
Improving a Electronic Circuit Simulator based on Homotopy
Methods

Joo Erik de Andrade Melo∗

1Informatics Center (CIn)
Federal University of Pernambuco (UFPE)

Recife - Pernambuco, Brazil

jeam2@cin.ufpe.br

Faculty advisor: Professor Ljiljana Trajkovic

1. Introduction
It is of great importance to industry and academia that works with electronic circuits
determine voltages and currents, at many point of the circuit, that makes the electronic
components operates properly, that is, with the behavior that makes the system works
as desired. These specific voltages and currents are called DC operating points of the
circuit. To find the DC operating points of a transistor circuit it is necessary solve a
system of nonlinear algebraic equations that describe the DC behavior of this circuit.
A common method used to find DC operating points is the Newton-Raphson method
that require a initial point close enough to the solution, that sometimes is difficult to
provide. Therefore, Homotopy methods, an alternative method to solve nonlinear system
of equations, are being applied to find DC operating points of circuits. In this project
we have used a software implementation of a homotopy method. This implementation is
composed for two programs: a parser, developed by Edward Chan [2], that provide the
system of equations from a circuit description. And a MATLAB script [1], written by
Heath Hoffman, that implements the homotopy method to solve the system of equations.
However, the Parser was not providing the equations in the correct form required by the
MATLAB program. The main contribution of this project was figure out the most of the
problems found in the Parser.

2. Fiding DC Operating Points
The flow to find the DC operating points on this project is described by the schema in the
figure 1 bellow:

Figure 1. Flow to find DC Operating points

First the circuit is described by a netlist file, that is written in the well-known
SPICE format. This file is used as input to the Parser program that produce the system of
nodal or modified nodal equations in an symbolic format. These nonlinear equations are
introduced in the homotopy algorithm that solve the system obtaining the DC operating



points of the specified circuit. The next sections will give a quick explanation about the
Homotopy method and the parser used in this project.

3. Homotopy Methods
Homotopy methods [7] [3] are methods to find zeros of a equation or system of equa-
tions. It is also called parameter embedding. This name comes from the fact that, in the
homotopy methods, one new parameter is introduced in the system of equations.

The main idea behind the homotopy methods to solve a problem is create a new
problem simpler than the original one and then deform this problem into the original one,
computing a series of zeros until the zero(s) of the original problem.

The advantage of homotopy methods with relation to others methods like Newton-
type method and Gauss-Jacobi is the fact that homotopy is a globally convergent. A
method that has globally convergence is one that converge for a solution from almost any
starting point [6]. Methods like Newton-type and Gauss-Jacobi are local convergent, what
means that it cannot converge if the initial guess is not sufficiently closer to the solution.
Let’s see a example:

To solve a system of nodal equations given by:

F (x) = 0

We start creating a new function called Homotopy function H(x, λ) where was
introduced the embedded parameter λ. The Homotopy function H(x, λ) is created in
such form that it deforms continuously a system of equations G(x) into F (x) what means
that H(x, λ) is a continuous function where H(x, 0) = G(x), H(x, 1) = F (x) and G(x)
is a system of equation of which we know the solution or that is simple to solve.

An example of Homotopy function is:

H(x, λ) = (1− λ)(x− a) + λF (x)

where G(x) = (x− a) for some starting point a.

The objective is obtain a set of pairs (x, λ), that we call H−1(0) , such as

H−1(0) = {(x, λ)|H(x, λ) = 0}
Inside this set we hope to find a continuous path (or curve) that connect zeros

of our simple system H(x, 0) to zeros of H(x, 1), the desired system of equations. The
method to find this path include differentiate the Homotopy function with respect to x
and λ and then use a numerical method, as Euler or Runge-Kutta methods, to solve the
differential equation(s) created [5].

4. Parser
As it was mentioned, the MATLAB algorithm that implements the homotopy method,
require a system of equations in a symbolic form. The parser created for Edward Chan
receives a netlist file as input and generate these equations. A netlist file is a text file that
describe a circuit, its components and how they are connected. Bellow there is a example
of Schmitt trigger circuit in the schematic (fig. 2) and netlist (fig. 3) representation.



Figure 2. Schmitt Trigger Circuit (schematic)

Figure 3. Schmitt Trigger Circuit (netlist)

From the netlist file, the Parser gives as output the mathematical system of equa-
tions resulted of a nodal or modified nodal analysis. This equations describe the circuit
behavior in terms of voltage and currents in each node, and its jacobian as well. A Jaco-
bian is a square matrix of composed for the differentiation of each function with respect
to each variable. This system of equations and its jaconbian is used as input of the Mat-
lab algorithm, developed by Heath Hofmann, that uses Homotopy method for solving the
system of equations and then find the DC operating points of the circuit.

4.1. Parser Bugs Correction
This section will present the solutions to the problems reported in the Andria Dyess’
report [4]. The known bugs are related to error in the print of the equations and jacobian.
It will be described all the changes in the code of the Parser made to correct its errors.

• When a Modified Nodal Analysis is performed the output is not in the correct
format. For each voltage source (not floating) it is necessary add manually the
jacobian of that voltage source, that is, the jacobian of the node that the source is
connected in, for each unknown current.
• This problem was figured out by modifying the speciaPrintJac() function, mem-

ber of Component class, to print these missing jacobians.



• Another problem was related to the Floating sources, that are the sources not con-
nected to the ground (or reference node). This kind of source is not common in
practical circuits, but they are important in theoretical analysis.
• In the Nodal Analysis, the parser did not print the supernode equations for each

floating voltage source and its jacobian as well.
• A new function, member of Component class, named printSuperNode(), was in-

cluded to figure out the problem with the missing equations. This function prints
the supernodal equation for each floating voltage source in the circuit.
• One more problem that was figured out was about errors in the jacobians print

for modified nodal equations. Sometimes, in the case of floating sources, the
jacobians were -1 or 1 when it is suppose to be 0.

In additional, two functions that print the list of components and nodes of the
circuit with their respective connections were created to make easier the maintenance of
the code. And else, at the appendices of this report there is a brief tutorial about how to
run the parser in the MS Windows command prompt.

The documentation of the Parser code has to be updated to include the description
of the new member functions.

5. Conclusion
In the project it was possible to fix the most of the problems found in the parser. The
problems are related to the print of the Nodal equations and Modified Nodal equations
and their respective jacobians in specifics circuit configuration. Problems related with the
equation of super node in case of floating voltage source was figured out. Some problems
could not be figured out at the time of this report. The number of some equations in the
modified nodal analysis are still wrong and their jacobians as well, in the case of floating
voltage source. Therefore, more work have to be done to achieve a parser version that
gives all the Nodal and Modified Nodal equations and the Jacobians in the correct format
acceptable for the Matlab Homotopy algorithm.

References
[1] Matlab Language Reference. Mathworks Inc., 1996.

[2] E. Chan. Documentation on the parser program. Technical report, UC Berkeley, 1996.

[3] A. Dyes, E. Chan, H. Hofmann, W. Horia, and L. Trajkovic. Simple implementations of
homotopy algorithms for finding dc solutions of nonlinear circuits. In Circuits and
Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE International Symposium
on, volume 6, pages 290–293 vol.6, Jul 1999.

[4] A. Dyess. Finding dc operating points of chua’s circuit using homotopy methods. Tech-
nical report, University of Alabama, 1997.

[5] K. L. Judd. Numerical Methods in Economics. Massachusett Institute of Technology,
1998.

[6] W. H. Press, S. A. Teulkolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. , 1988.

[7] L. Trajkovic. Dc operating points of transistor circuits. Nonlinear Theory and Its Appli-
cations, IEICE, 2012.



Appendices
How to compile and run the parser on MS WINDOWS Command Prompt

1. Install the g++ compiler if you do not have yet. Normally it is installed in the
directory C:\MinGW.

2. Open the Command Prompt of Windows (console).
3. Verify if the directory of g++ Compiler is in the PATH environmental variable.

Use the command below:

> echo %PATH%

If the Compiler directory is not the list showed continue to step 4. If the Compiler
directory (C:\MinGW\bin) is showed, go to step 5.

To get a list of all environment variables enter the command ’set’.

4. Add the Compiler directory to the PATH environmental variable ; Insert the
command below:

> set PATH=%PATH%;C:\MinGW\bin

This command takes the current path and sets PATH to it and adds C:\MinGW\bin
to the PATH.

5. To compile the parser.cc (c++ file) use the command below in the directory where
is the ’parser.cc’ file:

> g++ parser.cc -o parser

’-o parser’ set the name of the executable file to parser.exe

6. To run the parser the input file have be in the same directory of the ’parser.exe’.
Then in this directory enter with the command below in the Console:

> parser -f FILENAME -d datum -o OUTPUTFILENAME

’-d datum’ define the reference node. It is a optional argument, but it is recom-
mend you set it


