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n  Traffic measurements: 
n  help understand characteristics of network traffic 
n  are basis for developing traffic models  
n  are used to evaluate performance of protocols and 

applications 
n  Traffic analysis: 

n  provides information about the network usage 
n  helps understand the behavior of network users 

n  Traffic prediction:  
n  important to assess future network capacity 

requirements 
n  used to plan future network developments 

Measurements of network traffic  
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Traffic modeling: self-similarity 

n  Self-similarity implies a ‘‘fractal-like’’ behavior 
n  Data on various time scales have similar patterns 
n  Implications: 

n  no natural length of bursts 
n  bursts exist across many time scales 
n  traffic does not become ‘‘smoother” when 

aggregated (unlike Poisson traffic) 
n  it is unlike Poisson traffic used to model traffic in 

telephone networks 
n  as the traffic volume increases, the traffic 

becomes more bursty and more self-similar 
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Self-similarity 

n  Self-similarity implies a ‘‘fractal-like’’ behavior:  
data on various time scales have similar patterns 

n  A wide-sense stationary process X(n) is called (exactly 
second order) self-similar if its autocorrelation 
function satisfies:  
n  r(m)(k) = r(k), k ≥ 0, m = 1, 2, …, n, 
   where m is the level of aggregation 
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n  Properties: 
n  slowly decaying variance 
n  long-range dependence 
n  Hurst parameter (H) 

n  Processes with only short-range dependence (Poisson):  
H = 0.5 

n  Self-similar processes: 0.5 < H < 1.0 
n  As the traffic volume increases, the traffic becomes 

more bursty, more self-similar, and the Hurst 
parameter increases 

Self-similar processes 



Self-similarity: 
influence of time-scales 

n  Genuine MPEG traffic trace 
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Self-similarity: 
influence of time-scales 

n  Synthetically generated Poisson model 
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Case study: BCNET packet capture 

n  BCNET is the hub of advanced telecommunication 
network in British Columbia, Canada that offers 
services to research and higher education institutions  
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BCNET packet capture 

n  BCNET transits have two service providers with  
10 Gbps network links and one service provider with  
1 Gbps network link  

n  Optical Test Access Point (TAP) splits the signal into 
two distinct paths  

n  The signal splitting ratio from TAP may be modified 
n  The Data Capture Device (NinjaBox 5000) collects the 

real-time data (packets) from the traffic filtering 
device 
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Net Optics Director 7400:  
application diagram  

n  Net Optics Director 7400 is used for BCNET traffic 
filtering 

n  It directs traffic to monitoring tools such as NinjaBox 
5000 and FlowMon 
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Network monitoring and analyzing: 
Endace card  

n  Endace Data Acquisition and Generation (DAG) 5.2X card 
resides inside the NinjaBox 5000 

n  It captures and transmits traffic and has time-stamping 
capability 

n  DAG 5.2X is a single port Peripheral Component 
Interconnect Extended (PCIx) card and is capable of 
capturing on average Ethernet traffic of 6.9 Gbps 

July 13, 2016 National Sun Yat-sen University, Kaohsiung, Taiwan 



Real time network usage by BCNET 
members 

n  The BCNET network is high-speed fiber optic 
research network 

n  British Columbia's network extends to 1,400 km and 
connects Kamloops, Kelowna, Prince George, Vancouver, 
and Victoria 
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Case study: E-Comm network 

n  E-Comm network: an operational trunked radio system 
serving as a regional emergency communication system 

n  The E-Comm network is capable of both voice and data 
transmissions 

n  Voice traffic accounts for over 99% of network traffic 
n  A group call is a standard call made in a trunked radio 

system 
n  More than 85% of calls are group calls 
n  A distributed event log database records every event 

occurring in the network: call establishment, channel 
assignment, call drop, and emergency call 



July 13, 2016 National Sun Yat-sen University, Kaohsiung, Taiwan 

E-Comm network 
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E-Comm network architecture 
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Traffic data 

n  2001 data set: 
n  2 days of traffic data 

n  2001-11-1 to 2001-11-02 (110,348 calls)  
n  2002 data set: 

n  28 days of continuous traffic data 
n  2002-02-10 to 2002-03-09 (1,916,943 calls) 

n  2003 data set: 
n  92 days of continuous traffic data 

n  2003-03-01 to 2003-05-31 (8,756,930 calls) 
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Observations 

n  Presence of daily cycles: 
n  minimum utilization: ~ 2 PM 
n  maximum utilization: 9 PM to 3 AM 

n  2002 sample data: 
n  cell 5 is the busiest 
n  others seldom reach their capacities 

n  2003 sample data: 
n  several cells (2, 4, 7, and 9) have all channels 

occupied during busy hours 
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Call arrival rate in 2002 and 2003:  
cyclic patterns 

n  the busiest hour is around midnight 
n  the busiest day is Thursday 
n  useful for scheduling periodical maintenance tasks 
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Modeling and characterization of 
traffic 

n  We analyzed voice traffic from a public safety wireless 
network in Vancouver, BC 
n  call inter-arrival and call holding times during five 

busy hours from each year (2001, 2002, 2003) 
n  Statistical distribution and the autocorrelation function 

of the traffic traces: 
n  Kolmogorov-Smirnov goodness-of-fit test 
n  autocorrelation functions 
n  wavelet-based estimation of the Hurst parameter 
 

n  B. Vujičić, N. Cackov, S. Vujičić, and Lj. Trajković, “Modeling and characterization of 
traffic in public safety wireless networks,” in Proc. SPECTS 2005, Philadelphia, PA, July 
2005, pp. 214–223. 
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Erlang traffic models  

n  PB : probability of rejecting a call 
n  Pc : probability of delaying a call 
n  N : number of channels/lines  
n  A : total traffic volume 
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Hourly traces 

n  Call holding and call inter-arrival times from the five 
busiest hours in each dataset (2001, 2002, and 2003) 

2001 2002 2003 

Day/hour No. Day/hour No. Day/hour No. 

02.11.2001 
15:00–16:00 3,718 01.03.2002 

04:00–05:00 4,436 26.03.2003 
22:00–23:00 4,919 

01.11.2001 
00:00–01:00 3,707 01.03.2002 

22:00–23:00 4,314 25.03.2003 
23:00–24:00 4,249 

02.11.2001 
16:00–17:00 3,492 01.03.2002 

23:00–24:00 4,179 26.03.2003 
23:00–24:00 4,222 

01.11.2001 
19:00–20:00 3,312 01.03.2002 

00:00–01:00 3,971 29.03.2003 
02:00–03:00 4,150 

02.11.2001 
20:00–21:00 3,227 

02.03.2002 
00:00–01:00 3,939 

29.03.2003 
01:00–02:00 4,097 
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Statistical distributions 

n  Fourteen candidate distributions: 
n  exponential, Weibull, gamma, normal, lognormal, 

logistic, log-logistic, Nakagami, Rayleigh, Rician,  
t-location scale, Birnbaum-Saunders, extreme value, 
inverse Gaussian 

n  Parameters of the distributions: calculated by 
performing maximum likelihood estimation 

n  Best fitting distributions are determined by: 
n  visual inspection of the distribution of the trace 

and the candidate distributions 
n  Kolmogorov-Smirnov test of potential candidates 
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Call inter-arrival times:  
pdf candidates 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Call inter-arrival time (s)

Pr
ob

ab
ili

ty
 d

en
si

ty
Traffic data
Exponential model
Lognormal model
Weibull model
Gamma model
Rayleigh model
Normal model



July 13, 2016 National Sun Yat-sen University, Kaohsiung, Taiwan 

Call inter-arrival times: 
K-S test results (2003 data) 

Distribution Parameter 26.03.2003, 
22:00–23:00 

25.03.2003, 
23:00–24:00 

26.03.2003, 
23:00–24:00 

29.03.2003, 
02:00–03:00 

29.03.2003, 
01:00–02:00 

Exponential 

h 1 1 0 1 1 

p 0.0027 0.0469 0.4049 0.0316 0.1101 

k 0.0283 0.0214 0.0137 0.0205 0.0185 

Weibull 

h 0 0 0 0 0 

p 0.4885 0.4662 0.2065 0.286 0.2337 

k 0.0130 0.0133 0.0164 0.014 0.0159 

Gamma 

h 0 0 0 0 0 

p 0.3956 0.3458 0.127 0.145 0.1672 

k 0.0139 0.0146 0.0181 0.0163 0.0171 

Lognormal 

h 1 1 1 1 1 

p 1.015E-20 4.717E-15 2.97E-16 3.267E-23 4.851E-21 

k 0.0689 0.0629 0.0657 0.0795 0.0761 
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Call inter-arrival times:  
estimates of H 

n  Traces pass the test for time constancy of a: 
estimates of H are reliable 

2001 2002 2003 

Day/hour H Day/hour H Day/hour H 

02.11.2001 
15:00–16:00 0.907 01.03.2002 

04:00–05:00 0.679 26.03.2003 
22:00–23:00 0.788 

01.11.2001 
00:00–01:00 0.802 01.03.2002 

22:00–23:00 0.757 25.03.2003 
23:00–24:00 0.832 

02.11.2001 
16:00–17:00 0.770 01.03.2002 

23:00–24:00 0.780 26.03.2003 
23:00–24:00 0.699 

01.11.2001 
19:00–20:00 0.774 01.03.2002 

00:00–01:00 0.741 29.03.2003 
02:00–03:00 0.696 

02.11.2001 
20:00–21:00 0.663 02.03.2002 

00:00–01:00 0.747 29.03.2003 
01:00–02:00 0.705 
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Call holding times: pdf candidates 
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Call holding times: estimates of  H 

2001 2002 2003 

Day/hour H Day/hour H Day/hour H 

02.11.2001 
15:00–16:00 0.493 01.03.2002 

04:00–05:00 0.490 26.03.2003 
22:00–23:00 0.483 

01.11.2001 
00:00–01:00 0.471 01.03.2002 

22:00–23:00 0.460 25.03.2003 
23:00–24:00 0.483 

02.11.2001 
16:00–17:00 0.462 

01.03.2002 
23:00–24:00 0.489 

26.03.2003 
23:00–24:00 

0.463 
* 

01.11.2001 
19:00–20:00 0.467 01.03.2002 

00:00–01:00 0.508 29.03.2003 
02:00–03:00 0.526 

02.11.2001 
20:00–21:00 0.479 02.03.2002 

00:00–01:00 0.503 29.03.2003 
01:00–02:00 0.466 

n  All (except one) traces pass the test for constancy of a  
n  only one unreliable estimate (*): consistent value 
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Call inter-arrival and call holding 
times 

2001 2002 2003 

Day/hour Avg. (s) Day/hour Avg. (s) Day/hour Avg. (s) 

inter-arrival 02.11.2001 
15:00–16:00 

0.97 01.03.2002 
04:00–05:00 

0.81 26.03.2003 
22:00–23:00 

0.73 

holding 3.78 4.07 4.08 

inter-arrival 01.11.2001 
00:00–01:00 

0.97 01.03.2002 
22:00–23:00 

0.83 25.03.2003 
23:00–24:00 

0.85 

holding 3.95 3.84 4.12 

inter-arrival 02.11.2001 
16:00–17:00 

1.03 01.03.2002 
23:00–24:00 

0.86 26.03.2003 
23:00–24:00 

0.85 

holding 3.99 3.88 4.04 

inter-arrival 01.11.2001 
19:00–20:00 

1.09 01.03.2002 
00:00–01:00 

0.91 29.03.2003 
02:00–03:00 

0.87 

holding 3.97 3.95 4.14 

inter-arrival 02.11.2001 
20:00–21:00 

1.12 02.03.2002 
00:00–01:00 

0.91 29.03.2003 
01:00–02:00 

0.88 

holding 3.84 4.06 4.25 

Avg. call inter-arrival times: 1.08 s (2001), 0.86 s (2002), 0.84 s (2003) 
Avg. call holding times: 3.91 s (2001), 3.96 s (2002), 4.13 s (2003) 
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Busy hour: best fitting distributions 

Busy hour 

Distribution 

Call inter-arrival times Call holding times 

Weibull Gamma Lognormal 

a b a b µ σ

02.11.2001 15:00–16:00 0.9785 1.1075 1.0326 0.9407 1.0913 0.6910 

01.11.2001 00:00–01:00 0.9907 1.0517 1.0818 0.8977 1.0801 0.7535 

02.11.2001 16:00–17:00 1.0651 1.0826 1.1189 0.9238 1.1432 0.6803 

01.03.2002 04:00–05:00 0.8313 1.0603 1.1096 0.7319 1.1746 0.6671 

01.03.2002 22:00–23:00 0.8532 1.0542 1.0931 0.7643 1.1157 0.6565 

01.03.2002 23:00–24:00 0.8877 1.0790 1.1308 0.7623 1.1096 0.6803 

26.03.2003 22:00–23:00 0.7475 1.0475 1.0910 0.6724 1.1838 0.6553 

25.03.2003 23:00–24:00 0.8622 1.0376 1.0762 0.7891 1.1737 0.6715 

26.03.2003 23:00–24:00 0.8579 1.0092 1.0299 0.8292 1.1704 0.6696 
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Case study: ChinaSat DirecPC system 
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Network and traffic data 

n  ChinaSat: network architecture and TCP 
n  Analysis of billing records: 

n  aggregated traffic 
n  user behavior 

n  Analysis of tcpdump traces: 
n  general characteristics 
n  TCP options and operating system (OS) 

fingerprinting 
n  network anomalies 



July 13, 2016 National Sun Yat-sen University, Kaohsiung, Taiwan 

Characteristics of satellite links 

n  ChinaSat hybrid satellite network 
n  Employs geosynchrous satellites deployed by Hughes 

Network Systems Inc. 
n  Provides data and television services: 

n  DirecPC (Classic): unidirectional satellite data service 
n  DirecTV: satellite television service 
n  DirecWay (Hughnet): new bi-directional satellite data 

service that replaces DirecPC 
n  DirecPC transmission rates: 

n  400 kb/s from satellite to user 
n  33.6 kb/s from user to network operations center 

(NOC) using dial-up 
n  Improves performance using TCP splitting with spoofing 
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ChinaSat data: analysis 

n  ChinaSat traffic is self-similar and non-stationary 
n  Hurst parameter differs depending on traffic load 
n  Modeling of TCP connections: 

n  inter-arrival time is best modeled by the Weibull 
distribution 

n  number of downloaded bytes is best modeled by the 
lognormal distribution 

n  The distribution of visited websites is best modeled by 
the discrete Gaussian exponential (DGX) distribution 
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ChinaSat data: analysis 

n  Traffic prediction: 
n  autoregressive integrative moving average (ARIMA) 

was successfully used to predict uploaded traffic 
(but not downloaded traffic) 

n  wavelet + autoregressive model outperforms the 
ARIMA model 

n  Q. Shao and Lj. Trajkovic, “Measurement and analysis of traffic in a hybrid 
satellite-terrestrial network,” Proc. SPECTS 2004, San Jose, CA, July 
2004, pp. 329–336.  
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Analysis of collected data 

n  Analysis of patterns and statistical properties of two 
sets of data from the ChinaSat DirecPC network: 
n  billing records 
n  tcpdump traces 

n  Billing records: 
n  daily and weekly traffic patterns 
n  user classification: 

n  single and multi-variable k-means clustering 
based on average traffic 

n  hierarchical clustering based on user activity 
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Internet topology 

n  Internet is a network of Autonomous Systems: 
n  groups of networks sharing the same routing policy 
n  identified with Autonomous System Numbers (ASN)  

n  Autonomous System Numbers: http://www.iana.org/
assignments/as-numbers 

n  Internet topology on AS-level: 
n  the arrangement of ASes and their interconnections   

n  Analyzing the Internet topology and finding properties 
of associated graphs rely on mining data and capturing 
information about Autonomous Systems (ASes) 
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Variety of graphs 

n  Random graphs: 
n  nodes and edges are generated by a random process 
n  Erdős and Rényi model 

n  Small world graphs: 
n  nodes and edges are generated so that most of the 

nodes are connected by a small number of nodes in 
between 

n  Watts and Strogatz model (1998) 
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46 

Scale-free graphs 

n  Scale-free graphs: 
n  graphs whose node degree distribution follow 

power-law 
n  rich get richer 
n  Barabási and Albert model (1999) 

n  Analysis of complex networks: 
n  discovery of spectral properties of graphs 
n  constructing matrices describing the network 

connectivity 
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Analyzed datasets 

n  Sample datasets: 
n  Route Views: 

 TABLE_DUMP| 1050122432| B| 204.42.253.253| 
267| 3.0.0.0/8| 267 2914 174 701| IGP| 
204.42.253.253| 0| 0| 267:2914 2914:420 
2914:2000 2914:3000| NAG| | 

n  RIPE: 
 TABLE_DUMP| 1041811200| B| 212.20.151.234| 
13129| 3.0.0.0/8| 13129 6461 7018 | IGP| 
212.20.151.234| 0| 0| 6461:5997 13129:3010| NAG| 
| 
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Internet topology at AS level 

267 
174 

1239 
12956 

2914 21889 

3561 

701 

13237 

3130 

§  Datasets collected from Border Gateway Protocols 
(BGP) routing tables are used to infer the Internet 
topology at AS-level 
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Internet topology 

n  The Internet topology is characterized by the 
presence of various power-laws: 
n  node degree vs. node rank 
n  eigenvalues of the matrices describing Internet 

graphs  (adjacency matrix and normalized Laplacian 
matrix) 

n  Power-laws exponents have not significantly changed 
over the years 

n  Spectral analysis reveals new historical trends and 
notable changes in the connectivity and clustering of 
AS nodes over the years 
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Traffic anomalies 

n  Slammer, Nimda, and Code Red I anomalies affected 
performance of the Internet Border Gateway Protocol 
(BGP) 

n  BGP anomalies also include: Internet Protocol (IP) 
prefix hijacks, miss-configurations, and electrical 
failures 

n  Techniques for detecting BGP anomalies have recently 
gained visible attention and importance 
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Anomaly detection techniques  

n  Classification problem: 
n  assigning an “anomaly” or “regular” label to a data 

point 
n  Accuracy of a classifier depends on: 

n  extracted features 
n  combination of selected features 
n  underlying model 

Goal:  
n  Detect Internet routing anomalies using the Border 

Gateway Protocol (BGP) update messages 
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BGP features 

Approach: 
n  Define a set of 37 features based on BGP update 

messages 
n  Extract the features from available BGP update 

messages that are collected during the time period 
when the Internet experienced anomalies:  
n  Slammer 
n  Nimda  
n  Code Red I 
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Feature selection 

n  Select the most relevant features for classification 
using: 
n  Fisher 
n  Minimum Redundancy Maximum Relevance (mRMR) 
n  Odds Ratio 
n  Decision Tree 
n  Fuzzy Rough Sets 
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Anomaly classification 

n  Train classifiers for BGP anomaly detection using: 
n  Support Vector Machines 
n  Hidden Markov Models 
n  Naive Bayes 
n  Decision Tree 
n  Extreme Learning Machine (ELM) 
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Feature extraction: BGP messages 

n  Border Gateway Protocol (BGP) enables exchange of 
routing information between gateway routers using 
update messages 

n  BGP update message collections: 
n  Réseaux IP Européens (RIPE) under the Routing 

Information Service (RIS) project 
n  Route Views 
n  Available in multi-threaded routing toolkit (MRT) 

binary format 
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BGP: known anomalies 
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Anomaly Date Duration (h) 

Slammer January 25, 2003 16 

Nimda September 18, 2001 59 

Code Red I July 19, 2001 10 

Training Data Dataset 

Slammer + Nimda Dataset 1 

Slammer + Code Red I Dataset 2 

Code Red I + Nimda Dataset 3 

Slammer Dataset 4 

Nimda Dataset 5 

Code Red I Dataset 6 



Slammer worm 

n  Sends its replica to randomly generated IP addresses 
n  Destination IP address gets infected if: 

n  it is a Microsoft SQL server  
or 
n  a personal computer with the Microsoft SQL Server 

Data Engine (MSDE) 

July 13, 2016 National Sun Yat-sen University, Kaohsiung, Taiwan 



Nimda worm 

n  Propagates through email messages, web browsers, and 
file systems 

n  Viewing the email message triggers the worm payload  
n  The worm modifies the content of the web document 

files in the infected hosts and copies itself in all local 
host directories 
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Code Red I worm 

n  Takes advantage of vulnerability in the Microsoft 
Internet Information Services (IIS) indexing software 

n  It triggers a buffer overflow in the infected hosts by 
writing to the buffers without checking their limit 
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Feature extraction: BGP messages 

n  Define 37 features 
n  Sample every minute during a five-day period:  

n  the peak day of an anomaly  
n  two days prior and two days after the peak day 

n  7,200 samples for each anomalous event: 
n  5,760 regular samples (non-anomalous) 
n  1,440 anomalous samples 
n  Imbalanced dataset 

July 13, 2016 National Sun Yat-sen University, Kaohsiung, Taiwan 



BGP features 
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Feature Definition Category 

1 Number of announcements Volume 

2 Number of withdrawals Volume 

3 Number of announced NLRI prefixes Volume 

4 Number of withdrawn NLRI prefixes Volume 

5 Average AS-PATH length AS-path 

6 Maximum AS-PATH length AS-path 

7 Average unique AS-PATH length AS-path 

8 Number of duplicate announcements Volume 

9 Number of duplicate withdrawals Volume 

10 Number of implicit withdrawals Volume 



BGP features 
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Feature Definition Category 

11 Average edit distance AS-path 

12 Maximum edit distance AS-path 

13 Inter-arrival time Volume 

14–24 Maximum edit distance = n,  
where n = (7, ..., 17) 

AS-path 

25–33 Maximum AS-path length = n,  
where n = (7, ..., 15) 

AS-path 

34 Number of IGP packets Volume 

35 Number of EGP packets Volume 

36 Number of incomplete packets Volume 

37 Packet size (B) Volume 



Feature selection algorithms 

n  Employed to select the most relevant features: 
n  Fisher 
n  Minimum Redundancy Maximum Relevance (mRMR) 
n  Odds Ratio 
n  Decision Tree 
n  Fuzzy Rough Sets 
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Feature selection: decision tree 
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Dataset Training data Selected Features 

Dataset 1 Slammer + Nimda 1–21, 23–29, 34–37 

Dataset 2 Slammer + Code Red I 1–22, 24–29, 34–37 

Dataset 3 Code Red I + Nimda 1–29, 34–37 

 
 
 
 
 
n  Either four (30, 31, 32, 33) or five (22, 30, 31, 32, 33) 

features are removed in the constructed trees mainly 
because: 
n  features are numerical and some are used repeatedly 



Feature selection: fuzzy rough sets 
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n  Using combination of datasets, for example  
Slammer + Nimda for training leads to higher 
computational load 

n  Each dataset was used individually 

Dataset Training data Selected Features 

Dataset 4 Slammer 1, 3–6, 9, 10, 13–32, 35 

Dataset 5 Nimda 1, 3–4, 8–10, 12, 14–32, 35, 36 

Dataset 6 Code Red I 3–4, 8–10, 12, 14–32, 35, 36 



Anomaly classification 

n  Train classifiers for BGP anomaly detection using: 
n  Support Vector Machines 
n  Hidden Markov Models 
n  Naive Bayes 
n  Decision Tree 
n  Extreme Learning Machine (ELM) 
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Anomaly classifiers: decision tree 

n  Each path from the root node to a leaf node may be 
transformed into a decision rule 

n  A set of rules that are obtained from a trained 
decision tree may be used for classifying unseen 
samples 
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Dataset Testing data Acctrain Acctest 
Training time 

(s) 

Dataset 1 Code Red I 90.7 78.8 1.8 

Dataset 2 Nimda 92.3 72.8 2.1 
Dataset 3 Slammer 87.1 23.8 2.3 



Anomaly classifiers: ELM 
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No. of  
features Dataset Acctrain Acctest 

Training time 
(s) 

37 

Dataset 1 83.57 ± 0.11 80.01 ± 0.07 2.3043 

Dataset 2 83.53 ± 0.12 79.75 ± 0.08 2.2756 

Dataset 3 80.82 ± 0.09 21.65 ± 1.93 2.2747 

17 

Dataset 1 84.50 ± 0.07 79.91 ± 0.01 1.9268 

Dataset 2 84.43 ± 0.12 79.53 ± 0.10 1.5928 

Dataset 3 83.06 ± 0.07 51.56 ± 16.38 1.8882 

 
 
 
 
 
 
 
n  195 hidden units 
n  The binary features 14–33 are removed to form a set 

of 17 features 



Anomaly classifiers: ELM 
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No. of  
features Dataset Acctrain Acctest 

28 Dataset 4 83.08 ± 0.11 80.03 ± 0.06 
28 (from 37) Dataset 5 83.08 ± 0.09 79.78 ± 0.07 
27 Dataset 6 80.05 ± 0.00 81.00 ± 1.41 
9 Dataset 4 84.59 ± 0.07 80.00 ± 0.05 
9 (from 17) Dataset 5 84.25 ± 0.11 79.79 ± 0.12 
8 Dataset 6 83.38 ± 0.04 49.24 ± 12.90 



Roadmap 

n  Introduction 
n  Traffic collection, characterization, and modeling 
n  Case studies:  

n  telecommunication network: BCNET 
n  public safety wireless network: E-Comm 
n  satellite network: ChinaSat 
n  packet data networks: Internet 

n  Conclusions 
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Conclusions 

n  Data collected from deployed networks are used to: 
n  evaluate network performance 
n  characterize and model traffic (inter-arrival and 

call holding times) 
n  identify trends in the evolution of the Internet 

topology 
n  classify traffic and network anomalies 
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lhr: 535,102 nodes and 601,678 links 
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