   𝟎  =   𝐥𝐧 𝟏 + 𝒙 + 𝟏
𝟑

 −   𝒚 + 𝟏𝟔  −   𝟏  

𝑊1 =   𝑥                                                                                             𝑑𝑊1  =   𝑑𝑥 

𝑊2 =   𝑦                                                                                             𝑑𝑊2  =   𝑑𝑦 

𝑊3
3 =   𝑥 +   1 =   𝑊1  +   1                                               3𝑊3

2𝑑𝑊3  =    𝑑𝑊1    

𝑊4 =  ln 1 + 𝑥 + 1
3

 =   ln  1 + W3                 ( 1 + 𝑊3)𝑑𝑊4  =   𝑑𝑊3  

𝑊5
6 =   𝑦 +   1 =   𝑊2  +   1                                               6𝑊5

5𝑑𝑊5  =    𝑑𝑊2         

 (1).  Primary Expansion: 

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4,𝑊5   =   0  =    𝑊4  −   𝑊5  −   1 

(2).  Secondary Expansion: 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

         𝑑𝑥  +   0 ∙ 𝑑𝑦  =   3𝑊3
2𝑑𝑊3 

         𝑑𝑥  +   0 ∙ 𝑑𝑦  =   3𝑊3
2(1 + 𝑊3)𝑑𝑊4 

    0 ∙ 𝑑𝑥 +         𝑑𝑦  =   6𝑊5
5𝑑𝑊5 

 



 

Example  3: 

𝒇 𝒛, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑,  =   𝟎 =   𝟓𝒙𝟐𝒙𝟑𝑺𝒊𝒏 𝒛𝒙𝟏𝒙𝟐   +    𝒙𝟏  +   𝒙𝟐 𝑪𝒐𝒔 𝒛 + 𝟑𝒙𝟐  + 𝟐𝒙𝟑  +   𝟑 

𝑊1  =   𝑧 

𝑊2  =   𝑥1 

𝑊3  =   𝑥2 

𝑊4  =   𝑥3 

𝑊5 =   𝑇𝑎𝑛(𝑧𝑥1𝑥2/2) 

𝑊6  =   𝑇𝑎𝑛
𝑧 + 3𝑥2 + 2𝑥3

2
 

  

 (1).  Primary Expansion: 

            𝐹 𝑊1,𝑊2,𝑊3,𝑊4,𝑊5,𝑊6  =  0 =    5𝑊3𝑊4

2𝑊5

1 + 𝑊5
2    +   𝑊2  +  𝑊3

1 − 𝑊6
2

1 + 𝑊6
2   +   3 

(2).  Secondary Expansion: 

                𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊1 

          0 ∙ 𝑑𝑧   +          𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊2 

          0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +          𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊3 

          0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +         𝑑𝑥3    =   𝑑𝑊4 

  

        1 + 𝑊5
2 𝑊2𝑊3𝑑𝑧  +   1 + 𝑊5

2 𝑊1𝑊3𝑑𝑥1  +   1 + 𝑊5
2 𝑊1𝑊2𝑑𝑥2   +   0 ∙ 𝑑𝑥3   =   2𝑑𝑊5 

        1 + 𝑊6
2 𝑑𝑧 +   0 ∙ 𝑑𝑥1  +   3 1 + 𝑊6

2 𝑑𝑥2  +   2 1 + 𝑊6
2 𝑑𝑥3   =    2𝑑𝑊6 



 

UNIVERSAL  DIFFERENTIAL  

REPRESENTATION  FOR 

 

                                    𝑓𝑘 𝑧𝑖 , 𝑥𝑗  =  0              (1 ≤ 𝑘 ≤ ∞)   

 
where  𝑧𝑖  for  1 ≤ 𝑖 ≤ 𝑚   are the dependent variables,  𝑥𝑗  for   

1 ≤ 𝑗 ≤ 𝑛    are the independent variables  and  𝑓𝑘  is built up by 

recursive compositions of  algebraic and elementary functions. 

 

 



(1).  Primary Expansion: 

          𝐹𝑖 𝑊1,𝑊2, … ,𝑊𝑝+𝑞  =   0  =    𝑎𝑖,𝑡  𝑊
𝑗

𝐸𝑖,𝑘𝑗

𝑝+𝑞

𝑗

𝑟

𝑡

           1 ≤ 𝑖 ≤ 𝑘  

 

(2).  Secondary Expansion: 

          𝑑𝑧𝑖  =   𝑑𝑊𝑖                                         (1 ≤ 𝑖 ≤ 𝑚) 
          𝑑𝑥𝑗  =   𝑑𝑊𝑚+𝑗                                  (1 ≤ 𝑗 ≤ 𝑛)  

 

           𝑁 𝑖−1 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑁𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                                          =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 𝑚 − 𝑛    

                                                                                                                                𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝 + 𝑞      

           𝑇(𝑖−1) 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑇𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                                           
=   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑞   𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞   

 
where it is very important to note that  when using this expansion for solving  DEs  and systems of 
DEs, “ q” is the total number of auxiliary  variables necessary  for defining all functions that can be 
present in  the DE or system of DEs  we are  attempting to solve for.   This will  be  described  in more 
detail later on. 



 

 We can use this universal differential expansion 
representation for solving any type of  DEs by 
assigning unknown coefficients to solve for in  
each of the multivariate polynomials present. 

 

 The last part of the Secondary Expansion  
(𝑇𝑢) are multivariate polynomials with known 
coefficients values that are reserved for 
representing all basis functions present in a DE  
or a system of  DEs. 



IN  COMPLETE  EXPANDED  FORM  

 



(1).  Primary Expansion: 

 

 𝐹1 =   0  =    𝑎1,1𝑊1
𝑚11𝑊2

𝑚12 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,𝑝+𝑞  +   𝑎1,2𝑊1

𝑚1,𝑝+𝑞+1𝑊2

𝑚1,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,2(𝑝+𝑞)
   

      + … +    𝑎1,𝑟𝑊1

𝑚1,(𝑝+𝑞) 𝑟−1 +1
𝑊2

𝑚1,(𝑝+𝑞) 𝑟−1 +2
∙∙∙ 𝑊𝑝+𝑞

𝑚1,𝑟(𝑝+𝑞)
  

 

 

𝐹2  =   0  =    𝑎2,1𝑊1
𝑚21𝑊2

𝑚22 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,𝑝+𝑞  +   𝑎2,2𝑊1

𝑚2,𝑝+𝑞+1𝑊2

𝑚2,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,2(𝑝+𝑞)
 

      + … +    𝑎2,𝑟𝑊1

𝑚2,(𝑝+𝑞) 𝑟−1 +1
𝑊2

𝑚2,(𝑝+𝑞) 𝑟−1 +2
∙∙∙ 𝑊𝑝+𝑞

𝑚2,𝑟(𝑝+𝑞)
  

 

                        .                                                     .                                                      . 
                        .                                                     .                                                      . 
                        .                                                     .                                                      . 

 

 𝐹𝑘  =   0  =    𝑎𝑘,1𝑊1
𝑚𝑘1𝑊2

𝑚𝑘2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,𝑝+𝑞
 +   𝑎𝑘,2𝑊1

𝑚𝑘,𝑝+𝑞+1
𝑊2

𝑚𝑘,𝑝+𝑞+2
∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,2(𝑝+𝑞)
   

      + … +    𝑎𝑘,𝑟𝑊1

𝑚𝑘,(𝑝+𝑞) 𝑟−1 +1
𝑊2

𝑚𝑘,(𝑝+𝑞) 𝑟−1 +2
∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,𝑟(𝑝+𝑞)
  



(2).  Secondary Expansion: 

       𝑑𝑧𝑖  =   𝑑𝑊𝑖                                         ( 1 ≤ 𝑖 ≤ 𝑚 ) 

         𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                    ( 1 ≤ 𝑖 ≤ 𝑛 )    

 

       𝑁1𝑑𝑧1 +  𝑁2𝑑𝑧2  +  … +  𝑁𝑚𝑑𝑧𝑚   +   [ 𝑁𝑚+1𝑑𝑥1  +   𝑁𝑚+2𝑑𝑥2   +  … +    

                                                                                    + … +  𝑁𝑚+𝑛𝑑𝑥𝑛 ]    =   𝑁𝑚+𝑛+1𝑑𝑊𝑚+𝑛+1   

 

        [ 𝑁𝑚+𝑛+2𝑑𝑧1  +   𝑁𝑚+𝑛+3𝑑𝑧2   +  … +   𝑁2𝑚+𝑛+1𝑑𝑧𝑚]   +    [ 𝑁2𝑚+𝑛+2𝑑𝑥1   +     

                                          +  𝑁2𝑚+𝑛+3𝑑𝑥2    +  … +  𝑁2 𝑚+𝑛+1 −1𝑑𝑥𝑛 ]    =   𝑁2 𝑚+𝑛+1 𝑑𝑊𝑚+𝑛+2  

 

                         .                                                     .                                                      . 
                         .                                                     .                                                      . 
                         .                                                     .                                                      . 

 

          𝑁 𝑝+𝑞−1 𝑚+𝑛+1 +1𝑑𝑧1  +  𝑁 𝑝+𝑞−1 𝑚+𝑛+1 +2𝑑𝑧2   +  … +  𝑁 𝑝+𝑞−1 𝑚+𝑛+1 +𝑚𝑑𝑧𝑚    +  

            +    [ 𝑁 𝑝+𝑞−1 𝑚+𝑛+1 +𝑚+1𝑑𝑥1  +   𝑁 𝑝+𝑞−1 𝑚+𝑛+1 +𝑚+2𝑑𝑥2    +  … +   𝑁 𝑝+𝑞 𝑚+𝑛+1 −1𝑑𝑥𝑛 ]     

                                                                                                                                                 =   𝑁(𝑝+𝑞)(𝑚+𝑛+1)𝑑𝑊𝑝+𝑞   

 

        

where it is very important to note that  when using this expansion for solving  DEs  and systems  
of DEs, “ q” is the total number of auxiliary  variables necessary  for defining all functions that can  
be present in  the DE or system of DEs  we are  attempting to solve for.    



 Going from original form to complete differential form is defined 
as taking the Multivariate Polynomial Transform of an 
equation. 

 Going back to original form is defined as taking the Inverse 
Multivariate Polynomial Transform of  an equation. 

 The Inverse Multivariate Polynomial Transform always involves 
a process of  exact  integration that is applied only on the  
Secondary Expansion.   

 This integration process becomes exact only if there are exact 
differentials present in the Secondary Expansion. 

 

 

 

 



 

TAKING  THE  INVERSE  MULTIVARIATE 

POLYNOMIAL  TRANSFORM   

 

“ SIMPLE  TWO  DIMENSIONAL  CASE ” 

 

 



(1).  Primary Expansion: 

          𝐹𝑖 𝑊1,𝑊2, … ,𝑊𝑝+𝑞  =   0  =    𝑎𝑖,𝑡  𝑊
𝑗

𝐸𝑖,𝑘𝑗

𝑝+𝑞

𝑗

𝑟

𝑡

           1 ≤ 𝑖 ≤ 𝑘  

 

(2).  Secondary Expansion: 

          𝑑𝑧𝑖  =   𝑑𝑊𝑖                                         (1 ≤ 𝑖 ≤ 𝑚) 
          𝑑𝑥𝑗  =   𝑑𝑊𝑚+𝑗                                  (1 ≤ 𝑗 ≤ 𝑛)  

 

           𝑁 𝑖−1 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑁𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                                          =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 𝑚 − 𝑛    

                                                                                                                                𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝 + 𝑞      

           𝑇(𝑖−1) 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑇𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                                           
=   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑞   𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞   

 
where it is very important to note that “q” is the total number of auxiliary  variables necessary  
just for defining all functions that can be present in  the DE or system of DEs  we are  
attempting to solved for.  



Consider the simplest two dimensional case  (𝑘 = 𝑚 = 𝑛 = 1)  and replace  “z”   

with  “y”  for the dependent variable:  

(1).  Primary Expansion: 

         𝐹 𝑊𝑗  =   0                             1 ≤ 𝑗 ≤ 𝑝    

 

(2). Secondary Differential Expansion: 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

         𝑁3𝑖−2𝑑𝑥 +  𝑁3𝑖−1𝑑𝑦 =   𝑁3𝑖𝑑𝑊𝑗                          1 ≤ 𝑖 ≤ 𝑝 − 2   3 ≤ 𝑗 ≤ 𝑝  

 

General form for the above differential:  

𝑀 𝑥, 𝑦 𝑑𝑥  +   𝑁(𝑥, 𝑦)𝑑𝑦  =  𝑃(𝑊𝑗)𝑑𝑊𝑗 

From elementary Calculus, the general condition for exactness is: 

𝜕𝑀

𝜕𝑦
 =   

𝜕𝑁

𝜕𝑥
    



Integral solution using Euler’s method: 

 𝑀𝑑𝑥  +    𝑁 −  
𝜕

𝜕𝑦
 𝑀𝑑𝑥 𝑑𝑦   =   𝐶   

or equivalently: 

 𝑁𝑑𝑦  +     𝑀 −  
𝜕

𝜕𝑥
 𝑁𝑑𝑦 𝑑𝑥   =   𝐶   

 

Integral solution only for the right hand side  of the general differential 

form: 

 𝑃(𝑊𝑗)𝑑𝑊𝑗 

where  𝑃 𝑊𝑗   will always be defined as a multivariate polynomial. 

 

 



 

(1).  Primary Expansion: 

         𝐹 𝑊1,𝑊2,𝑊3  𝑊4  =   0 =   𝑊4  +   2𝑊2   

 

(2).  Secondary Differential Expansion: 

                      𝑑𝑥    +   0 ∙ 𝑑𝑦  =   𝑑𝑊1                                     
                 0 ∙ 𝑑𝑥   +         𝑑𝑦  =   𝑑𝑊2                                    
           −2𝑊1𝑑𝑥   +   0 ∙ 𝑑𝑦   =   𝑊3𝑑𝑊3                               
              2𝑊1𝑑𝑥    −   𝑊3𝑑𝑦  =   𝑊3 𝑊2  +   𝑊3 𝑑𝑊4       

 

We first begin by defining  the expression  for  "𝑊1 𝑥  =   𝑥"   and   "𝑊2 𝑦  =   𝑦". 

Next, by integration we define the expression  for  “𝑊3(𝑥)”  as: 

𝑊3 𝑥  =   ± 𝐶3 − 2𝑥2 

 

The differential for  “𝑊4(𝑥)”  may now be rewritten as: 

2𝑥 𝑑𝑥 

𝑊3 𝑦 + 𝑊3
   −    

𝑑𝑦

𝑦 + 𝑊3
  =   𝑑𝑊4 

so that: 

𝑀 𝑥, 𝑦  =    
2𝑥

𝑊3 𝑦 + 𝑊3
            𝑎𝑛𝑑            𝑁 𝑥, 𝑦  =   

−1

(𝑦 +  𝑊3)
 

        



𝑀 𝑥, 𝑦  =    
2𝑥

𝑊3 𝑦 + 𝑊3
 

 

Since  𝑊3 = 𝑊3 𝑥 : 

 
𝜕𝑀

𝜕𝑦
   =    

−2𝑥

𝑊3(𝑦 +   𝑊3)
2
   

 

𝑁 𝑥, 𝑦  =   
−1

(𝑦 +  𝑊3)
        

 
𝜕𝑁

𝜕𝑥
 =   

1

(𝑦 +  𝑊3 )
2
  
𝑑𝑊3

𝑑𝑥
 

From the equation that define the differential of  𝑊3: 

 
𝑑𝑊3

𝑑𝑥
  =   

−2𝑊1

𝑊3
  =   

−2𝑥

𝑊3
 

Therefore: 

  
𝜕𝑁

𝜕𝑥
   =   

𝜕𝑀

𝜕𝑦
 =   

−2𝑥

𝑊3(𝑦 +  𝑊3)
2
   



The differential  for  “𝑊4(𝑥)”  is exact with solution that can be obtained using the 

first or second integral form. 

We use the first integral form: 

 𝑁𝑑𝑦  +     𝑀 −  
𝜕

𝜕𝑥
 𝑁𝑑𝑦 𝑑𝑥   =   𝐶   

where: 

𝑀 𝑥, 𝑦  =    
2𝑥

𝑊3 𝑦 + 𝑊3
 

𝑁 𝑥, 𝑦  =   
−1

(𝑦 +  𝑊3)
    

 

Starting with the first integral: 

 𝑁𝑑𝑦  =     
−1

(𝑦 +  𝑊3)
𝑑𝑦 =   − ln 𝑦 + 𝑊3   

where “𝑊3 = 𝑊3(𝑥)”  is treated as a constant because integration is with respect to 

the  “y”  variable only. 

 

 



 𝑀 −  
𝜕

𝜕𝑥
 𝑁𝑑𝑦 𝑑𝑥  =     𝑀 − 

𝜕

𝜕𝑥
− ln 𝑦 + 𝑊3  𝑑𝑥 

                                                   =     𝑀 +  
1

𝑦 + 𝑊3
  
𝑑𝑊3

𝑑𝑥
 𝑑𝑥  

Again from the differential  “𝑊3”  :    

𝑑𝑊3

𝑑𝑥
 =   

−2𝑥

𝑊3
 

So that: 

 𝑀 −  
𝜕

𝜕𝑥
 𝑁𝑑𝑦 𝑑𝑥  =     𝑀 − 

2𝑥

𝑊3 𝑦 + 𝑊3
 𝑑𝑥 

But:  

𝑀 𝑥, 𝑦  =    
2𝑥

𝑊3 𝑦 + 𝑊3
 

Therefore: 

 𝑀 −  
𝜕

𝜕𝑥
 𝑁𝑑𝑦 𝑑𝑥 =    𝑴 −  𝑴 𝑑𝑥 =   0 

So that the exact solution becomes: 

 𝑁𝑑𝑦  +     𝑀 −  
𝜕

𝜕𝑥
 𝑁𝑑𝑦 𝑑𝑥   =  − ln 𝑦 + 𝑊3  + 𝐾 +   0  =  − ln 𝑦 + 𝑊3  +  𝐾    

 



The right hand side of the differential expansion for  “𝑊4”  is simply defined 

as   “d𝑊4” . 

After integrating both sides of this differential expansion the complete 

expression for  “𝑊4”  may now be written as: 

 − ln 𝑦 +   𝑊3  =   𝑊4   +   𝐶 

or: 

𝑊4  =  − ln( 𝑦  ±   𝐶3  −   2𝑥2 )   +  𝐶4 

 

The complete inverse Multivariate Polynomial Transform is then obtained by 

substituting each expression for the auxiliary variables  into the Primary 

Expansion: 

𝑓 𝑥, 𝑦 =   0 =  𝑊4  +   2𝑊2  =  − ln( 𝑦  ±   𝐶3  −   2𝑥2 )  +   2𝑦 +   𝐶24 

 

 

 



  

 

 

TAKING  THE  INVERSE  

MULTIVARIATE POLYNOMIAL  

TRANSFORM   

 

“ THE  MOST GENERAL CASE ”  

 



(1).  Primary Expansion: 

          𝐹𝑖 𝑊1,𝑊2, … ,𝑊𝑝+𝑞  =   0  =    𝑎𝑖,𝑡  𝑊
𝑗

𝐸𝑖,𝑘𝑗

𝑝+𝑞

𝑗

𝑟

𝑡

           1 ≤ 𝑖 ≤ 𝑘  

 

(2).  Secondary Expansion: 

          𝑑𝑧𝑖  =   𝑑𝑊𝑖                                         (1 ≤ 𝑖 ≤ 𝑚) 
          𝑑𝑥𝑗  =   𝑑𝑊𝑚+𝑗                                  (1 ≤ 𝑗 ≤ 𝑛)  

 

           𝑁 𝑖−1 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑁𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                                          =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 𝑚 − 𝑛    

                                                                                                                                𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝 + 𝑞      

           𝑇(𝑖−1) 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑇𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                                           
=   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑞   𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞   

 
where it is very important to note that  when using this expansion for solving  DEs  and systems of 
DEs, “ q” is the total number of auxiliary  variables necessary  for defining all functions that can be 
present in  the DE or system of DEs  we are  attempting to solve for.    



General representation of a single equation present in our Secondary Expansion: 

   (𝑀1𝑑𝑧1  +   𝑀2𝑑𝑧2  +  … +  𝑀𝑚𝑑𝑧𝑚 )   +   ( 𝑀𝑚+1𝑑𝑥1  +   𝑀𝑚+2𝑑𝑥2  +  … +   

                                                             𝑀𝑚+𝑛𝑑𝑥𝑛 )   =   𝑀𝑚+𝑛+1𝑑𝑊𝑗          (𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝)  

Left hand side: 

𝑀𝑘  =   𝑀𝑘 𝑧1, 𝑧2, … , 𝑧𝑚 ,  𝑥1 , 𝑥2, … , 𝑥𝑛                             [ 𝑘 ≠  𝑖 𝑚 + 𝑛 + 1  ]                 
                                                                                                     (1 ≤ 𝑖 ≤  𝑝 + 𝑞 − 𝑚 − 𝑛 ) 

Right hand side: 

𝑀𝑘  =   𝑀𝑘 𝑊𝑗                      𝑘 =  𝑖 𝑚 + 𝑛 + 1      (1 ≤ 𝑖 ≤  𝑝 + 𝑞 − 𝑚 − 𝑛 ) 

                                                  (𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝)  

                                                   

We can defined the left hand side as: 

𝑑𝐻1  =   ( 𝑀1𝑑𝑧1  +   𝑀2𝑑𝑧2  +  … +  𝑀𝑚𝑑𝑧𝑚 )   +   ( 𝑀𝑚+1𝑑𝑥1  +   𝑀𝑚+2𝑑𝑥2  +  … +   

                                                                                                       + … +  𝑀𝑚+𝑛𝑑𝑥𝑛  ) 

If   “𝑑𝐻1”  is an exact differential then from the chain rule it is also true that: 

𝑑𝐻1  =    
𝜕𝐻1

𝜕𝑧𝑘
𝑑𝑧𝑘  +      

𝜕𝐻1

𝜕𝑥𝑘
𝑑𝑥𝑘   

𝑛

𝑘=1

 

𝑚

𝑘=1

 



By equating both expression defining  “𝑑𝐻1”  we arrive at the 

following conclusion that: 

 

𝑀𝑖  =   
𝜕𝐻1

𝜕𝑧𝑖
                                                     ( 1 ≤ 𝑖 ≤ 𝑚 )                    

 

𝑀𝑚+𝑗  =   
𝜕𝐻1

𝜕𝑥𝑗
                                               ( 1 ≤ 𝑗 ≤ 𝑛 )                    

 

 



From multivariate calculus, the condition that  define an exact differential is of 

course when: 

 
𝜕𝑀1

𝜕𝑧2
 =   

𝜕𝑀2

𝜕𝑧1
 ,    

𝜕𝑀1

𝜕𝑧3
 =   

𝜕𝑀3

𝜕𝑧1
 ,  

𝜕𝑀1

𝜕𝑧4
 =   

𝜕𝑀4

𝜕𝑧1
 ,  , … , ,

𝜕𝑀1

𝜕𝑧𝑚
  =   

𝜕𝑀𝑚

𝜕𝑧1
 

 
𝜕𝑀1

𝜕𝑥1
 =   

𝜕𝑀𝑚+1

𝜕𝑧1
 ,    

𝜕𝑀1

𝜕𝑥2
 =   

𝜕𝑀𝑚+2

𝜕𝑧1
 ,  , … ,  ,

𝜕𝑀1

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧1
 

 
𝜕𝑀2

𝜕𝑧3
 =   

𝜕𝑀3

𝜕𝑧2
 ,    

𝜕𝑀2

𝜕𝑧4
 =   

𝜕𝑀4

𝜕𝑧2
 ,  

𝜕𝑀2

𝜕𝑧5
 =   

𝜕𝑀5

𝜕𝑧2
 ,  , … ,  ,

𝜕𝑀2

𝜕𝑧𝑚
  =   

𝜕𝑀𝑚

𝜕𝑧2
 

 
𝜕𝑀2

𝜕𝑥1
 =   

𝜕𝑀𝑚+1

𝜕𝑧2
 ,    

𝜕𝑀2

𝜕𝑥2
 =   

𝜕𝑀𝑚+2

𝜕𝑧2
 ,  , … ,  ,

𝜕𝑀2

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧2
 

 

                                               ∙                         ∙                         ∙                          ∙                                                
                                               ∙                         ∙                         ∙                          ∙                                                
                                               ∙                         ∙                         ∙                          ∙                                                

 
𝜕𝑀𝑚

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧𝑚
 

 

 



For an exact differential, the solution is given by: 

 𝐻1  =    𝑀1 𝑧1, 𝑧2, … , 𝑧𝑚 ,  𝑥1 , 𝑥2, … , 𝑥𝑛   𝑧1 

where in this case,  𝑧𝑖  and  𝑥𝑗  for   1 < 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and   𝑖 ≠ 1  are all treated 

as constants when evaluating this indefinite integral. 

 

We can also use as another alternative: 

𝐻1  =    𝑀𝑘 𝑧1, 𝑧2, … , 𝑧𝑚 ,  𝑥1 , 𝑥2, … , 𝑥𝑛  𝑧𝑘 

where in this case, 𝑧𝑖  and  𝑥𝑗  for   2 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and  𝑖 ≠ 𝑘   are all treated 

as constants when evaluating this indefinite integral. 

 

Other alternatives for the same expression of  "𝐻1"  can also be obtained from: 

𝐻1  =    𝑀𝑚+𝑘 𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1 , 𝑥2, … , 𝑥𝑛  𝑥𝑘 

where in this case, 𝑧𝑖  and  𝑥𝑗  for   1 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and  𝑗 ≠ 𝑘   are all treated 

as constants when evaluating this indefinite integral. 

 



As for the  right hand side  of the equation defining the general format of a Secondary 

Expansion  we can define: 

𝑑𝐻2  =   𝑀𝑚+𝑛+1𝑑𝑊𝑗 

and since  "𝐻2 = 𝐻2 𝑊𝑗 “  then:  

𝑑𝐻2  =   
𝜕𝐻2

𝜕𝑊𝑗
𝑑𝑊𝑗 

By equating each of the expression for  “𝑑𝐻2”  we arrive at the conclusion that: 

𝑀𝑚+𝑛+1  =   
𝜕𝐻2

𝜕𝑊𝑗
 

The exact expression of  "𝐻2"  can be determined using the following integral : 

𝐻2  =   𝐻2 𝑊𝑗   =    𝑀𝑚+𝑛+1 𝑊𝑗  d𝑊𝑗 

because  "𝑊𝑗  =   𝑊𝑗(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1 , 𝑥2, … , 𝑥𝑛)"  is a multivariate composite function. 

 

The complete exact solution of the first order multivariate ODE  that would be present 

inside a  Secondary Differential Expansion is: 

𝐻1 𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1 , 𝑥2, … , 𝑥𝑛   −   𝐻2 𝑊𝑗   =    0 

from which  "𝑊𝑗"  can be obtained explicitly whenever possible. 

 



 
 Each auxiliary variable can afterwards be substituted along with each 

of their initial condition  into the  Primary Expansion for arriving at 
the complete expression of   “𝑓𝑘 = 0”.  

 
 The initial condition of each auxiliary variable can be used for 

satisfying the initial condition  of  “𝑓𝑘 = 0”  upon inverting the original  
Multivariate Polynomial Transform. 
 

 Complete detailed examples available in section 1 of   “A better way 
for  managing  all of  the  physical  sciences under a single 
unified theory of analytical  integration”  published in the 
Proceedings of the 6th International Conference on Computational 
Methods held in New Zealand,  July 2015  ( Paper ID #845-3475-1-PB, 
ScienTech Publisher).  

 

 

 

 



 

One of the example that was presented at that conference : 

Secondary Differential Expansion: 

 𝑑𝑥  =  𝑑𝑊1  

𝑑𝑦1  =  𝑑𝑊2 

𝑑𝑦2  =  𝑑𝑊3 

𝑑𝑦3  =  𝑑𝑊4 

𝑊1
2𝑑𝑥  +   𝑊2

2𝑑𝑦1  +   𝑊3
2𝑑𝑦2   +   𝑊4

2𝑑𝑦3  =   𝑊5
2𝑑𝑊5 

𝑊1𝑑𝑥  +  𝑊2𝑑𝑦1    +   𝑊3𝑑𝑦2    +   0 ∙ 𝑑𝑦3    =   𝑊6𝑑𝑊6 

𝑊1𝑊6
−1𝑑𝑥 +  𝑊2𝑊6

−1 + 2𝑊3 𝑑𝑦1  +   𝑊3𝑊6
−1 + 2𝑊2 𝑑𝑦2   +   0 ∙ 𝑑𝑦3  =  

𝑑𝑊7

1 +  𝑊7
2  

where we were able to determine by using our standard test for exactness the complete  inverse of 

the differential representation  for  “𝑊5” , 𝑊6”  and  “𝑊7”  as: 

 

𝑊5  =   𝑥3  +   𝑦1
3  +   𝑦2

3  +   𝑦3
3  +   𝑐5

3
 

𝑊6  =   𝑥2  +   𝑦1
2  +   𝑦2

2  +   𝑐6 

and: 

𝑊7  =   tan 𝑥2 + 𝑦1
2  + 𝑦2

2  +  𝑐6    +   2𝑦1𝑦2  +   𝑐7  



 
 The general universal differential representation of   “𝒇𝒌 = 0”   can 

always be converted as an initially assumed differential expansion 
with unknown coefficients to solve for finding exact analytical solutions 
to  DEs  and systems of  DEs. 
 

 This would define a “universal method of analytical integration” . 
 

 We would refer to this initially assumed universal differential 
expansion as an  “Initially Assumed Multivariate Polynomial 
Transform”  or  in short as an  IAMPT. 



 

Numerically controlled system of 
analytics (NCSA)  table for Physics 
and Engineering Science as a direct 
application of the unified theory  of 

analytical integration. 
 



 

General equation for representing  all  PDEs: 
 

  

𝐺𝑘  =   𝐺𝑘  𝑧1, 𝑧2, … , 𝑧𝑚, 𝑥1, 𝑥2, … , 𝑥𝑛,
𝜕𝑧1
𝜕𝑥1

, … ,
𝜕𝑧1
𝜕𝑥𝑛

,
𝜕𝑧2

𝜕𝑥1
, … ,

𝜕𝑧2

𝜕𝑥𝑛
, … ,

𝜕𝑧𝑚

𝜕𝑥1
, … ,

𝜕𝑧𝑚

𝜕𝑥𝑛
  , …  ,     

 

                           , … ,
𝜕2𝑧𝑚

𝜕𝑥1𝜕𝑥1
  , … ,

𝜕2𝑧𝑚

𝜕𝑥1𝜕𝑥𝑛
  , … ,

𝜕2𝑧𝑚

𝜕𝑥2𝜕𝑥1
, … ,

𝜕2𝑧𝑚

𝜕𝑥2𝜕𝑥𝑛
 , … , , … ,

𝜕2𝑧𝑚

𝜕𝑥𝑛
2 , … … ,

𝜕𝑟𝑧𝑚

𝜕𝑥𝑛
𝑟    =   0 

    



 NUMERICALLY CONTROLLED SYSTEM OF ANALYTICS TABLE 

 

 

 

𝐺𝑘 =   0 

Initial                                                  Coefficient                     Exact analytical solution 

Conditions                                          values present              obtained using the Multivariate        

                                                             in the  DE or                 Polynomial Transform method 

                                                             system of  DEs  

 
𝑧01, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎0, 𝑏0, 𝑐0, …                                                 𝑈1  =   0 

 

𝑧11, 𝑧12, … , 𝑧1𝑚, 𝑥11, … , 𝑥1𝑛  …                   𝑎1, 𝑏0, 𝑐0, …                                                 𝑈2  =   0         
 

𝑧21, 𝑧22 , … , 𝑧2𝑚, 𝑥21, … , 𝑥2𝑛 …                   𝑎0, 𝑏1, 𝑐0, …                                                 𝑈3  =   0 

 

                       .                                            .                                                        .           

                       .                                            .                                                        .           

                       .                                            .                                                        .           

 



When solving for  DEs  and systems of  DEs using an initially 
assumed Multivariate Polynomial Transform, some of the 
reasons that would account for the existence of  an infinite 
number of numerical solution sets of the corresponding 
nonlinear simultaneous equations are: 

 DEs  can satisfy an infinite number of  initial conditions. 

 Auxiliary variables can be permutated with respect to one another inside an 

initially assumed Multivariate Polynomial Transform. 

 Possible existence of  trivial  algebraic identities  such as  "𝑆𝑖𝑛2 𝑥  +
 𝐶𝑜𝑠2 𝑥 = 1". 

 Presence of  singular solutions. 

 Presence of  trivial ratios  consisting of  identical multivariate polynomials  

that can be entirely eliminated  from  the  Secondary Expansion. 

 

 



 

 

COMPLETE  EXAMPLE  FOR  A 

SECOND  ORDER  PDE 

 

𝒙𝟐

𝝏𝟐𝒛

𝝏𝒙𝟏𝝏𝒙𝟐
  −   

𝝏𝒛

𝝏𝒙𝟏
    −   𝒙𝟏𝒙𝟐

𝟐𝑺𝒊𝒏 𝒙𝟏𝒙𝟐   =   𝟎 



 

𝒙𝟐

𝝏𝟐𝒛

𝝏𝒙𝟏𝝏𝒙𝟐
  −   

𝝏𝒛

𝝏𝒙𝟏
    −   𝒙𝟏𝒙𝟐

𝟐𝑺𝒊𝒏 𝒙𝟏𝒙𝟐   =   𝟎 

Only one external input is defined so we use the following trigonometric identity to determine  its 
complete Multivariate Polynomial Transform:  

𝑓 𝑥1, 𝑥2  =   𝑆𝑖𝑛 𝑥1𝑥2  =   
2𝑇𝑎𝑛(𝑥1𝑥2/2)

1  +    𝑇𝑎𝑛2(𝑥1𝑥2/2)
 

 
𝐻 𝑥1, 𝑥2  =    𝑊𝑝+1   =    𝑇𝑎𝑛 𝑥1𝑥2/2  =   𝑇𝑎𝑛(𝑊2𝑊3/2) 

where "𝑝" is the total number of arbitrarily defined auxiliary variables from within an  IAMPT. 

 

(1).  Primary Expansion: 

        𝐻(𝑊𝑝+1)  =   𝑊𝑝+1 

(2).  Secondary Expansion: 

        0 ∙ 𝑑𝑧  +    1 + 𝑊𝑝+1
2 𝑊3𝑑𝑥1   +    1 + 𝑊𝑝+1

2 𝑊2𝑑𝑥2  =    2𝑑𝑊𝑝+1  

where we have selected: 

𝑊1  =   𝑧 
𝑊2  =   𝑥1 
𝑊3  =   𝑥2 

 

 



 

For our IAMPT we select the following parameters:  “𝑝 = 8”, “𝑢𝑃 = 8”  and  “𝑢𝑆 = 4”   where  “𝑞 = 1". 

(1).  Primary Expansion: 

         𝐹 =   0  =    𝑎1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊9
𝑚9  +     𝑎2𝑊1

𝑚10𝑊2
𝑚11 ∙∙∙ 𝑊9

𝑚18   +  … +  𝑎8𝑊1
𝑚64𝑊2

𝑚65 ∙∙∙ 𝑊9
𝑚72    

(2).  Secondary Expansion: 

         𝑑𝑧   =   𝑑𝑊1 

        𝑑𝑥1  =   𝑑𝑊2 

        𝑑𝑥2  =   𝑑𝑊3 

        𝑁1𝑑𝑧    +    𝑁2𝑑𝑥1     +    𝑁3𝑑𝑥2    =   𝑁4𝑑𝑊4 

        𝑁5𝑑𝑧    +    𝑁6𝑑𝑥1     +    𝑁7𝑑𝑥2    =   𝑁8𝑑𝑊5 

        𝑁9𝑑𝑧    +    𝑁10𝑑𝑥1   +    𝑁11𝑑𝑥2   =   𝑁12𝑑𝑊6 

       𝑁13𝑑𝑧   +    𝑁14𝑑𝑥1   +    𝑁15𝑑𝑥2   =   𝑁16𝑑𝑊7 

       𝑁17𝑑𝑧   +    𝑁18𝑑𝑥1   +    𝑁19𝑑𝑥2   =   𝑁20𝑑𝑊8 

       𝑁21𝑑𝑧   +    𝑁22𝑑𝑥1   +    𝑁23𝑑𝑥2   =   𝑁24𝑑𝑊9 

where : 

𝑁1   =    𝑏1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊9
𝑚9     +  … +    𝑏4𝑊1

𝑚28𝑊2
𝑚29 ∙∙∙ 𝑊9

𝑚36 

𝑁2   =    𝑏5𝑊1
𝑚37𝑊2

𝑚38 ∙∙∙ 𝑊9
𝑚45   +  … +    𝑏8𝑊1

𝑚64𝑊2
𝑚65 ∙∙∙ 𝑊9

𝑚72 

                   .                                                .                                                      . 
                   .                                                .                                                      . 
                   .                                                .                                                      . 

𝑁20   =    𝑏77𝑊1
𝑚685𝑊2

𝑚686 ∙∙∙ 𝑊9
𝑚693   +  … +    𝑏80𝑊1

𝑚712𝑊2
𝑚713 ∙∙∙ 𝑊9

𝑚720   

 

 



To account for the presence of the trigonometric function in the  PDE:  

N21  =   0  

N22  =   (1 +  Wp+1
2 )𝑊3  =   (1 +  W9

2)𝑊3  

N23  =   (1 +  Wp+1
2 )𝑊2  =   (1 +  W9

2)𝑊2   

N24  =   2 

 

We can compute the total number of unknowns to solve for  in our  IAMPT  using the following general  

formula with  "𝑛 = 2",  "𝑝 = 8",  "𝑢𝑃 = 8",  "𝑢𝑠 = 4"  and   "𝑞 = 1"  : 

                         𝑁𝑇𝑜𝑡𝑎𝑙  =   𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦  +   𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦   

                                       =   𝑢𝑃 𝑝 + 𝑞 + 1    +    𝑢𝑆 𝑝 + 𝑞 + 1 𝑛 + 2 𝑝 − 𝑛 − 1       

                                   =   8 8 + 1 + 1  +   4 8 + 1 + 1 2 + 2 8 − 2 − 1  

                               =   8 10   +   4 10 4 5   =  80  +    800  =   880   
 

The Multivariate Polynomial Transform of the entire PDE:  

𝑊3

𝜕2𝑍

𝜕𝑊2𝜕𝑊3
  −    

𝜕𝑍

𝜕𝑊2
  −   2𝑊2𝑊3

2
𝑊𝑝+1

1 + 𝑊𝑝+1
2  =   0 

where we have selected: 

𝑊1  =   𝑧 

𝑊2  =   𝑥1 

𝑊3  =   𝑥2 

    

 



 

Our nonlinear simultaneous equations to solve for is obtained by successively 
differentiating the  PDE  in its complete differential representation:  

 

𝐺𝑖  =   
𝜕𝑚1

𝜕𝑊2
𝑚1

  
𝜕𝑚2

𝜕𝑊3
𝑚2

 
𝜕𝑚3

𝜕𝑊4
𝑚3

  …   
𝜕𝑚𝑘

𝜕𝑊𝑝+1
𝑚𝑘

 … 𝑊3

𝜕2𝑍

𝜕𝑊2𝜕𝑊3
  −    

𝜕𝑍

𝜕𝑊2
  −   2𝑊2𝑊3

2
𝑊𝑝+1

1 + 𝑊𝑝+1
2  

 
and then replacing each partial derivative with the one calculated from our  IAMPT  
based on the use of  the Multinomial Expansion Theorem.  

 

Method of solving for the nonlinear simultaneous equations is by minimizing  the 
following equation:  

𝐹 =    𝐺𝑖
2

𝑖

 

 Only when “F = 0”  then an  EXACT  solution of the 
PDE is obtained by inverting the corresponding 
Multivariate Polynomial Transform.  Otherwise this 
would result into defining some approximation of the 
exact solution. 

 



 

 

 

 

THE  NCSA  TABLE  FOR  OUR  EXAMPLE  OF  A  SECOND  ORDER  PDE  WOULD THEREFORE  

APPEAR AS FOLLOW: 

 



 

 

Simplest model for describing the  

standard method of analysis for 

solving DEs  and systems of  DEs 

in terms of  general  analytical 

solutions based on the concept of 

an NCSA  table. 

 



𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 



NUMERICALLY CONTROLLED SYSTEM OF ANALYTICS TABLE  



From this table we can assume by conjecture the following candidates as 
being the general analytical solution of the general ODE : 
 

𝑓1 𝑥, 𝑦  =   0 =   𝐴𝑥𝐵  +   𝐶𝑥𝐷 𝑦 +   𝐸 

 

and: 

 
𝑓2 𝑥, 𝑦  =   0 =   𝑥𝐴𝑦(𝐵 +   𝐶 ln 𝑥 )  +   𝐷 
 
 
Coefficients  "A", "B", "C", "D" and "E"  are to be expressed in terms of 
the coefficients  "a", "b", "n" and the initial conditions of the  ODE. 

 

General formula used for determining the first derivative of  "y": 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
   



 

Equating like terms to zero after substituting the general derivative of  

“y”  in the  ODE  for the  first  assumed general solution: 

𝐴 𝑎 −   𝐵    =   0 

𝐶 𝑎 −   𝑛 −   𝑏𝐸   =   0 

𝐴𝑥0
𝑎  +   𝐶𝑥0

𝑛 𝑦0  +   𝐸  =  0 

 

The exact solution of this general system of equations may be expressed 

as: 

𝐴  ≠   0 

𝐵 =   𝑎 

𝐶  =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

 

𝐸  =    
𝑎 −   𝑛 𝐶

𝑏
                            (𝑎 ≠ 𝑛) 

 

 



 

Equating like terms to zero in the  ODE  for the  second  assumed general 

solution: 

𝐵 𝑎 −   𝑛 −   𝐶 −   𝑏𝐷   =   0 

𝐶 𝑎 −   𝑛   =  0 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln 𝑥0 )  +   𝐷  =   0 

 

With exact solution: 

𝐷  ≠   0 

𝐶   =  −𝑏𝐷 

𝐵  =   
−𝐷

𝑥0
𝑛𝑦0

  −   𝐶 ln 𝑥0    =   
 −𝐷  −   𝐶𝑥0

𝑛𝑦0 ln 𝑥0

𝑥0
𝑛𝑦0

 

 



A typical report that a numerical analyst might be 
presenting to management would appear as follow: 

  

“ … thus, our empirical findings has indicated to 
us that for this first order  ODE there are two 
recognizable general exact solutions.  The first one 
is for the case when  "𝒏 = 𝒂"  and the other is when  
"𝒏 ≠ 𝒂".  The general exact solutions obtained can 
be expressed as a combination of algebraic and 
elementary basis functions defined only in explicit 
form.  Furthermore, we have established that there 
is according to the empirical results presented in 
our NCSA table an explicit relationship involving 
the initial condition (𝒙𝟎, 𝒚𝟎)  of the ODE, the 
coefficients (𝒂, 𝒃, 𝒏)  of the  ODE  and the 
coefficients in our two initially assumed general 
exact solutions. ” 

  

 



 

 

“ It is expected that many such 

reporting systems applied on a very 

large variety of  DEs and systems of 

DEs would inevitably lead to the 

discovery of many new fundamental 

theorems similar to the superposition 

theorem ! ” 

 



Problem solving section 

 

 
 



 

Problem  #1:    

Prove the  Quadratic Equation  by method of differentials. 

 

𝐴𝑥2  +   𝐵𝑥 +   𝐶 =   0 
 

𝑥 =    
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
    

Solution: 

Step 1: 

Define “x” as a dependent variable  which we will call  “z” and 

all the 3 coefficients A, B and C as the independent variables  

𝑥1, 𝑥2  and 𝑥3   respectively. 

 

 



Step 2: 

We thus seek an explicitly defined solution in the form of : 

z  =  z( 𝑥1, 𝑥2, 𝑥3) 

by equating the various partial derivatives of: 

 

𝐴𝑧2  +   𝐵𝑧 +   𝐶 =   0 

with respect to each independent variables with  the following 

IAMPT that has been converted from  implicit  to  explicit  form 

for deriving and solving the corresponding system of  Nonlinear 

Simultaneous Equations. 

 

 



 

(1).  Primary Expansion: 

          𝑧 𝑊𝑗   =    
𝑃(𝑊𝑗)

𝑄(𝑊𝑗)
                                       1 ≤ 𝑗 ≤ 𝑝  

where "P"  and  "Q"  are each multivariate polynomials each consisting of a maximum of "p"  
number of auxiliary variables which would be determined by trial and error and where  the 
exponents of each auxiliary variable are always  assumed as floating point numbers. 

 

(2).  Secondary Differential Expansion: 

          𝑑𝑧  =   𝑑𝑊1                                 

          𝑑𝑥𝑖  =   𝑑𝑊𝑖+1                       (1 ≤ 𝑖 ≤ 𝑛)       

 

           𝑁(𝑖−1) 𝑛+2 +𝑡𝑑𝑧 

1

𝑡=1

  +     𝑁𝑖 𝑛+2 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

  =                         

                                                                       =   𝑁𝑖(𝑛+2)𝑑𝑊𝑗          1 ≤ 𝑖 ≤ 𝑝 − 1 − 𝑛   𝑛 + 2 ≤ 𝑗 ≤ 𝑝  

 
 

          𝑁𝑐 𝑊𝑗    =   𝑏𝑐,𝑡  𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

                          1 ≤ 𝑐 ≤ 𝑖(𝑛 + 2)   1 ≤ 𝑖 ≤ 𝑝 − 1 − 𝑛   

𝑐𝑟

𝑡= 𝑐−1 𝑟+1

 

 

 



 

THE NUMERICALLY CONTROLLED SYSTEM OF ANALYTICS TABLE WILL 

CONFIRM THE EXISTENCE OF AN INFINITE NUMBER OF NUMERICAL 

SOLUTIONS SETS THEREBY CONFIRMING THE EXACTNESS OF THE 

FORMULA FOR THE QUADRATIC EQUATION. 

 

 

 

 

𝐺𝑘 =   0 

Initial                                                  Coefficient                     Exact analytical solution 

Conditions                                          values present              obtained using the Multivariate        

                                                             in the  DE or                 Polynomial Transform method 

                                                             system of  DEs  

 
𝑧01, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎0, 𝑏0, 𝑐0, …                                                 𝑈1  =   0 

 

𝑧11, 𝑧12, … , 𝑧1𝑚, 𝑥11, … , 𝑥1𝑛  …                   𝑎1, 𝑏0, 𝑐0, …                                                 𝑈2  =   0         
 

𝑧21, 𝑧22 , … , 𝑧2𝑚, 𝑥21, … , 𝑥2𝑛 …                   𝑎0, 𝑏1, 𝑐0, …                                                 𝑈3  =   0 

 

                       .                                            .                                                        .           

                       .                                            .                                                        .           

                       .                                            .                                                        .           

 



Problem  #2:    

Prove the  Superposition Theorem  by computation which 
states that for a linear homogeneous ODE, if  "𝑦1 𝑥 " and  
“𝑦2(𝑥)”  are solutions then so is  "𝑦1 x + 𝑦2 𝑥 ". 
 

Solution: 

Build the same type of numerically controlled system of 
analytics table for linear second order ODEs as we did earlier 
for the following first order ODE : 
 

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

Such a fundamental theorem could then be easily deduced by 
just populating this table with a large number of instance 
analytical solutions satisfying a number of  arbitrarily 
defined initial conditions and values for all the coefficients 
that are present in the ODE. 

 

 



 

Problem  #3:    

Define a new  measure  of composition  for the classification of 

all  Composite Functions using the concept of a  Multivariate 

Polynomial Transform. 

 

Solution: 

A  single  composite function to the "𝑛𝑡ℎ" degree requires a 

minimum of  "n+1" number of auxiliary variables to define its 

complete Multivariate Polynomial Transform. 

 

The exponential function  “ y = 𝑒𝑥 ”  would be considered as a 

zeroth order composite function  since it would require a 

minimum of 1 auxiliary variable for defining its complete  

Multivariate Polynomial Transform. 

 

 

                                        



 

                              Measure of degree of composition using the  

                                    Multivariate Polynomial  Transform 

𝐃𝐞𝐠𝐫𝐞𝐞                       Composite              Minimum number of                     Secondary  

                                  Function                 auxiliary variables                   Expansion 

       𝟎                                                                                                                       𝒕                                                                                                𝑾𝟏     =     𝒕                                          𝒅𝒕 =    𝒅𝑾𝟏        

 

   𝟎                                                𝒆𝒂𝒕                                      𝑾𝟏   =     𝒆𝒂𝒕                                   𝒅𝒕 =   
 𝒅𝑾𝟏 

𝒂𝑾𝟏
 

 

   𝟎                                          𝑻𝒂𝒏 𝒂𝒕                                   𝑾𝟏   =    𝑻𝒂𝒏 𝒂𝒕                         𝒅𝒕 =   
𝒅𝑾𝟏

𝒂 𝟏 + 𝑾𝟏
𝟐

 

 

   𝟏                                            𝒍𝒏 𝒂𝒕                                     𝑾𝟏   =   𝒕                                        𝒅𝒕 =    𝒅𝑾𝟏  =   𝑾𝟏 𝒅𝑾𝟐 

                                                                                                   𝑾𝟐   =   𝒍𝒏(𝒂𝑾𝟏) 
 

   𝟏                                                𝒕
𝒏

                                        𝑾𝟏   =   𝒕                                        𝒅𝒕  =    𝒅𝑾𝟏  

                                                                                                   𝑾𝟐
𝒏   =   𝑾𝟏                                            =   𝑾𝟐

𝒏−𝟏d𝑾𝟐 
 

 



 

                              Measure of degree of composition using the  

                                    Multivariate Polynomial  Transform 

𝐃𝐞𝐠𝐫𝐞𝐞                       Composite              Minimum number of                      Secondary  

                                   Function                auxiliary variables                     Expansion 

 𝟏                                            𝒆𝑺𝒊𝒏(𝒂𝒕)                               𝑾𝟏   =    𝑻𝒂𝒏 𝒂𝒕/𝟐                        𝒅𝒕 =   
𝟐𝒅𝑾𝟏

𝒂 𝟏 + 𝑾𝟏
𝟐

 

                                                                                             𝑾𝟐   =   𝒆𝑷(𝑾𝟏)     

                                                                                        𝑷 𝑾𝟏  =    
𝟐𝑾𝟏

𝟏 +  𝑾𝟏
𝟐
                     =    

𝟏 +   𝑾𝟏
𝟐 

𝒂𝑾𝟐(𝟏  −   𝑾𝟏
𝟐)

𝒅𝑾𝟐  

 

 
 𝟐                                          𝒍𝒏 𝒍𝒏 𝒂𝒕                           𝑾𝟏  =  𝒕                                         𝒅𝒕 =   𝒅𝑾𝟏  =   𝑾𝟏𝒅𝑾𝟐  

                                                                                              𝑾𝟐  =   𝒍𝒏 𝒂𝑾𝟏                               =  𝑾𝟐𝒅𝑾𝟑              

                                                                                              𝑾𝟑  =   𝒍𝒏 𝑾𝟐         



 

                               Measure of degree of composition using the  

                                     Multivariate Polynomial  Transform 

𝐃𝐞𝐠𝐫𝐞𝐞                       Composite                 Minimum number of                        Secondary  

                                  Function                     auxiliary variables                    Expansion 

 

 

   𝟑                                 𝒍𝒏( 𝑻𝒂𝒏 𝒕𝟐 ) +   𝟏
𝒏

                        𝑾𝟏  =   𝒕𝟏                                            𝒅𝒕 =    𝒅𝑾𝟏    

                                                                                                        𝑾𝟐  =   𝑻𝒂𝒏 𝑾𝟏
𝟐                        =   

d𝑾𝟐

𝟐𝑾𝟏(𝟏 +  𝑾𝟐
𝟐)

 

                                                                                                        𝑾𝟑  =   𝒍𝒏(𝑾𝟐)                            =   
𝑾𝟐d𝑾𝟑

𝟐𝑾𝟏(𝟏 +  𝑾𝟐
𝟐)

 

 

                                                                                                        𝑾𝟒
𝒏  =   𝑾𝟑  +   𝟏                        =   

𝒏𝑾𝟐𝑾𝟒
𝒏−𝟏d𝑾𝟒

𝟐𝑾𝟏(𝟏 +  𝑾𝟐
𝟐)

 

 



 

                                Measure of degree of composition using the  

                                       Multivariate Polynomial  Transform 

𝐃𝐞𝐠𝐫𝐞𝐞                Composite                           Minimum number of                        Secondary  

                            Function                             auxiliary variables                        Expansion 

 

 

 𝒌 − 𝟏            𝑻𝒂𝒏(𝒂𝒌𝑻𝒂𝒏(𝒂𝒌−𝟏𝑻𝒂𝒏(𝒂𝒌−𝟐  ∙ ∙ ∙                𝑾𝟏  =   𝑻𝒂𝒏  𝒂𝟏𝒕                                  𝒅𝒕 =   
𝒅𝑾𝟏

𝑮𝟏
        

                                         ∙  ∙  ∙   𝒂𝟐𝑻𝒂𝒏(𝒂𝟏𝒕))))                      𝑾𝟐  =   𝑻𝒂𝒏  𝒂𝟐𝑾𝟏                                   =   
𝒅𝑾𝟐

𝑮𝟏𝑮𝟐
 

        
                                                                                                            ∙            ∙          ∙                                       ∙          ∙        ∙  
 
                                                                                                            ∙            ∙          ∙                                       ∙          ∙        ∙  
 
                                                                                                            ∙            ∙          ∙                                       ∙          ∙        ∙  
 

                                                                                                    𝑾𝒌  =   𝑻𝒂𝒏  𝒂𝒌𝑾𝒌−𝟏                     =    
𝒅𝑾𝒌

𝑮𝟏𝑮𝟐   ∙ ∙ ∙   𝑮𝒌
 

  
                                                                                                                                                                  𝑮𝒌  =   𝒂𝒌(𝟏 +  𝑾𝒌

𝟐)  



 

The theory of everything not just 

about modern physics anymore 
 

 



 Most accepted  definition of the  theory of everything is that it 
must remain an integral part of modern physics on the principle 
of defining a unique Space-Time Model that would explain all 
the basic laws of this universe. 

 One of the primary objective is to unify electromagnetic energy 
with gravitational energy under a single uniform theory. 

 A grandiose physical theory for explaining everything about this 
Universe would only be possible from the application of an  
equivalent grandiose mathematical theory that would explain 
everything about the integration of all  DEs. 

 DEs are universal and not linked to any specific area of the 
physical sciences so no evidence to support that modern physics 
is the only subject by which a complete theory of everything may 
be entirely constructed from. 

 Instead, only by consolidating the general analytical solutions of  
common key DEs into fundamental theorems can a gigantic 
theory capable of explaining everything about our physical 
Universe be constructed. 

 



 

 

Here is how Differential Equations would 
now play a central role for establishing a 

theory of everything.  

 



EACH  UNIFIED PHYSICAL SYSTEM  WOULD HAVE ITS OWN VERY UNIQUE STORY TO TELL 

THAT WE ALL NEED TO KNOW ABOUT IN THE END. 

 

 

Navier-Stokes 
Equations 

PDEs  … PDEs  

Instance Analytical 

Solutions  

General Analytical Solutions 

Fundamental Theorems 

Maxwell's 
Equations 

PDEs  … PDEs  

Instance Analytical 

Solutions  

General Analytical Solutions 

Fundamental Theorems 

 

Unified Physical 
System 

  

PDEs  … PDEs  

Instance Analytical 

Solutions  

General Analytical Solutions 

Fundamental Theorems 

.   .   . 

PDEs  … PDEs  

Instance Analytical 

Solutions  

General Analytical Solutions 

Fundamental Theorems 

THEORY OF  EVERYTHING 



QUESTION  FOR  THE  AUDIENCE : 

 

What lies beyond the theory of everything ? 



 

 A universal method of differential analysis for solving the Navier-Stokes equations involving 

incompressible fluid without transformation of variables and  for  solving  linear  elastic  

boundary  value  problems  
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Simple demonstration for the  

Navier-Stokes equations 



 

We now compare our  method of differential analysis for solving 

the Navier-Stokes equations with the one described by  

Muhammad Jamil: 

“Muhammad Jamil , A Class of Exact Solutions to Navier-Stokes Equations for the 

Given Vorticity, International Journal of Nonlinear Science, Vol.9 (2010) 

No.3,pp.296-304, ∗ ISSN 1749-3889 (print), 1749-3897 (online)” 

 

Basic assumptions that were made in his paper: 

 Steady plane motion of an incompressible fluid  

 Variable viscosity  

 Heat transfer  

 Reynolds number  (type of flow i.e. laminar or turbulent) 

 Prandtl number (diffusivity ratio)  

 Eckert  number (measure of  heat dissipation)  

 

 



 
Basic governing equations in the absence of any external forces with no heat 

addition as derived by: 

“R. K. Naeem and M. Jamil. On plane steady flows of an incompressible fluid with variable viscosity. 

Int. J. of Appl. Math. and Mech., 2:(2006), 1-19”.   

  

𝑢𝑥  +   𝑣𝑦  =   0  

 

𝑢𝑢𝑥  +   𝑣𝑢𝑦  =  −𝑃𝑥  +    
1

𝑅𝑒
 2𝜇𝑢𝑥 𝑥  +   𝜇 𝑢𝑦  +   𝑣𝑥

𝑦
   

 

𝑢𝑣𝑥  +   𝑣𝑣𝑦  =  −𝑃𝑦  +    
1

𝑅𝑒
 2𝜇𝑣𝑦 𝑦

 +   𝜇 𝑢𝑦  +   𝑣𝑥
𝑥
   

  

𝑢𝑇𝑥  +   𝑣𝑇𝑦  =    
1

𝑅𝑒𝑃𝑟
𝑇𝑥𝑥  +   𝑇𝑦𝑦  +   

𝐸𝑐

𝑅𝑒
𝜇  2 𝑢𝑥

2  +  𝑣𝑦
2 +   𝑢𝑦  +   𝑣𝑥

2
  

 

where  "𝑢"  and  "𝑣"  are the velocity components,  "P" is pressure, "T" the temperature, 

"𝜇" the viscosity,  "𝑅𝑒" ,  "𝑃𝑟"  and  "𝐸𝑐"   are  the Reynolds,  Prandtl  and  Eckert numbers 

respectively.  

  

 



 

 Define the stream function  in terms of the velocity component  "𝑢 =  𝜓𝑦"  and   
"𝑣 =  −𝜓𝑥"  

 We assume the vorticity distribution  𝛻2𝜓   is proportional to the stream 
function perturbed by an exponential stream of the form:  𝛻2𝜓 =   𝐾(𝜓 −   𝑈𝑒𝑎𝑥+𝑏𝑦)   

  

The original system of  PDEs  now transformed directly in terms of  the 
following more integrable system of second order ODEs : 

  

𝜓𝜉𝜉  −   Λ𝜓  =  −𝑈𝑒𝜉 

 𝜇𝜓 𝜉𝜉  =   0 

  

𝑇𝜉𝜉  +   𝐸𝑐𝑃𝑟Λ
2 𝑎2  +   𝑏2 𝜇𝜓2  =   0 

  

which led to the following change of coordinates: 
  

𝜉 =   𝑎𝑥 +   𝑏𝑦 
  

and where: 
  

Λ =   
𝐾

𝑎2  +   𝑏2
 

  

 



 

Exact analytical solution obtained  by Jamil in the original coordinates: 

Case I:   𝚲 =  −𝒏𝟐,  𝒏 > 𝟎  

 𝑢 =   
𝑈𝑏𝑛2

𝑛2+1
𝑒𝑎𝑥+𝑏𝑦  −   𝐴1𝑛𝑏𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦  + 𝐴2  

   

𝑣 =   
𝑈𝑎𝑛2

𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦 +  𝐴1𝑛𝑎𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   

   

𝑃 =   
𝑈𝑛2 𝑎2 + 𝑏2

2 𝑛2 + 1
 𝑒𝑎𝑥+𝑏𝑦 

 
𝑈𝑒𝑎𝑥+𝑏𝑦  −   2𝐴1   𝐶𝑜𝑠 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2  +  𝑛𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦 +  𝐴2        − 

  

                                                            −   
𝐴3𝑛

2 𝑏2− 𝑎2

𝑅𝑒
𝑏𝑥 + 𝑎𝑦  +  

2𝑎𝑏𝑛2

𝑅𝑒
𝐴3 𝑎𝑥 + 𝑏𝑦 +  𝐴4      −  

  

                                                          −  
𝑛2 𝑎2 + 𝑏2

2 𝑛2 + 1 2
   𝑈𝑛𝑒𝑎𝑥+𝑏𝑦  −   𝐴1 𝑛2  + 1 𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   2 +   𝐴7 

       

T  =   
𝐸𝑐𝑃𝑟𝑛 𝑎2 + 𝑏2

𝑛2 + 1
   𝐴3   𝑈𝑛3𝑒𝑎𝑥+𝑏𝑦 𝑎𝑥 + 𝑏𝑦 − 2  +  𝐴1 𝑛2 + 1    𝑛 𝑎𝑥 + 𝑏𝑦 𝐶𝑜𝑠 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   −   

     
                

−   2𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦  +   𝐴2       +  𝑛𝐴4   𝑈𝑛2𝑒𝑎𝑥+𝑏𝑦  +   𝐴1 𝑛2  +   1 𝐶𝑜𝑠(𝑛 𝑎𝑥 + 𝑏𝑦 +  𝐴2)        +   

                                                                                                                                                +    𝐴5 (ax + by)  +  𝐴6 

 

𝜇 =   
𝐴3 𝑎𝑥 +  𝑏𝑦   +   𝐴4

𝐴1𝐶𝑜𝑠 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   −   
𝑈𝑒𝑎𝑥+𝑏𝑦

𝑛2 + 1

 

  

  

  

  

  

 



 

Case II:   𝚲 =  𝒎𝟐,  𝒎 > 𝟎  

  

𝑢 =   
𝑈𝑏𝑚2

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦  +   𝐵1𝑚𝑏𝑒𝑚 𝑎𝑥+𝑏𝑦  −  𝐵2𝑚𝑏𝑒−𝑚 𝑎𝑥+𝑏𝑦  

  

 𝑣 =  − 
𝑈𝑎𝑚2

𝑚2−1
𝑒𝑎𝑥+𝑏𝑦  −  𝐵1𝑚𝑎𝑒𝑚 𝑎𝑥+𝑏𝑦   +   𝐵2𝑚𝑎𝑒−𝑚 𝑎𝑥+𝑏𝑦  

   

 

𝑃 =   
𝑈𝑚2 𝑎2 + 𝑏2

2 𝑚2 − 1
   𝑈𝑒2(𝑎𝑥+𝑏𝑦)  +     2𝐵1(𝑚 − 1)𝑒(𝑚+1)(𝑎𝑥+𝑏𝑦)  −   2𝐵2(𝑚 + 1)𝑒(1−𝑚)(𝑎𝑥+𝑏𝑦)     + 

 

                             +   
𝐵3𝑚

2 𝑏2 − 𝑎2

𝑅𝑒
𝑏𝑥 + 𝑎𝑦  −  

2𝑎𝑏𝑚2

𝑅𝑒
𝐵3 𝑎𝑥 + 𝑏𝑦 +  𝐵4      −  

 

                            −   
𝑚2 𝑎2 + 𝑏2

𝑚2 − 1 2
𝑒−2𝑚(𝑎𝑥+𝑏𝑦)   𝑈𝑚𝑒(1+𝑚)(𝑎𝑥+𝑏𝑦)  +   𝐵1 𝑚2 − 1 𝑒2𝑚(𝑎𝑥+𝑏𝑦)  −  𝐵2(𝑚

2 − 1)    2 +   𝐵7 

  

     

T  =   
𝐸𝑐𝑃𝑟𝑚(𝑎2+𝑏2)

1 − 𝑚2   𝐵3   𝑈𝑚3𝑒𝑚(𝑎𝑥+𝑏𝑦) 𝑎𝑥 + 𝑏𝑦 − 2  +  𝐵1 𝑚2 − 1 𝑚 𝑎𝑥 + 𝑏𝑦 − 2 𝑒𝑚 𝑎𝑥+𝑏𝑦  +     

 

                              +
   𝐵2 𝑚2 − 1 𝑚 𝑎𝑥 + 𝑏𝑦 + 2 𝑒−𝑚 𝑎𝑥+𝑏𝑦      +   𝑚𝐵4   𝑈𝑚2𝑒𝑚(𝑎𝑥+𝑏𝑦)   +   

 

                            
 
+
   𝐵1 𝑚2 − 1 𝑒𝑚 𝑎𝑥+𝑏𝑦  +   𝐵2 𝑚2 − 1        +   𝐵5 𝑎𝑥 + 𝑏𝑦  +   𝐵6 

 

  

𝜇 =   
𝐵3 𝑎𝑥 + 𝑏𝑦   +  𝐵4

𝐵1𝑒
𝑚(𝑎𝑥+𝑏𝑦)  +   𝐵2𝑒

−𝑚(𝑎𝑥+𝑏𝑦)  +   
𝑈𝑒𝑎𝑥+𝑏𝑦

𝑚2 − 1

 

  

  

 



 

 Case III:   𝚲 =  𝟎  

 

   𝑢 =  𝐶1𝑏 

  𝑣 =  −𝐶1𝑎 

  

   𝑃 =  −
𝑎2 + 𝑏2 𝐶1

2

2
   +   𝐶7 

  

   𝑇 =   𝐶5 𝑎𝑥 +   𝑏𝑦  +   𝐶6 

  

   𝜇 =   
𝐶3 𝑎𝑥 + 𝑏𝑦   +   𝐶4

𝐶1 𝑎𝑥 +   𝑏𝑦   +   𝐶2  −   𝑈𝑒(𝑎𝑥+𝑏𝑦)
 

  

  

 



 

Here is our general method of solution 

for the  Navier-Stokes equations : 

 

 



                    NUMERICALLY  CONTROLLED  SYSTEM  OF  ANALYTICS  TABLE 

       

 

  



We first seek to convert using our standard differential form all of the author’s solution that satisfy the 

PDEs  in their complete original format without  involving and type of transformation processes 

whatsoever. 

Case I:   𝜦 =  −𝒏𝟐,  𝒏 > 𝟎  

 

𝒖 =   
𝑈𝑏𝑛2

𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦  −   𝐴1𝑛𝑏𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦  + 𝐴2  

  

      =   𝑢1𝑒
𝑢2𝑥+𝑢3𝑦   +    𝑢4𝑆𝑖𝑛  𝑢5𝑥 + 𝑢6𝑦 + 𝑢7     

  

 We can select as auxiliary variables the following expressions: 

  

𝑊1 =   𝑢 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑢2𝑥 ,    
𝑑𝑊4

𝑊4
 =   𝑢2𝑑𝑥 

𝑊5 =  𝑒𝑢3𝑦 ,    
𝑑𝑊5

𝑊5
 =   𝑢3𝑑𝑦 

 

𝑊6 =   𝑇𝑎𝑛( 𝑢5𝑥 + 𝑢6𝑦 + 𝑢7] 2   ,     
2𝑑𝑊6

1 +  𝑊6
2  =   𝑢5𝑑𝑥 + 𝑢6𝑑𝑦  

 so that: 

 



 
  

(1).  Primary Expansion: 

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4, 𝑊5, 𝑊6 =  0 =   𝑊1   −   𝑢1 𝑊4𝑊5   +   
2𝑢4𝑊6

1 +  𝑊6
2  

  

(2).  Secondary Expansion: 

              𝑑𝑢    +     0 ∙ 𝑑𝑥 +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑢   +           𝑑𝑥 +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑢   +     0 ∙ 𝑑𝑥 +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝑢   +    𝑢2𝑑𝑥   +   0 ∙ 𝑑𝑦    =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑢   +    0 ∙ 𝑑𝑥   +   𝑢3𝑑𝑦    =   
𝑑𝑊5

𝑊5
 

  

        0 ∙  𝑑𝑢   +   𝑢5𝑑𝑥    +    𝑢6𝑑𝑦    =    
2𝑑𝑊6

1 +  𝑊6
2 

  



 
  

𝒗 =   
𝑈𝑎𝑛2

𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦 +  𝐴1𝑛𝑎𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2  

  

     =   𝑣1𝑒
𝑣2𝑥+𝑣3𝑦  +   𝑣4𝑆𝑖𝑛  𝑣5𝑥 + 𝑣6𝑦 + 𝑣7     

  

 We can select as auxiliary variables the following expressions: 

  

𝑊1 =   𝑣 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

 

𝑊4 =  𝑒𝑣2𝑥 ,   
𝑑𝑊4

𝑊4
 =   𝑣2𝑑𝑥 

𝑊5 =  𝑒𝑦 ,      
𝑑𝑊5

𝑊5
 =   𝑑𝑦 

 

𝑊6 =   𝑇𝑎𝑛( 𝑣5𝑥 + 𝑣6𝑦 + 𝑣7] 2   ,     
2𝑑𝑊6

1 +  𝑊6
2  =   𝑣5𝑑𝑥 +  𝑣6𝑑𝑦  

 

so that: 

  

 



 
(1).  Primary Expansion: 

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4, 𝑊5, 𝑊6 =  0 =   𝑊1   −   𝑣1𝑊4𝑊5
𝑣3   +   

2𝑣4𝑊6

1 +  𝑊6
2  

  

 (2).  Secondary Expansion: 

              𝑑𝑣    +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑣   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑣   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝑣   +    𝑣2𝑑𝑥   +   0 ∙ 𝑑𝑦    =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑣   +    0 ∙ 𝑑𝑥  +        𝑑𝑦    =   
𝑑𝑊5

𝑊5
 

        0 ∙  𝑑𝑣   +   𝑣5𝑑𝑥    +    𝑣6𝑑𝑦   =    
2𝑑𝑊6

1 +  𝑊6
2 

  

  

 



 

𝑷 =   
𝑈𝑛2 𝑎2 + 𝑏2

2 𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦  

 
𝑈𝑒𝑎𝑥+𝑏𝑦  −    2𝐴1   𝐶𝑜𝑠 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2  +  𝑛𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦 +  𝐴2        − 

                                                             −   
𝐴3𝑛

2 𝑏2− 𝑎2

𝑅𝑒
𝑏𝑥 + 𝑎𝑦  +  

2𝑎𝑏𝑛2

𝑅𝑒
𝐴3 𝑎𝑥 + 𝑏𝑦 +  𝐴4      −  

  

                                                             −  
𝑛2 𝑎2 + 𝑏2

2 𝑛2 + 1 2
   𝑈𝑛𝑒𝑎𝑥+𝑏𝑦  −   𝐴1 𝑛2  + 1 𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   2 +   𝐴7 

  

     =   𝑒𝑃1𝑥+ 𝑃2𝑦  
 
𝑃3𝑒

𝑃4𝑥+ 𝑃5𝑦 +  𝑃6𝐶𝑜𝑠 𝑃7𝑥 + 𝑃8𝑦 + 𝑃9  +  𝑃10𝑆𝑖𝑛 𝑃11𝑥 + 𝑃12𝑦 +  𝑃13       + 

                                                         +     𝑃14𝑥 + 𝑃15𝑦  +   𝑃16     +     𝑃17𝑒
𝑃18𝑥+ 𝑃19𝑦  +   𝑃20𝑆𝑖𝑛 𝑃21𝑥 + 𝑃22𝑦 + 𝑃23   2  +   𝑃24 

   

We can select as auxiliary variables the following expressions: 

𝑊1 =   𝑃 

𝑊2 =   𝑥 

𝑊3 =   𝑦 
  

𝑊4 =  𝑒𝑥  ,   
𝑑𝑊4

𝑊4
 =   𝑑𝑥 

𝑊5 =  𝑒𝑦 ,    
𝑑𝑊5

𝑊5
 =   𝑑𝑦 

 

 
  

  

 



 

𝑊6 =   𝑇𝑎𝑛( 𝑃7𝑥 + 𝑃8𝑦 + 𝑃9] 2   ,           
2𝑑𝑊6

1 +  𝑊6
2  =   𝑃7𝑑𝑥 + 𝑃8𝑑𝑦  

𝑊7 =   𝑇𝑎𝑛( 𝑃11𝑥 + 𝑃12𝑦 +  𝑃13] 2   ,     
2𝑑𝑊7

1 +  𝑊7
2  =   𝑃11𝑑𝑥 + 𝑃12𝑑𝑦  

𝑊8 =   𝑇𝑎𝑛( 𝑃21𝑥 + 𝑃22𝑦 + 𝑃23] 2   ,       
2𝑑𝑊8

1 +  𝑊8
2  =   𝑃21𝑑𝑥 + 𝑃22𝑑𝑦 

so that: 

 

(1).  Primary Expansion: 

       𝐹 𝑊1,𝑊2, … ,𝑊8 =  0 =   𝑊1  −   𝑊4
𝑃1𝑊5

𝑃2   𝑃3𝑊4
𝑃4𝑊5

𝑃5   +   𝑃6

1 − 𝑊6
2

1 +  𝑊6
2    +    

2𝑃10𝑊7

1 +  𝑊7
2      +    𝑃14𝑊2 +    

                                                                                                    𝑃15𝑊3   +     𝑃16  +    𝑃17𝑊4
𝑃18𝑊5

𝑃19  +   
2𝑃20𝑊8

1 +  𝑊8
2  

2

 +   𝑃24      

  

(2).  Secondary Expansion: 

               𝑑𝑃   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑃   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑃   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

 

 



 

        0 ∙  𝑑𝑃   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑃   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

 

        0 ∙  𝑑𝑃   +   𝑃7 𝑑𝑥     +    𝑃8 𝑑𝑦    =    
2𝑑𝑊6

1 +  𝑊6
2 

        0 ∙  𝑑𝑃   +   𝑃11𝑑𝑥    +    𝑃12𝑑𝑦   =    
2𝑑𝑊7

1 +  𝑊7
2 

        0 ∙  𝑑𝑃   +   𝑃21𝑑𝑥    +    𝑃22𝑑𝑦   =    
2𝑑𝑊8

1 +  𝑊8
2 

  

 

   𝐓  =   
𝐸𝑐𝑃𝑟𝑛 𝑎2+𝑏2

𝑛2+1
   𝐴3   𝑈𝑛3𝑒𝑎𝑥+𝑏𝑦 𝑎𝑥 + 𝑏𝑦 − 2  +  𝐴1 𝑛2 + 1    𝑛 𝑎𝑥 + 𝑏𝑦 𝐶𝑜𝑠 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   −   

     
                

−   2𝑆𝑖𝑛 𝑛 𝑎𝑥 + 𝑏𝑦  +   𝐴2        +  𝑛𝐴4   𝑈𝑛2𝑒𝑎𝑥+𝑏𝑦  +   𝐴1 𝑛2  +   1 𝐶𝑜𝑠(𝑛 𝑎𝑥 + 𝑏𝑦 +  𝐴2)           +   

 
                                                                                                                                                                   +   𝐴5 𝑎𝑥 + 𝑏𝑦 +  𝐴6        

 
 
           =         𝑇1𝑒

𝑇2𝑥+ 𝑇3𝑦 𝑇4𝑥 + 𝑇5𝑦 + 𝑇6   +     𝑇7𝑥 + 𝑇8𝑦 𝐶𝑜𝑠 𝑇9𝑥 + 𝑇10𝑦 + 𝑇11   +   

   

                                                  
+   𝑇12𝑆𝑖𝑛 𝑇13𝑥 + 𝑇14𝑦 + 𝑇15        +     𝑇16𝑒

𝑇17𝑥+ 𝑇18𝑦  +   𝑇19𝐶𝑜𝑠 𝑇20𝑥 + 𝑇21𝑦 + 𝑇22        +             

  
                                                                                                                                                     +    𝑇23𝑥 + 𝑇24𝑦 + 𝑇25 



 

 We can select as auxiliary variables the following expressions: 

  
𝑊1 =   𝑇 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

 

𝑊4 =  𝑒𝑥  ,   
𝑑𝑊4

𝑊4
 =   𝑑𝑥 

𝑊5 =  𝑒𝑦 ,    
𝑑𝑊5

𝑊5
 =   𝑑𝑦 

 

𝑊6 =   𝑇𝑎𝑛( 𝑇9𝑥 + 𝑇10𝑦 + 𝑇11] 2   ,       
2𝑑𝑊6

1 +  𝑊6
2  =   𝑇9𝑑𝑥 + 𝑇10𝑑𝑦  

𝑊7 =   𝑇𝑎𝑛( 𝑇13𝑥 + 𝑇14𝑦 + 𝑇15] 2   ,     
2𝑑𝑊7

1 +  𝑊7
2  =   𝑇13𝑑𝑥 + 𝑇14𝑑𝑦  

𝑊8 =   𝑇𝑎𝑛( 𝑇20𝑥 + 𝑇21𝑦 + 𝑇22] 2   ,     
2𝑑𝑊8

1 +  𝑊8
2  =   𝑇20𝑑𝑥 + 𝑇21𝑑𝑦 

  

so that: 

  

 



 

(1).  Primary Expansion: 

           𝐹 𝑊1,𝑊2, … ,𝑊8  =  0 =   𝑊1  −        𝑇1𝑊4
𝑇2𝑊5

𝑇3 𝑇4𝑊2 + 𝑇5𝑊3 + 𝑇6   +    𝑇7𝑊2 + 𝑇8𝑊3
1 − 𝑊6

2

1 +  𝑊6
2   +  

   

                                                           
+   

2𝑇12𝑊7

1 +  𝑊7
2        +      𝑇16𝑊4

𝑇17𝑊5
𝑇18  +   𝑇19

1 − 𝑊8
2

1 +  𝑊8
2         +    𝑇23𝑥 + 𝑇24𝑦 + 𝑇25 

 

   (2).  Secondary Expansion: 

               𝑑𝑇   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑇   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑇   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝑇   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑇   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

  

        0 ∙  𝑑𝑇   +   𝑇7𝑑𝑥      +    𝑇8𝑑𝑦    =    
2𝑑𝑊6

1 +  𝑊6
2 

        0 ∙  𝑑𝑇   +   𝑇11𝑑𝑥    +    𝑇12𝑑𝑦   =    
2𝑑𝑊7

1 +   𝑊7
2 

        0 ∙  𝑑𝑇   +   𝑇21𝑑𝑥    +    𝑇22𝑑𝑦   =    
2𝑑𝑊8

1 +  𝑊8
2 

 



 

  

𝝁 =   
𝐴3 𝑎𝑥 +  𝑏𝑦   +   𝐴4

𝐴1𝐶𝑜𝑠 𝑛 𝑎𝑥 + 𝑏𝑦 + 𝐴2   −   
𝑈𝑒𝑎𝑥+𝑏𝑦

𝑛2 + 1

 

 

     =   
𝜇1𝑥 + 𝜇2𝑦 +  𝜇3

𝜇4𝐶𝑜𝑠 𝜇5𝑥 + 𝜇6𝑦 + 𝜇7  +   𝜇8𝑒𝜇9𝑥+ 𝜇10𝑦
 

  

  

We can select as auxiliary variables the following expressions: 

  
𝑊1 =   𝜇 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

 

𝑊4 =  𝑒𝑥  ,   
𝑑𝑊4

𝑊4
 =   𝑑𝑥 

𝑊5 =  𝑒𝑦 ,    
𝑑𝑊5

𝑊5
 =   𝑑𝑦 

 

𝑊6 =   𝑇𝑎𝑛( 𝜇5𝑥 + 𝜇6𝑦 + 𝜇7] 2   ,     
2𝑑𝑊6

1 +  𝑊6
2  =   𝜇5𝑑𝑥 + 𝜇6𝑑𝑦 

 

so that: 

  

 



 

 (1).  Primary Expansion: 

       
 

  

 

(2).  Secondary Expansion:  

               𝑑𝜇   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝜇   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝜇   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝜇   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝜇   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

  

        0 ∙  𝑑𝜇   +    𝜇5𝑑𝑥    +    𝜇6𝑑𝑦  =    
2𝑑𝑊6

1 +  𝑊6
2 

  

 



 

Case II:   𝜦 =  𝒎𝟐,  𝒎 > 𝟎  

  

𝒖 =   
𝑈𝑏𝑚2

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦  +   𝐵1𝑚𝑏𝑒𝑚 𝑎𝑥+𝑏𝑦  −  𝐵2𝑚𝑏𝑒−𝑚 𝑎𝑥+𝑏𝑦  

     =   𝑢1𝑒
𝑢2𝑥+ 𝑢3𝑦  +   𝑢4𝑒

𝑢5𝑥+ 𝑢6𝑦 +  𝑢7𝑒
𝑢8𝑥+ 𝑢9𝑦 

  

 We can select as auxiliary variables the following expressions: 

𝑊1 =   𝑢 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑥  

𝑊5 =  𝑒𝑦 

  

so that: 

 

 (1).  Primary Expansion: 

       

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4, 𝑊5  =  0 =   𝑊1  −   𝑢1𝑊4
𝑢2𝑊5

𝑢3  +   𝑢4𝑊4
𝑢5𝑊5

𝑢6 +  𝑢7𝑊4
𝑢8𝑊5

𝑢9   

 



(2).  Secondary Expansion:  

              𝑑𝑢    +      0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 
        0 ∙  𝑑𝑢   +            𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑢   +     0 ∙ 𝑑𝑥    +          𝑑𝑦   =   𝑑𝑊3 

 

        0 ∙  𝑑𝑢   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑢   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

 

 

 

𝒗 =  − 
𝑈𝑎𝑚2

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦  −   𝐵1𝑚𝑎𝑒𝑚 𝑎𝑥+𝑏𝑦   +   𝐵2𝑚𝑎𝑒−𝑚 𝑎𝑥+𝑏𝑦  

  
     =   𝑣1𝑒

𝑣2𝑥+ 𝑣3𝑦  +   𝑣4𝑒
𝑣5𝑥+ 𝑣6𝑦 +  𝑣7𝑒

𝑣8𝑥+ 𝑣9𝑦 

  

We can select as auxiliary variables the following expressions: 

  
𝑊1 =   𝑣 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑥  

𝑊5 =  𝑒𝑦 

 

 

  

 



 

 (1).  Primary Expansion: 

       

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4  =  0 =   𝑊1  −   𝑣1𝑊4
𝑣2𝑊5

𝑣3  +   𝑣4𝑊4
𝑣5𝑊5

𝑣6 +  𝑣7𝑊4
𝑣8𝑊5

𝑣9   

 

 (2).  Secondary Expansion:  

              𝑑𝑣    +      0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑣   +            𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑣   +     0 ∙ 𝑑𝑥    +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝑣   +        𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑣   +    0 ∙ 𝑑𝑥  +        𝑑𝑦  =   
𝑑𝑊5

𝑊5
 

  

  

 



 

 𝑷 =   
𝑈𝑚2 𝑎2+𝑏2

2 𝑚2−1
   𝑈𝑒2(𝑎𝑥+𝑏𝑦)  +     2𝐵1(𝑚 − 1)𝑒(𝑚+1)(𝑎𝑥+𝑏𝑦)  −   2𝐵2(𝑚 + 1)𝑒(1−𝑚)(𝑎𝑥+𝑏𝑦)       + 

 

                             +   
𝐵3𝑚

2 𝑏2 − 𝑎2

𝑅𝑒
𝑏𝑥 + 𝑎𝑦  −   

2𝑎𝑏𝑚2

𝑅𝑒
𝐵3 𝑎𝑥 + 𝑏𝑦 +  𝐵4      −  

 

                            −   
𝑚2 𝑎2 + 𝑏2

𝑚2 − 1 2
𝑒−2𝑚(𝑎𝑥+𝑏𝑦)   𝑈𝑚𝑒(1+𝑚)(𝑎𝑥+𝑏𝑦)  +   𝐵1 𝑚2 − 1 𝑒2𝑚(𝑎𝑥+𝑏𝑦)  −  𝐵2(𝑚

2 − 1)    2 

+   𝐵7 

  

  

     =   𝑃1𝑒
𝑃2𝑥+ 𝑃3𝑦   +    𝑃4𝑒

𝑃5𝑥+ 𝑃6𝑦  +   𝑃7𝑒
𝑃8𝑥+ 𝑃9𝑦    +    𝑃10𝑥  +   𝑃11𝑦  +  𝑃12   +  

  

                                                                  +    𝑒𝑃13𝑥+ 𝑃14𝑦   𝑃15𝑒
𝑃16𝑥+ 𝑃17𝑦  +   𝑃18𝑒

𝑃19𝑥+ 𝑃20𝑦  +  𝑃21
  2

 +   𝑃22 

  

We can select as auxiliary variables the following expressions: 

  
𝑊1 =   𝑃 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑥  

𝑊5 =  𝑒𝑦 

  

  

 

 



 

so that: 

  

 (1).  Primary Expansion: 

          𝐹 𝑊1,𝑊2,𝑊3, 𝑊4, 𝑊5  =  0 =   𝑊1  −   𝑃1𝑊4
𝑃2𝑊5

𝑃3   +    𝑃4𝑊4
𝑃5𝑊5

𝑃6  +   𝑃7𝑊4
𝑃8𝑊5

𝑃9    +    𝑃10𝑊2  +  𝑃11𝑊3  +     

 

                                                                    +    𝑃12  +     𝑊4
𝑃13𝑊5

𝑃14    𝑃15𝑊4
𝑃16𝑊5

𝑃17  +   𝑃18𝑊4
𝑃19𝑊5

𝑃20  +  𝑃21

  2
 +   𝑃22 

  

(2).  Secondary Expansion: 

               𝑑𝑃   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑃   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑃   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝑃   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑃   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

  

  

  

 



 

     

𝐓  =   
𝐸𝑐𝑃𝑟𝑚(𝑎2+𝑏2)

1 − 𝑚2   𝐵3   𝑈𝑚3𝑒𝑚(𝑎𝑥+𝑏𝑦) 𝑎𝑥 + 𝑏𝑦 − 2  +   𝐵1 𝑚2 − 1 𝑚 𝑎𝑥 + 𝑏𝑦 − 2 𝑒𝑚 𝑎𝑥+𝑏𝑦  +     

                                               
                  +  𝐵2 𝑚2 − 1 𝑚 𝑎𝑥 + 𝑏𝑦 + 2 𝑒−𝑚 𝑎𝑥+𝑏𝑦      +   𝑚𝐵4   𝑈𝑚2𝑒𝑚(𝑎𝑥+𝑏𝑦)  +   

 

                 
            

                 
               +  𝐵1 𝑚2 − 1 𝑒𝑚 𝑎𝑥+𝑏𝑦  +   𝐵2 𝑚2 − 1           +    𝐵5 𝑎𝑥 + 𝑏𝑦   +   𝐵6   

       =   𝑇1𝑥 + 𝑇2𝑦 + 𝑇3 𝑒𝑇4𝑥+ 𝑇5𝑦   +   𝑇6𝑥 + 𝑇7𝑦 + 𝑇8 𝑒𝑇9𝑥+ 𝑇10𝑦  + 

   
                                                

                +   𝑇11𝑥 + 𝑇12𝑦 + 𝑇13 𝑒𝑇14𝑥+ 𝑇15𝑦    +   𝑇16𝑒
𝑇17𝑥+ 𝑇18𝑦  +   (𝑇19𝑥 + 𝑇20𝑦 + 𝑇21)    

 

 
 We can select as auxiliary variables the following expressions: 

  
𝑊1 =   𝑇 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑥  

𝑊5 =  𝑒𝑦 

  

 so that: 

 



 

 (1).  Primary Expansion: 
       

          𝐹 𝑊1,𝑊2,𝑊3,𝑊4, 𝑊5  =  0 =   𝑊1  −   (𝑇1𝑊2 + 𝑇2𝑊3 + 𝑇3)𝑊4
𝑇4𝑊5

𝑇5   +   𝑇6𝑊2 + 𝑇7𝑊3 + 𝑇8 𝑊4
𝑇9𝑊5

𝑇10   + 

 

                       
                                   +    𝑇11𝑊2 + 𝑇12𝑊3 + 𝑇13 𝑊4

𝑇14𝑊5
𝑇15    +   𝑇16𝑊4

𝑇17𝑊5
𝑇18   +  

 
(𝑇19𝑊2 + 𝑇20𝑊3 + 𝑇21)   

 

 

(2).  Secondary Expansion:  
 
               𝑑𝑇   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝑇   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝑇   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝑇   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝑇   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

  

 



 

𝝁 =   
𝐵3 𝑎𝑥 + 𝑏𝑦   +  𝐵4

𝐵1𝑒𝑚(𝑎𝑥+𝑏𝑦)  +   𝐵2𝑒−𝑚(𝑎𝑥+𝑏𝑦)  +   
𝑈𝑒𝑎𝑥+𝑏𝑦

𝑚2 − 1

 

  

     =   
𝜇1𝑥  +  𝜇2𝑦 

  +   𝜇3

𝜇4𝑒𝜇5𝑥+ 𝜇6𝑦
  +   𝜇7𝑒𝜇8𝑥+ 𝜇9𝑦

  +   𝜇10𝑒𝜇11𝑥+ 𝜇12𝑦
 

 

  

 We can select as auxiliary variables the following expressions: 

  

𝑊1 =   𝜇 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑥  ,   
𝑑𝑊4

𝑊4
 =   𝑑𝑥 

𝑊5 =  𝑒𝑦 ,    
𝑑𝑊5

𝑊5
 =   𝑑𝑦 

  

so that: 

  

 (1).  Primary Expansion: 

       

          𝐹 𝑊1,𝑊2,𝑊3, 𝑊4  =  0 =    𝑊1  −    
𝜇1𝑊1  +  𝜇2𝑊2  

  +   𝜇3

𝜇4𝑊3
𝜇5𝑊4

𝜇6  +   𝜇7𝑊3
𝜇8𝑊4

𝜇9  +   𝜇10𝑊3
𝜇11𝑊4

𝜇12
   

  

 



(2).  Secondary Expansion:  

               𝑑𝜇   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝜇   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝜇   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

        0 ∙  𝑑𝜇   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝜇   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 

  

 

 Case III:   𝜦 =  𝟎  

   𝒖 =  𝐶1𝑏 

        =  𝑢1 

We can select as auxiliary variable the following expression: 

 𝑊1 =  𝑢1 

 so that: 

  (1).  Primary Expansion: 

         𝐹 𝑊1  =  0 =    𝑊1 −   𝑢1   

 (2).  Secondary Expansion:  

           𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

  

 

 



 
𝒗 =  −𝐶1𝑎 
  
    =  𝑣1 
  
 
We can select as auxiliary variable the following expression: 
  
𝑊1 =   𝑣  
  
 
so that: 

 (1).  Primary Expansion: 
    
         𝐹 𝑊1  =  0 =    𝑊1  −   𝑣1   
  

(2).  Secondary Expansion:  

          𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

 

 

 

  
𝑷 =  −

𝑎2 + 𝑏2 𝐶1
2

2
   +   𝐶7 

 
  
    = 𝑃1 
 
  
We can select as auxiliary variable the following expression: 
  
 
𝑊1 =  𝑃  
 
 
so that: 
  

  



 (1).  Primary Expansion: 
  
        𝐹 𝑊1  =  0 =    𝑊1 −   𝑃1   
 

 (2).  Secondary Expansion:  

          𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

 

 

 

𝑻 =   𝐶5 𝑎𝑥 +   𝑏𝑦  +  𝐶6 

     =  𝑇1𝑥 +  𝑇2𝑦 +  𝑇3 

  

We can select as auxiliary variables the following expressions: 

𝑊1 =   𝑇 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

 so that: 

 (1).  Primary Expansion: 

           𝐹 𝑊1,𝑊2  =  0 =    𝑊1  −   𝑇1𝑊2  +   𝑇2𝑊3  +   𝑇3 

  

(2).  Secondary Expansion:  

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

  

  

  



 

𝝁 =   
𝐶3 𝑎𝑥 + 𝑏𝑦   +   𝐶4

𝐶1 𝑎𝑥 +   𝑏𝑦   +  𝐶2  −   𝑈𝑒(𝑎𝑥+𝑏𝑦)
 

    =   
𝜇1𝑥 + 𝜇2𝑦  +  𝜇3

𝜇4𝑥 +  𝜇5𝑦  +  𝜇6  +   𝜇7𝑒
𝜇8𝑥+ 𝜇9𝑦

 

  

We can select as auxiliary variables the following expressions: 
  
𝑊1 =   𝜇 

𝑊2 =   𝑥 

𝑊3 =   𝑦 

𝑊4 =  𝑒𝑥 ,   
𝑑𝑊4

𝑊4
 =   𝑑𝑥 

𝑊5 =  𝑒𝑦 ,    
𝑑𝑊5

𝑊5
 =   𝑑𝑦 

  
 
so that: 

(1).  Primary Expansion:  

         𝐹 𝑊1,𝑊2,𝑊3,𝑊4  =  0 =    𝑊1  −   
𝜇1𝑊2  +   𝜇2𝑊3  +   𝜇3

𝜇4𝑊2  +   𝜇5𝑊3  +   𝜇6  +   𝜇7𝑊4
𝜇8𝑊5

𝜇9
 

  

 

  



 

(2).  Secondary Expansion:  

               𝑑𝜇   +     0 ∙ 𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊1 

        0 ∙  𝑑𝜇   +           𝑑𝑥   +    0 ∙ 𝑑𝑦   =   𝑑𝑊2 

        0 ∙  𝑑𝜇   +     0 ∙ 𝑑𝑥   +          𝑑𝑦   =   𝑑𝑊3 

  

        0 ∙  𝑑𝜇   +         𝑑𝑥   +   0 ∙ 𝑑𝑦  =   
𝑑𝑊4

𝑊4
 

        0 ∙  𝑑𝜇   +    0 ∙ 𝑑𝑥  +        𝑑𝑦   =   
𝑑𝑊5

𝑊5
 



 

By visual inspection of  the  information  produced,  we would  solve  this problem using our method of differentials by 
selecting as a minimum  “𝑝 = 12”,  “𝑢𝑃 = 20”,  “𝑢𝑆 = 2”  and  “𝑞 = 0"  in our  IAMPT. 

where: 

 𝑝    =   Total number of auxiliary variables  

𝑢𝑃    =   Total number of  terms in the Primary  Expansion  

𝑢𝑆    =   Total number of  terms in the Secondary Expansion 

𝑞     =   Total number of auxiliary variables required for defining each  functional expression that are  present in 
             the  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  PDEs. 

 

In doing so, we can begin my assigning the following auxiliary variables to each  dependent and independent 

variables as: 

𝑢   =   𝑊1 

𝑣   =   𝑊2 

𝑃   =   𝑊3 

𝑇   =   𝑊4 

𝜇   =   𝑊5 

𝑥   =   𝑊6 

𝑦   =   𝑊7  

  

 

 



 

 

 

COMPLETE  IAMPT  IN 

EXPANDED FORM  



 

(1).  Primary Expansion: 

  

          𝐹1  =   0  =   𝑎1,1𝑊1

𝑚1,1𝑊6

𝑚1,2 ∙∙∙ 𝑊12

𝑚1,8  +   𝑎1,2𝑊1

𝑚1,9𝑊6

𝑚1,10 ∙∙∙ 𝑊12

𝑚1,16  +  … +    

                                                                                                                         +  … +   𝑎1,20𝑊1

𝑚1,153𝑊6

𝑚1,154 ∙∙∙ 𝑊12

𝑚1,160 

 

         𝐹2  =   0  =   𝑎2,1𝑊2

𝑚2,1𝑊6

𝑚2,2 ∙∙∙ 𝑊12

𝑚2,8  +   𝑎2,2𝑊2

𝑚2,9𝑊6

𝑚2,10 ∙∙∙ 𝑊12

𝑚2,16  +  … +    

                                                                                                                        +  … +   𝑎2,20𝑊2

𝑚2,153𝑊6

𝑚2,154 ∙∙∙ 𝑊12

𝑚2,160 

 

          𝐹3  =   0  =   𝑎3,1𝑊3

𝑚3,1𝑊6

𝑚3,2 ∙∙∙ 𝑊12

𝑚3,8  +   𝑎3,2𝑊3

𝑚3,9𝑊6

𝑚3,10 ∙∙∙ 𝑊12

𝑚3,16  +  … +    

                                                                                                                       +  … +   𝑎3,20𝑊3

𝑚3,153𝑊6

𝑚3,154 ∙∙∙ 𝑊12

𝑚3,160 

   

          𝐹4  =   0  =   𝑎4,1𝑊4

𝑚4,1𝑊6

𝑚4,2 ∙∙∙ 𝑊12

𝑚4,8  +   𝑎4,2𝑊4

𝑚4,9𝑊6

𝑚4,10 ∙∙∙ 𝑊12

𝑚4,16  +  … +    

                                                                                                                        +  … +   𝑎4,20𝑊4

𝑚4,153𝑊6

𝑚4,154 ∙∙∙ 𝑊12

𝑚4,160 

 

          𝐹5  =   0  =   𝑎5,1𝑊5

𝑚5,1𝑊6

𝑚5,2 ∙∙∙ 𝑊12

𝑚5,8  +   𝑎5,2𝑊5

𝑚5,9𝑊6

𝑚5,10 ∙∙∙ 𝑊12

𝑚5,16  +  … +    

                                                                                                                        +  … +   𝑎5,20𝑊5

𝑚5,153𝑊6

𝑚5,154 ∙∙∙ 𝑊12

𝑚5,160 

  

 



 

(2).  Secondary Expansion: 

        𝑑𝑢   =   𝑑𝑊1 

        𝑑𝑣   =   𝑑𝑊2 

        𝑑𝑃   =   𝑑𝑊3 

        𝑑𝑇   =   𝑑𝑊4 

        𝑑𝜇   =   𝑑𝑊5 

        𝑑𝑥   =   𝑑𝑊6 

        𝑑𝑦   =   𝑑𝑊7 

  
        𝑁1 𝑑𝑥    +    𝑁2 𝑑𝑦    =   𝑁3𝑑𝑊8 

        𝑁4 𝑑𝑥    +    𝑁5 𝑑𝑦    =   𝑁6𝑑𝑊9 

        𝑁7 𝑑𝑥    +    𝑁8 𝑑𝑦    =   𝑁9𝑑𝑊10 

        𝑁10𝑑𝑥   +    𝑁11𝑑𝑦   =   𝑁12𝑑𝑊11 

        𝑁13𝑑𝑥   +    𝑁14𝑑𝑦   =   𝑁15𝑑𝑊12 

 

where : 

  

 



 

𝑁1   =    𝑏1𝑊6
𝑚1𝑊7

𝑚2𝑊8
𝑚3    +    𝑏2𝑊6

𝑚4𝑊7
𝑚5𝑊8

𝑚6 

  

𝑁2   =    𝑏3𝑊6
𝑚7𝑊7

𝑚8𝑊8
𝑚9   +   𝑏4𝑊6

𝑚10𝑊7
𝑚11𝑊8

𝑚12 

  

𝑁3   =    𝑏5𝑊6
𝑚13𝑊7

𝑚14𝑊8
𝑚15    +    𝑏6𝑊6

𝑚16𝑊7
𝑚17𝑊8

𝑚18 

  

𝑁4   =    𝑏7𝑊6
𝑚19𝑊7

𝑚20𝑊9
𝑚21    +    𝑏8𝑊6

𝑚22𝑊7
𝑚23𝑊9

𝑚24 

  

𝑁5   =    𝑏9𝑊6
𝑚25𝑊7

𝑚26𝑊9
𝑚27   +   𝑏10𝑊6

𝑚28𝑊7
𝑚29𝑊9

𝑚30 

  

𝑁6   =    𝑏11𝑊6
𝑚31𝑊7

𝑚32𝑊9
𝑚33    +    𝑏12𝑊6

𝑚34𝑊7
𝑚35𝑊9

𝑚36 

  
         .                                          .                                        . 
         .                                          .                                        . 
         .                                          .                                        . 

  

𝑁13   =    𝑏25𝑊6
𝑚73𝑊7

𝑚74𝑊12
𝑚75    +    𝑏26𝑊6

𝑚76𝑊7
𝑚77𝑊12

𝑚78  

  

𝑁14   =    𝑏27𝑊6
𝑚79𝑊7

𝑚80𝑊12
𝑚81    +   𝑏28𝑊6

𝑚82𝑊7
𝑚83𝑊12

𝑚84 

  

𝑁15   =    𝑏29𝑊6
𝑚85𝑊7

𝑚86𝑊12
𝑚87    +   𝑏30𝑊6

𝑚88𝑊7
𝑚89𝑊12

𝑚90   

 



In the Secondary Expansion of our Initially Assumed Universal Differential Form, the first set of auxiliary variables 
will be selected on the basis of representing the dependent and independent variables in that order. 

This will be followed by a series of other initially assumed auxiliary variables used for representing all basis functions 
in complete differential form that will be present in the final analytical solution of  the system of  PDEs. 

Regardless of the type of coordinate system used in our physical analysis, our Initially Assumed Universal Differential 
Expansion will be selected on the basis of solving the system of  PDEs  in terms of a system of  implicitly defined 
equations that would consist only of the algebraic and elementary basis functions.  

In order to maximize our numerical solution rate of the Nonlinear Simultaneous Equations, we can set all the  initial 
values of each auxiliary variable  which would define the  complete Boundary Conditions of the  system of  PDEs  
as part of the unknowns to solve for.   

Other unknowns to solve for are the variable coefficients from our system of  PDEs  defined in our NCSA table  which 
would include the  Reynolds number  "𝑅𝑒" ,  the Prandtl number  "𝑃𝑟"  and  the Eckert number "𝐸𝑐" .  

Over time, the NCSA table should eventually succeed in capturing from the infinite number of possible numerical 
solution sets of the  Nonlinear Simultaneous Equations, all those exact Instance Analytical Solutions that would 
conform with experimental results obtained under controlled  laboratory conditions.  

Only through the gathering of this type of information over a span of say many years or even many decades that a 
large number of generalized analytical solutions may potentially be uncovered.    

This would lead to a far better understanding of general fluid behavior than having to depend  solely on the use of   
experimental method of analysis or the numerical solutions of   PDEs. 

The unified theory of analytical integration can be converted into a  single major universal software  by which  all  DEs 
may be resolved under a single common ideology.  Such a universal software development would be referred to as a  
Numerically Controlled  Analytics Software  or  NCAS  and would operate on the principle of determining the 
existence of  general  analytical solutions  to DEs  by method of  conjecture  that would be entirely driven by 
computational analysis.   A far better alternative than having to maintain a large number of highly dispersed 
mathematical theories all of which could never be consolidated in terms of a  single universal software. 

 

 



 

 

Problem formulation for  Linear 

Elastic Boundary Value Problems 



 

In this section … 

 We will fundamentally illustrate the complete universality of 
our differential method of analysis beyond the Navier-Stokes 
equations. 

 We will expand our method into the mechanics of materials.  

 We will provide a more universal approach for attempting to 
solving  linear elastic boundary value problems. 

 These are governed by a system of  PDEs  defined in the 
three most popular coordinate systems. 

  

 

 



Cartesian coordinates: 

 In cartesian coordinates  the equations of motion are according to  Slaughter, W. S., 

(2002), “The linearized theory of elasticity”,  Birkhauser : 
  
𝜕𝜎𝑥

𝜕𝑥
  +   

𝜕𝜏𝑦𝑥

𝜕𝑦
 +  

𝜕𝜏𝑧𝑥

𝜕𝑧
 +  𝑃𝑥  =   𝜌

𝜕2𝑢𝑥

𝜕𝑡2
  

 
𝜕𝜏𝑥𝑦

𝜕𝑥
 +   

𝜕𝜎𝑦

𝜕𝑦
 +   

𝜕𝜏𝑧𝑦

𝜕𝑧
 +   𝑃𝑦  =  𝜌

𝜕2𝑢𝑦

𝜕𝑡2     

 
𝜕𝜏𝑥𝑧

𝜕𝑥
 +   

𝜕𝜏𝑦𝑧

𝜕𝑦
 +   

𝜕𝜎𝑧

𝜕𝑧
 +   𝑃𝑧  =   𝜌

𝜕2𝑢𝑧

𝜕𝑡2   

 
where  "𝑃𝑖  "  are the external body forces,   "𝜌"  the mass density  and  "𝑢𝑖"  the 
displacement. 

  

The strain-displacement relations are: 

 𝜖𝑥  =   
𝜕𝑢𝑥

𝜕𝑥
        𝛾𝑥𝑦  =   

𝜕𝑢𝑥

𝜕𝑦
  +   

𝜕𝑢𝑦

𝜕𝑥
  

𝜖𝑦  =   
𝜕𝑢𝑦

𝜕𝑦
        𝛾𝑦𝑧  =   

𝜕𝑢𝑦

𝜕𝑧
  +   

𝜕𝑢𝑧

𝜕𝑦
 

𝜖𝑧  =   
𝜕𝑢𝑧

𝜕𝑧
        𝛾𝑧𝑥  =   

𝜕𝑢𝑧

𝜕𝑥
  +   

𝜕𝑢𝑥

𝜕𝑧
 

  

The constitutive equations are defined from Hooke's law which in tensor form is: 

𝜎𝑖𝑗  =   𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙  

where  " 𝐶𝑖𝑗𝑘𝑙"   is the stiffness tensor.   

 



 

Cylindrical coordinates: 

 In cylindrical coordinates  the equations of motion are : 

  
𝜕𝜎𝑟𝑟

𝜕𝑟
 +  

1

𝑟

𝜕𝜎𝑟𝜃

𝜕𝜃
  +  

𝜕𝜎𝑟𝑧

𝜕𝑧
 +  

1

𝑟
𝜎𝑟𝑟  −   𝜎𝜃𝜃 +  𝑃𝑟  =   𝜌

𝜕2𝑢𝑟

𝜕𝑡2
 

  
𝜕𝜎𝑟𝜃

𝜕𝑟
 +  

1

𝑟

𝜕𝜎𝜃𝜃

𝜕𝜃
 +  

𝜕𝜎𝜃𝑧

𝜕𝑧
 +  

2

𝑟
𝜎𝑟𝜃  +    𝑃𝜃  =   𝜌

𝜕2𝑢𝜃

𝜕𝑡2
  

  
𝜕𝜎𝑟𝑧

𝜕𝑟
 +  

1

𝑟

𝜕𝜎𝜃𝑧

𝜕𝜃
 +  

𝜕𝜎𝑧𝑧

𝜕𝑧
 + 

1

𝑟
𝜎𝑟𝑧  +   𝑃𝑧  =   𝜌

𝜕2𝑢𝑧

𝜕𝑡2
𝜀𝑟𝑟  =   

𝜕𝑢𝑟

𝜕𝑟
 

  

The strain-displacement relations are: 

𝜀𝜃𝜃  =   
1

𝑟

𝜕𝑢𝜃

𝜕𝜃
 +  𝑢𝑟  

  

𝜀𝑧𝑧  =   
𝜕𝑢𝑧

𝜕𝑧
 

  

𝜀𝑟𝜃  =    
1

2

1 

𝑟

𝜕𝑢𝑟

𝜕𝜃
  +  

𝜕𝑢𝜃

𝜕𝑟
  −   

𝑢𝜃

𝑟
 

 

𝜀𝜃𝑧  =    
1

2

𝜕𝑢𝜃

𝜕𝑧
  +   

1

𝑟

𝜕𝑢𝑧

𝜕𝜃
   

 

𝜀𝑧𝑟  =   
1

2

𝜕𝑢𝑟

𝜕𝑧
  + 

𝜕𝑢𝑧

𝜕𝑟
   

  

and the constitutive relations with a change of indices are the same as in the  Cartesian coordinate system. 

  

  

 



Spherical coordinates: 

 In spherical coordinates the equations of motion are : 

𝜕𝜎𝑟𝑟

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝑟𝜃

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎𝑟∅

𝜕∅
 +  

1

𝑟

 

 
2𝜎𝑟𝑟  −   𝜎𝜃𝜃  −   𝜎∅∅  +   𝜎𝑟𝜃𝐶𝑜𝑡(𝜃)  +  𝑃𝑟  =   𝜌

𝜕2𝑢𝑟

𝜕𝑡2
 

𝜕𝜎𝑟𝜃

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝜃𝜃

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎𝜃∅

𝜕∅
 +  

1

𝑟

 

 
(𝜎𝜃𝜃 −  𝜎∅∅)𝐶𝑜𝑡(𝜃) +   3𝜎𝑟𝜃  +   𝑃𝜃  =   𝜌

𝜕2𝑢𝜃

𝜕𝑡2
 

𝜕𝜎𝑟∅

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝜃∅

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎∅∅

𝜕∅
 +   

1

𝑟

 

 
2𝜎𝜃∅𝐶𝑜𝑡(𝜃)  +   3𝜎𝑟∅  +   𝑃∅  =   𝜌

𝜕2𝑢∅

𝜕𝑡2
 

The strain-displacement relations are: 

𝜀𝑟𝑟  =   
𝜕𝑢𝑟

𝜕𝑟
  

𝜀𝜃𝜃  =   
1

𝑟

𝜕𝑢𝜃

𝜕𝜃
 +  𝑢𝑟  

𝜀∅∅  =   
1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝑢∅

𝜕∅
  +   𝑢𝑟𝑆𝑖𝑛 𝜃 +  𝑢𝜃𝐶𝑜𝑠(𝜃)   

𝜀𝑟𝜃  =    
1

2

1 

𝑟

𝜕𝑢𝑟

𝜕𝜃
  +   

𝜕𝑢𝜃

𝜕𝑟
  −   

𝑢𝜃

𝑟
 

𝜀𝜃∅  =    
1

2𝑟
 

1

𝑆𝑖𝑛(𝜃)

𝜕𝑢𝜃

𝜕∅
  +   

𝜕𝑢∅

𝜕𝜃
  −   𝑢∅𝐶𝑜𝑡(𝜃)   

𝜀𝑟∅  =    
1

2
 

1

𝑟𝑆𝑖𝑛(𝜃)

𝜕𝑢𝑟

𝜕∅
  +   

𝜕𝑢∅

𝜕𝑟
  −   

𝑢∅

𝑟
  

  

 



 

Here is our general method of solution for all  

linear elastic boundary value problems  

 



We will select the Spherical Coordinate System as the standard 

model for establishing a universal process that is based entirely on 

our method of differential analysis for attempting to solve  PDEs  in 

terms of  generalized  analytical solutions.    

 

 

 

 

 

 

 

 

This would involve the extensive application  of an NCSA  table for 

the gathering of information that can eventually lead us to complete 

generalized analytical solutions satisfying an extremely wide range 

of  boundary conditions.  

 



Spherical coordinates: 

 In spherical coordinates the equations of motion are : 

𝜕𝜎𝑟𝑟

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝑟𝜃

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎𝑟∅

𝜕∅
 +  

1

𝑟

 

 
2𝜎𝑟𝑟  −   𝜎𝜃𝜃  −   𝜎∅∅  +   𝜎𝑟𝜃𝐶𝑜𝑡(𝜃)  +  𝑃𝑟  =   𝜌

𝜕2𝑢𝑟

𝜕𝑡2
 

𝜕𝜎𝑟𝜃

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝜃𝜃

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎𝜃∅

𝜕∅
 +  

1

𝑟

 

 
(𝜎𝜃𝜃 −  𝜎∅∅)𝐶𝑜𝑡(𝜃) +   3𝜎𝑟𝜃  +   𝑃𝜃  =   𝜌

𝜕2𝑢𝜃

𝜕𝑡2
 

𝜕𝜎𝑟∅

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝜃∅

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎∅∅

𝜕∅
 +   

1

𝑟

 

 
2𝜎𝜃∅𝐶𝑜𝑡(𝜃)  +   3𝜎𝑟∅  +   𝑃∅  =   𝜌

𝜕2𝑢∅

𝜕𝑡2
 

The strain-displacement relations are: 

𝜀𝑟𝑟  =   
𝜕𝑢𝑟

𝜕𝑟
  

𝜀𝜃𝜃  =   
1

𝑟

𝜕𝑢𝜃

𝜕𝜃
 +  𝑢𝑟  

𝜀∅∅  =   
1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝑢∅

𝜕∅
  +   𝑢𝑟𝑆𝑖𝑛 𝜃 +  𝑢𝜃𝐶𝑜𝑠(𝜃)   

𝜀𝑟𝜃  =    
1

2

1 

𝑟

𝜕𝑢𝑟

𝜕𝜃
  +   

𝜕𝑢𝜃

𝜕𝑟
  −   

𝑢𝜃

𝑟
 

𝜀𝜃∅  =    
1

2𝑟
 

1

𝑆𝑖𝑛(𝜃)

𝜕𝑢𝜃

𝜕∅
  +   

𝜕𝑢∅

𝜕𝜃
  −   𝑢∅𝐶𝑜𝑡(𝜃)   

𝜀𝑟∅  =    
1

2
 

1

𝑟𝑆𝑖𝑛(𝜃)

𝜕𝑢𝑟

𝜕∅
  +   

𝜕𝑢∅

𝜕𝑟
  −   

𝑢∅

𝑟
  

  

 



We can begin by assigning the following auxiliary variables to each dependent and independent 

variables : 

𝑊1  =  𝑧1  =   𝜎𝑟𝑟 

𝑊2  =  𝑧2  =  𝜎𝑟𝜃 

𝑊3  =  𝑧3  =  𝜎𝑟∅ 

𝑊4  =  𝑧4  =  𝜎𝜃𝜃 

𝑊5  =  𝑧5  =  𝜎𝜃∅ 

𝑊6  =  𝑧6  =  𝜎∅∅ 

𝑊7  =  𝑧7   =   𝑢𝑟  

𝑊8  =  𝑧8   =   𝑢𝜃   

𝑊9  =  𝑧9   =  𝑢∅ 

𝑊10 =  𝑥1  =   𝑟     

𝑊11 =  𝑥2  =  𝜃    

𝑊12 = 𝑥3  =  ∅  

𝑊13 =  𝑥4  =  𝑡    

 

Because of the presence of the Cotangent function in the  PDEs we can add the following new auxiliary 

variable to our  IAMPT :  

𝑊𝑝+1  =   𝑇𝑎𝑛 𝜃  

where  "p"  is the total number of auxiliary variables defined from our  IAMPT. 

  



 

We can also define  :  

ℎ1  =  𝐶𝑜𝑡 𝜃  =   
1

𝑊𝑝+1 
  

 

so that its  Multivariate Polynomial Transform  can be written as : 

 

(1).  Primary Expansion: 

          ℎ1   =   
1

𝑊𝑝+1 
 

 

(2).  Secondary Differential Expansion: 

        1 + 𝑊𝑝+1
2 𝑑𝑥2   =   𝑑𝑊𝑝+1 

 

Now since : 

𝑆𝑖𝑛(𝜃)  =   
2 𝑇𝑎𝑛 𝜃/2

1 +  𝑇𝑎𝑛2 𝜃/2
 

  

then we can add the following second auxiliary variable to account for the  presence of the  "Sin(𝜃)"  
function  in the  PDEs  : 

𝑊𝑝+2  =   𝑇𝑎𝑛 𝜃/2  

  

 



 
We can let: 

ℎ2  =  𝑆𝑖𝑛 𝜃  =   
2 𝑊𝑝+2

1 +  𝑊𝑝+2
2  

 

  

so that its  Multivariate Polynomial Transform  can be written as : 

  
(1).  Primary Expansion: 

       ℎ2   =    
2 𝑊𝑝+2

1 +   𝑊𝑝+2
2  

 

 

 (2).  Secondary Differential Expansion: 

         1 + 𝑊𝑝+2
2 𝑑𝑥2   =   2 𝑑𝑊𝑝+2 

 

We will use the following notation for defining the multivariate polynomials that corresponds to the various 
partial derivatives of each dependent variable with respect to the independent variables under the application 
of the chain rule for  𝑖 ≤ 9   and   1 ≤ 𝑗 ≤ 4   : 

 
𝑃𝑛𝑖𝑗

𝑄𝑛𝑖𝑗
  =    

𝜕𝑛𝑧𝑖

𝜕𝑥𝑗
𝑛          

 



Spherical coordinates: 

 In spherical coordinates the equations of motion are : 

𝜕𝜎𝑟𝑟

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝑟𝜃

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎𝑟∅

𝜕∅
 +  

1

𝑟

 

 
2𝜎𝑟𝑟  −   𝜎𝜃𝜃  −   𝜎∅∅  +   𝜎𝑟𝜃𝐶𝑜𝑡(𝜃)  +  𝑃𝑟  =   𝜌

𝜕2𝑢𝑟

𝜕𝑡2
 

𝜕𝜎𝑟𝜃

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝜃𝜃

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎𝜃∅

𝜕∅
 +  

1

𝑟

 

 
(𝜎𝜃𝜃 −  𝜎∅∅)𝐶𝑜𝑡(𝜃) +   3𝜎𝑟𝜃  +   𝑃𝜃  =   𝜌

𝜕2𝑢𝜃

𝜕𝑡2
 

𝜕𝜎𝑟∅

𝜕𝑟
+  

1

𝑟

𝜕𝜎𝜃∅

𝜕𝜃
  +  

1

𝑟𝑆𝑖𝑛(𝜃)
 
𝜕𝜎∅∅

𝜕∅
 +   

1

𝑟

 

 
2𝜎𝜃∅𝐶𝑜𝑡(𝜃)  +   3𝜎𝑟∅  +   𝑃∅  =   𝜌

𝜕2𝑢∅

𝜕𝑡2
 

The Primary Expansion of the entire system of second order  PDEs  may now be completely defined  as : 

 
𝑃111

𝑄111
 +   

1

𝑊10

𝑃122

𝑄122
  +  

(1 +  𝑊𝑝+2
2 )

2 𝑊𝑝+2𝑊10
 
𝑃133

𝑄133
  +   

1

𝑊10
2𝑊1  −   𝑊4  −   𝑊6  +   𝑊2

1

𝑊𝑝+1 
   +   𝑃𝑟

^ =   𝜌
𝑃274

𝑄274
 

 
𝑃121

𝑄121
 +   

1

𝑊10

𝑃142

𝑄142
  +  

(1 +  𝑊𝑝+2
2 )

2 𝑊𝑝+2𝑊10
 
𝑃153

𝑄153
  +   

1

𝑊10
(𝑊4 −  𝑊6)

1

𝑊𝑝+1
  +   3𝑊2    +   𝑃𝜃

^  =   𝜌
𝑃284

𝑄284
 

  

𝑃131

𝑄131
 +   

1

𝑊10

𝑃152

𝑄152
  +  

(1 +   𝑊𝑝+2
2 )

2 𝑊𝑝+2𝑊10
 
𝑃163

𝑄163
  +   

1

𝑊10
2𝑊5

1

𝑊𝑝+1 
  +   3𝑊3    +   𝑃∅

^ =   𝜌
𝑃294

𝑄294
 

  
where  " 𝑃𝑟

^ " ,  " 𝑃𝜃
^ "  and  " 𝑃∅

^ " each represent the Primary Expansion of the Multivariate Polynomial Transform 

corresponding to each of the body forces   "𝑃𝑟", "𝑃𝜃" and "𝑃∅"  respectively. 

 



 

The Secondary Expansion of the  PDEs  is exactly identical to the one defined in our  

IAMPT    where   "q = 2"  to account for the presence  of  both trigonometric functions : 

(2).  Secondary Expansion: 

          𝑑𝜎𝑟𝑟  =  𝑑𝑧1   =  𝑑𝑊1 

          𝑑𝜎𝑟𝜃  =  𝑑𝑧2   =  𝑑𝑊2  

         𝑑𝜎𝑟∅   =  𝑑𝑧3   =  𝑑𝑊3 

         𝑑𝜎𝜃𝜃   =  𝑑𝑧4   =  𝑑𝑊4 

         𝑑𝜎𝜃∅   =  𝑑𝑧5   =  𝑑𝑊5 

         𝑑𝜎∅∅   =  𝑑𝑧6   =  𝑑𝑊6 

         𝑑𝑢𝑟     =  𝑑𝑧7   =  𝑑𝑊7 

         𝑑𝑢𝜃    =  𝑑𝑧8   =  𝑑𝑊8 

         𝑑𝑢∅    =  𝑑𝑧9   =  𝑑𝑊9 

          𝑑𝑟     =  𝑑𝑥1   =  𝑑𝑊10 

          𝑑𝜃    =  𝑑𝑥2   =  𝑑𝑊11 

          𝑑∅    =  𝑑𝑥3   =  𝑑𝑊12 

          𝑑𝑡     =  𝑑𝑥4   =  𝑑𝑊13 

 

 



 

 

           𝑁(𝑖−1) 𝑚+𝑛+1 +𝑡𝑑𝑧𝑡   +     𝑁𝑖 𝑚+𝑛+1 −𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                                               =   𝑁𝑖 𝑚+𝑛+1 𝑑𝑊𝑗           1 ≤ 𝑖 ≤ 𝑝 + 2 − 𝑚 − 𝑛    

                                                                                                                          𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝 + 2  

         1 + 𝑊𝑝+1
2 𝑑𝑥2  =  𝑑𝑊𝑝+1   

         1 + 𝑊𝑝+2
2 𝑑𝑥2  =  2 𝑑𝑊𝑝+2   

  

Having defined the complete Multivariate Polynomial Transform of the PDEs, we are now in the 
position of defining the complete  IAMPT  that will be used for solving the  PDEs. 

  

(1).  Primary Expansion: 

          𝐹𝑖 𝑊1,𝑊2, … ,𝑊𝑝,𝑊𝑝+1,𝑊𝑝+2   =    0   =     𝑎𝑖,𝑡  𝑊
𝑗

𝐸𝑖,𝑘𝑗

𝑝+2

𝑗

𝑟

𝑡

           1 ≤ 𝑖 ≤ 9  

(2).  Secondary Expansion: 

        Exactly the same as above  

 

 

  



 

 

CORRESPONDING  NCSA  TABLE 

 



 

Our NCSA table must be sufficiently 

populated with a fairly large number of 

exact expressions for  "𝑼𝒊" . 

 

Afterwards, the entire computational 

process becomes entirely transformed 

into a purely deductive method of 

reasoning by attempting to establish a 

general analytical solution of the  PDEs 

satisfying a wide range of general 

boundary conditions. 

 



 

 

 

 

Simple demonstration in Cosmology 

for Einstein Field Equations 



 

What are the Einstein Field Equations used for ? 

 Space and time is know to be entirely influenced by mass and 
energy so Einstein Field Equations describes its fundamental 
interaction that exists with gravitation.   

 We are interested in determining locally the space-time 
geometry being the results of the presence of mass-energy and 
linear momentum 

 Very similar to determining the field in the form of 
electromagnetic energy from charges and currents using 
Maxwell's equations. 

 The original equations are formulated in terms of  tensors that 
results into 16 coupled hyperbolic-elliptic nonlinear partial 
differential equations (ignoring the effect of symmetry). 

 When velocities are much less than the speed of light the 
Einstein Field Equations reduce to Newton's law of gravitation 

 



In simple layman’s  term  how  are they derived ? 

 

𝑅𝜇𝜈   −   
1

2
𝑅𝑔𝜇𝜈  +   Λ𝑔𝜇𝜈  =   

8𝜋𝐺

𝑐4  𝑇𝜇𝜈 

 

MATTER: 

Starting with the right hand side of this tensor equation,  the energy-momentum tensor  

“𝑇𝜇𝜈”   being  multiplied by some set of  fundamental constants  “ 
8𝜋𝐺

𝑐4  ”    encodes exactly 

how matter is distributed in this universe 

 

GEOMETRY: 

On the left hand side of the equation is purely geometry for describing   space-time 
based on the use of  a metric tensor  (from differential geometry) for defining the 
complete geometry of our  manifold.  We should be able to extract all the relevant 
information about the curvature of the manifold  just from the metric tensor.  This is 
done by constructing the Riemann (curvature) tensor   which holds pretty much all the 
information about the curvature of the manifold 

  



 

Why are Einstein Field Equations so important in physics ? 

 Special classes of exact solutions to these PDEs can lead to various models of gravitational 

phenomena, such as rotating black holes and the expanding universe and even gravitational 

waves. 

Existing well known analytical solutions correspond to the following special cases of Einstein Field 

Equations : 

 Vacuum solutions: these describe regions in which no matter or no gravitational fields are 

present, 

 Electro vacuum solutions: must arise entirely from an electromagnetic field which solves the 

source-free Maxwell equations on the given curved Lorentzian manifold; this means that the only 

source for the gravitational field is the field energy (and momentum) of the electromagnetic field, 

 Null dust solutions: must correspond to a stress–energy tensor which can be interpreted as 

arising from incoherent electromagnetic radiation, without necessarily solving the Maxwell field 

equations on the given Lorentzian manifold, 

 Fluid solutions: must arise entirely from the stress–energy tensor of a fluid (often taken to be a 

perfect fluid); the only source for the gravitational field is the energy, momentum, and stress 

(pressure and shear stress) of the matter comprising the fluid. 

 In addition to such well established phenomena as fluids or electromagnetic waves, one can 

contemplate models in which the gravitational field is produced entirely by the field energy of 

various exotic hypothetical fields: 

 Scalar field solutions: must arise entirely from a scalar field (often a massless scalar field); these 

can arise in classical field theory treatments of meson beams, or as quintessence, 

 Lambda vacuum solutions (not a standard term, but a standard concept for which no name yet 

exists): arises entirely from a nonzero cosmological constant. 

 

 

 



Just as with the Navier-Stokes equations and the basic equations of elasticity, there are just an 

incredible number of physical scenarios that can be constructed just by solving for all the 

corresponding  PDEs. 

In the case of  Einstein Field Equations they are all important for understanding  the basic physical 

properties of our universe which even makes it more imperative for solving them  only in  their 

complete original form without the use of any type of transformation processes whatsoever ! 

 

𝐺𝑘 =   0 

Initial                                                  Coefficient                     Exact analytical solution 

Conditions                                          values present              obtained using the Multivariate        

                                                             in the  DE or                 Polynomial Transform method 

                                                             system of  DEs  

 
𝑧01, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎0, 𝑏0, 𝑐0, …                                                 𝑈1  =   0 

 

𝑧11, 𝑧12, … , 𝑧1𝑚, 𝑥11, … , 𝑥1𝑛  …                   𝑎1, 𝑏0, 𝑐0, …                                                 𝑈2  =   0         
 

𝑧21, 𝑧22 , … , 𝑧2𝑚, 𝑥21, … , 𝑥2𝑛 …                   𝑎0, 𝑏1, 𝑐0, …                                                 𝑈3  =   0 

 

                       .                                            .                                                        .           

                       .                                            .                                                        .           

                       .                                            .                                                        .           

 



Exact computational method  for 
calculating the various 
derivatives and partial 

derivatives of  an  Initially 
Assumed Multivariate 
Polynomial Transform 

 

 



 

 Determining the various derivatives of a product of several expressions is similar to  
algebraically expanding to some exponent value the sum of several terms.  

 Only major difference between the two is that in the case of differentiation, 
exponentiation becomes treated as an order of differentiation while all other algebraic 
operations remain completely identical.   

 

Simple case of  a product of two functions. 

𝑑𝑛

𝑑𝑥𝑛
 𝑓𝑔  =   

𝑛

𝑘
𝑓(𝑘)𝑔(𝑛−𝑘)

𝑛

𝑘=0

 

where: 

𝑛

𝑘
 =  𝐵𝑛,𝑘 =  

𝑛!

𝑘! 𝑛 − 𝑘 !
  

is defined as the Binomial Coefficients 

 

In complete expanded form using a special set of notations to symbolize differentiation: 

[𝑓 + 𝑔](𝑛) =   𝑓(0)𝑔(𝑛)  +   𝐵𝑛−1,1𝑓
(1)𝑔(𝑛−1)  +   𝐵𝑛−2,2𝑓

(2)𝑔(𝑛−2)   +  … +  𝑓(𝑛)𝑔(0) 

 

 

 



When there are more than two functional expressions involved, we instead use the 

Multinomial Expansion Theorem : 

𝑎1  +  𝑎2 +⋯+  𝑎𝑘
𝑛   =   

𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!𝑛1,𝑛2,…,𝑛𝑘≥0
𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

  𝑎1
𝑛1  𝑎2

𝑛2  ∙∙∙  𝑎𝑘
𝑛𝑘    

where   “𝑛 =  𝑛1  +   𝑛2  +  … +  𝑛𝑘” 

 

In terms of differentiation and using our special notations: 

𝑑𝑛

𝑑𝑥𝑛
(𝑓1𝑓2 ∙∙∙ 𝑓𝑘)   =   [𝑓1  +   𝑓2  + ⋯+  𝑓𝑘]

(𝑛)                  

 

                                 =   
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!𝑛1,𝑛2,…,𝑛𝑘≥0
𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

  𝑓1
(𝑛1) 𝑓2

(𝑛2)  ∙∙∙  𝑓𝑘
(𝑛𝑘)

 

 



 

 
𝒚 =   𝒆𝟐𝒙  =  𝒆−𝒙𝒆𝟎.𝟓𝒙𝒆𝟐.𝟓𝒙 

Now define: 

 f1 = e−x,   f2 = e0.5x  and    f3 = e2.5x   

so that each of their individual derivative at  “x=0.5”  up to a maximum order of  5 is calculated as follow: 

𝑓1
(0)

= e−x,  𝑓2
(0)

= e0.5x    and    𝑓3
(0)

= e2.5x    

𝑓1
(1)

= −e−x,  𝑓2
1 = 0.5e0.5x   and    𝑓3

(1)
= 2.5e2.5x   

𝑓1
(2)

= e−x,    𝑓2
(2)

= 0.25e0.5x   and    𝑓3
(2)

= 6.25e2.5x  

𝑓1
(3)

= −e−x,  𝑓2
(3)

= 0.125e0.5x  and    𝑓3
(3)

= 15.625e2.5x    

𝑓1
(4)

= e−x,  𝑓2
(4)

= 0.0625e0.5x   and    𝑓3
(4)

= 39.0625e2.5x 

𝑓1
(5)

= −e−x,  𝑓2
(5)

= 0.03125e0.5x   and    𝑓3
(5)

= 97.65625e2.5x  

At  "x = 0.5"  we thus have: 

𝑓1
(0)

= e−0.5 = 0.607,  𝑓2
(0)

= e0.25 = 1.284   and    𝑓3
(0)

= e1.25 = 3.490  

𝑓1
(1)

= −e−0.5 = −0.607,  𝑓2
1

= 0.5e0.25 = 0.642   and    𝑓3
1

= 2.5e1.25 = 8.726     

𝑓1
(2)

= e−0.5 = 0.607,   𝑓2
(2)

= 0.25e0.25 = 0.321   and    𝑓3
(2)

= 6.25e1.25 = 21.815  

𝑓1
(3)

= −e−0.5= −0.607,  𝑓2
3 = 0.125e0.25 = 0.161  and    𝑓3

(3)
= 15.625e1.25 =  54.537    

𝑓1
(4)

= e−0.5 = 0.607,  𝑓2
(4)

= 0.0625e0.25 = 0.080  and    𝑓3
(4)

= 39.0625e1.25 = 136.342   

𝑓1
(5)

= −e−0.5 = −0.607,  𝑓2
5 = 0.03125e0.25 = 0.040  and    𝑓3

5 = 97.65625e1.25 = 340.854    



Using our special notation: 

𝑑5𝑦

𝑑𝑥5
  =  [𝑓1  +   𝑓2  +  𝑓3]

(5)   =   
𝑛!

𝑛1! 𝑛2! 𝑛3!𝑛1,𝑛2,𝑛3≥0
𝑛1+𝑛2+𝑛3=5

  𝑓1
(𝑛1)  𝑓2

(𝑛2) 𝑓3
(𝑛3)               

 
=    (1)(-0.607)(1.284)(3.490)  +  (5)(0.607)(0.642)(3.490)  +  (10)(-0.607)(0.321)(3.490)  +  (10)(0.607)(0.161)(3.490)  +   

      (5)(-0.607)(0.080)(3.490)  +  (1)(0.607)(0.040)(3.490)  +  (5)(0.607)(1.284)(8.726)  +  (20)(-0.607)(0.642)(8.726)  +   

      (30)(0.607)(0.321)(8.726)  +  (20)(-0.607)(0.161)(8.726)  +  (5)(0.607)(0.080)(8.726)  +  (10)(-0.607)(1.284)(21.815)  +   

      (30)(0.607)(0.642)(21.815)  +  (30)(-0.607)(0.321)(21.815)  +  (10)(0.607)(0.161)(21.815)  +  (10)(0.607)(1.284)(54.537)  +   

      (20)(-0.607)(0.642)(54.537)  +  (10)(0.607)(0.321)(54.537)  +  (5)(-0.607)(1.284)(136.342)  +  (5)(0.607)(0.642)(136.342)  +   

      (1)(0.607)(1.284)(340.854)   

where there are a total number of  21  terms satisfying the criteria  that   "𝑛1, 𝑛2, 𝑛3 ≥ 0"   and  
 "𝑛1 + 𝑛2 + 𝑛3 = 5“ 

 
 
By writing a short computer program for performing the above arithmetical operation but with 
higher precision, the value obtained based on  the  Multinomial Expansion Theorem  was 
determined as   "𝟖𝟔. 𝟗𝟖𝟓𝟎𝟏𝟗". 

The 5th derivative of   "𝑒2𝑥"  is   "25𝑒2𝑥"  so that at  "x = 0.5"  this value becomes  32𝑒2(0.5) =
32𝑒 =  𝟖𝟔. 𝟗𝟖𝟓𝟎1851  which is the same value as the one computed using the  Multinomial 
Expansion Theorem  above. 

  

 



We would like to expand our set of notations for calculating the various partial derivatives of 
a product of several multivariate expressions. 

𝜕𝑚1

𝜕𝑥1
𝑚1

  
𝜕𝑚2

𝜕𝑥2
𝑚2

 
𝜕𝑚3

𝜕𝑥3
𝑚3

  …   
𝜕𝑚𝑘

𝜕𝑥𝑗
𝑚𝑘

  𝑓1 𝑥1, 𝑥2, … , 𝑥𝑗 ∙  𝑓2 𝑥1, 𝑥2, … , 𝑥𝑗  ∙∙∙ 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑗)    

 

Expanding our set of notations for including the general multivariate case: 

𝑓1
(0)

+ 𝑓2
(0)

+ …+ 𝑓𝑖
(0)

 
1(𝑚1)

(𝑚1)
  ∆    𝑓1

(0)
+ 𝑓2

(0)
+ …+ 𝑓𝑖

(0)
 

2(𝑚2)

(𝑚2)
        ∆   ∙∙∙   ∆   

                                                                                            ∆   ∙∙∙   ∆       𝑓1
(0)

+ 𝑓2
(0)

+ …+ 𝑓𝑖
(0)

𝑗(𝑚𝑘)

(𝑚𝑘)
 

In terms of the Multinomial Expansion Theorem this can be rewritten as: 

                 
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚1

  𝑓1,1(𝑛1)
(𝑛1)  𝑓2,1(𝑛2)

(𝑛2)  ∙∙∙  𝑓𝑖,1 𝑛𝑖

𝑛𝑖            ∆  

                              
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚2

  𝑓1,2(𝑛1)
(𝑛1)  𝑓2,2(𝑛2)

(𝑛2)  ∙∙∙  𝑓𝑖,2 𝑛𝑖

𝑛𝑖            ∆   ∙∙∙   ∆   

 

  
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚𝑘

  𝑓1,𝑗(𝑛1)
(𝑛1)  𝑓2,𝑗(𝑛2)

(𝑛2)  ∙∙∙  𝑓𝑖,𝑗 𝑛𝑖

𝑛𝑖  



 

𝜕3𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2   =   𝑓1 + 𝑓2 1 1

(1)
  ∆   𝑓1 + 𝑓2 2(2)

(2)
  

                 =    𝑓1,1(1)
(1)

 +   𝑓2,1(1)
(1)

  ∆  𝑓1,2(2)
(2)

 +   2𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

+  𝑓2.2(2)
(2)

     

 

Algebraically performing a term by term symbolic multiplication by treating all exponent values 
as order of differentiation. 

                 =    𝑓1,1(1)
(1)

𝑓1,2(2)
(2)

 +   2𝑓1,1(1)
(1)

𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

 +   𝑓1,1(1)
(1)

𝑓2,2(2)
(2)

 +     

                                                               +    𝑓2,1(1)
(1)

𝑓1,2(2)
(2)

 +   2𝑓2,1(1)
(1)

𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

+ 𝑓2,1(1)
(1)

𝑓2,2(2)
(2)

 

 

which in the conventional symbolic form may be translated as: 

                   =    
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2   +   2

𝜕2𝑓1
𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2
𝜕𝑥2

  +    
𝜕𝑓1
𝜕𝑥1

𝜕2𝑓2

𝜕𝑥2
2   +    

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2
𝜕𝑥1

  +   2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
  +   

𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2  

 

Each term in the expansion must always contain the two functions that is being differentiated 

                   =   
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2 𝒇𝟐   +  2

𝜕2𝑓1
𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2
𝜕𝑥2

  +    
𝜕𝑓1
𝜕𝑥1

 
𝜕2𝑓2

𝜕𝑥2
2   +    

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2
𝜕𝑥1

  +    2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
 +   𝒇𝟏

𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2 

 



 

 

                 =   
𝝏𝟑𝒇𝟏

𝝏𝒙𝟏𝝏𝒙𝟐
𝟐
𝒇𝟐   +  𝟐

𝝏𝟐𝒇𝟏

𝝏𝒙𝟏𝝏𝒙𝟐
 
𝝏𝒇𝟐

𝝏𝒙𝟐
  +    

𝝏𝒇𝟏

𝝏𝒙𝟏
 
𝝏𝟐𝒇𝟐

𝝏𝒙𝟐
𝟐

  +    
𝝏𝟐𝒇𝟏

𝝏𝒙𝟐
𝟐

𝝏𝒇𝟐

𝝏𝒙𝟏
  +    𝟐

𝝏𝒇𝟏

𝝏𝒙𝟐
 

𝝏𝟐𝒇𝟐

𝝏𝒙𝟏𝝏𝒙𝟐
 +   𝒇𝟏

𝝏𝟑𝒇𝟐

𝝏𝒙𝟏𝝏𝒙𝟐
𝟐
 

 

We can validate the use of our symbolic notations by performing the same operation manually and 
compare the results with the one obtained in the above equation: 

  

 𝜕2𝑓1𝑓2

𝜕𝑥2
2   =   

𝜕

𝜕𝑥2
 

𝜕𝑓1
𝜕𝑥2

𝑓2  +   𝑓1
𝜕𝑓2
𝜕𝑥2

  =   
𝜕2𝑓1

𝜕𝑥2
2 𝑓2  +   2 

𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓2
𝜕𝑥2

 +   𝑓1
𝜕2𝑓2

𝜕𝑥2
2   

 

𝜕3𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2  =  

𝜕

𝜕𝑥1
 
𝜕2𝑓1𝑓2

𝜕𝑥2
2   =   

𝜕

𝜕𝑥1
  
𝜕2𝑓1

𝜕𝑥2
2 𝑓2  +   2 

𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓2
𝜕𝑥2

 +   𝑓1
𝜕2𝑓2

𝜕𝑥2
2  

 

                =    
𝝏𝟑𝒇𝟏

𝝏𝒙𝟏𝝏𝒙𝟐
𝟐
𝒇𝟐   +   

𝝏𝟐𝒇𝟏

𝝏𝒙𝟐
𝟐

𝝏𝒇𝟐

𝝏𝒙𝟏
  +   𝟐

𝝏𝟐𝒇𝟏

𝝏𝒙𝟏𝝏𝒙𝟐
 
𝝏𝒇𝟐

𝝏𝒙𝟐
 +   𝟐

𝝏𝒇𝟏

𝝏𝒙𝟐
 

𝝏𝟐𝒇𝟐

𝝏𝒙𝟏𝝏𝒙𝟐
   +  

𝝏𝒇𝟏

𝝏𝒙𝟏
 
𝝏𝟐𝒇𝟐

𝝏𝒙𝟐
𝟐

 +   𝒇𝟏

𝝏𝟑𝒇𝟐

𝝏𝒙𝟏𝝏𝒙𝟐
𝟐
  

 

 

 It is by the use of these special notations that the 
entire process of calculating the various  EXACT  
partial derivatives of a product involving any number 
of  multivariate functions  can be reduced entirely to 
a  computational level. 



 The highly computational nature of the universal differential 
expansion makes it very difficult for conducting any real 
meaningful numerical experimentations even for solving the 
simplest type of  DEs.   

 Super computers are by far more suitable for this type of high 
level and very advanced form of computational analysis. 

 The advent of Quantum computers in the near future could 
significantly improve the performance of handling even the most 
complex systems of  PDEs.  

 They would by far exceed the capabilities of even our most 
powerful  super computer of our time because they would operate 
entirely on the fundamental principles of  Quantum theory which 
is based on the study of energy at the atomic and subatomic 
level.   

 Such advanced computer technology would allow for the 
capability of performing multiple tasks in parallel thereby 
resulting in a significant increase in the billion-fold when 
compared to conventional computer systems.    

 



Major importance of a unified 
theory of integration for the 

physical sciences 

 



 Unified theory of analytical integration can be converted 
into a  single major universal software  by which  all  
DEs may be resolved under a single common ideology.  

 Such a universal software development would be referred 
to as a  "Numerically Controlled  Analytics Software"  
or  NCAS.  

 It would operate on the principle of determining the 
existence of  general  analytical solutions  to DEs  
using the method of  conjecture  that would be  entirely 
driven by computational analysis.   

 Much better alternative than having to maintain a large 
number of highly dispersed mathematical theories all of 
which could never be consolidated in terms of a single 
universal software. 
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