
Improving an Analog Circuit Simulator based on

Homotopy Methods

Jatin Vikram Singh
Indian Institute of Technology, Kanpur, India

jatinvs@iitk.ac.in

Faculty Advisor: Prof. Ljiljana Trajkovic
School of Engineering Science

Simon Fraser University, Burnaby
British Columbia, Canada

1 Introduction

DC operating points, also known as the bias points or the quiescent points,
are the values of the voltages and currents established in the circuit with DC
sources. Devices, such as transistors, behave differently when biased with DC or
AC sources. They are usually combined with resistors that ensure their proper
functioning. The values of currents and voltages determined with DC voltage
sources, under a certain configuration of resistors and other components, are
the operating points. The bias point depends on the values of resistances and
other components used along with the transistors. To find the DC operating
points of a transistor circuit, we need to solve a system of nonlinear algebraic
equations that describe the DC behavior of the circuit.

A common method used to find DC operating points is the Newton-Raphson
algorithm. It requires an initial point close enough to the solution, which is
sometimes difficult to provide. Therefore alternative methods to solve nonlin-
ear system of equations, such as homotopies, are often applied to find the DC
operating points of various circuits. In this project, we have used a software
implementation of homotopy algorithm. It is composed of two programs: a
parser, developed by Edward Chan [2] improved by Andrea Dyess [3], and then
recently further improved by Joao Eric Melo [5]. It generates a system of equa-
tions derived from a circuit description file. A Matlab script written by Heath
Hoffman [4] implements the homotopy method to solve the system of equations.
The output generated by the parser was incomplete and needed modifications
that were in past done manually. The main goal of the project is to identify
and correct the problems.

1



2 Homotopy Methods

Homotopy methods [1], [3], also called parameter embedding or continuation
methods, involve the introduction of a new parameter λ into the system of
nonlinear equations. Consider the system of nodal or modified nodal equations:

F(x) = 0,

where the vector x represents the unknown node voltages and/or currents. F(x)
is a system of n equations with n unknowns. Hence:

F : Rn→Rn.

We then create another function:

H : Rn+1→Rn

by introducing an additional parameter. The goal is to choose an appropriate
homotopy equation

H(x, λ) = 0

so that the solution to F(x) = 0 can be derived from the solution of homotopy
equation. We used the following homotopy mapping:

H(x, λ) = (1− λ)(x− a) + λF(x).

This function is chosen so that:

H(x, 0) = (x− a) , H(x, 1) = F(x).

The values of λ form a path with the starting point a. The solution(s) are the
point(s) where the path crosses λ = 1.

3 The Parser

Implementation of the homotopy methods requires that the set of equations
that describe the circuit be specified. For some circuits, these equations can be
written by hand. However, this is not possible for more complicated circuits.
A C++ program written by Edward Chan [2] generates nodal equations or
modified nodal equations for the circuit to be solved. The parser takes the
SPICE netlist file as the input that describes the elements of the circuit and
how they are connected. It then generates the circuit equations for either nodal
or modified nodal analysis and their Jacobians.

2



Figure 1: Schmidt trigger: Spice circuit file.

Figure 2: Schmidt trigger: Spice netlist file.

4 Modified Nodal Equations

Although the node voltage and loop current method are the most widely used,
modified nodal analysis (MNA) is another powerful method. MNA often results
in larger systems of equations than the other methods. However, it is easier
to be implemented, which is a considerable advantage for automated solution.
To use modified nodal analysis, one equation for each node not attached to a
voltage source (as in standard nodal analysis) is written. These equations are
augmented with an equation corresponding to each voltage source. In the figure
3, the first six equations are standard nodal analysis equations. The last two
are the current equations for the sources that are not connected to a resistor.
This is done to balance the number of unknowns with the number of equations.

3



Figure 3: Schmidt trigger circuit: MNA equations.

5 Finding DC Operating Points

The output from the Parser consists of the set of equations and Jacobians re-
quired by the Matlab code to employ the homotopy method. The Matlab script
then calculates all operating points using iterative techniques. The advantage
of using homotopy methods is that the output contains all possible operating
points as compared to the SPICE output that returns only one result depending
on the initial point provided.

Figure 4: Algorithmic flow for DC operating point calculation [5].

6 Platform Change

The platform for the code has been changed from the command prompt to Visual
Studio. The version used in this project is Microsoft Visual Studio Ultimate
2013. This software is freely available on the official website of Microsoft [6].
Visual Studio offers many benefits in terms of user interface. Debugging is easier
by using the code flow charts and by tracking the local variables. This has been
further elaborated in the Section 7.

4



7 Parser Modifications

The parser, developed by Edward Chang and modified by Joao Eric Melo,
was difficult to debug because of the platform used, command prompt, and
notepad++ editor. Thus, the first step was to identify a better alternative.
The code was ported to Microsoft Visual Studio Ultimate 2013. The options of
using code flow maps facilitated and breakpoints the debugging process. The
programmer has the choice of seeing all the local variables in a separate window
and monitoring how the variables change. The changes are identified by change
in colour by Visual Studio.

The output files for previous version and the new version of the Parser have
been posted on this web page for references and further modifications.

Figure 5: The Locals window showing variables and their values.

5



7.1 The Datum Node

The original Parser consisted of a datum node. It is usually a node with maxi-
mum number of connections and is used as a reference node. Equations for the
datum node is omitted. The older version of the parser calculated the datum
node. If the ground node is not the datum node, it’s equation is printed. When
solving circuit equations, we usually chose the ground node as the datum node.
In the Parser we have chosen the ground node to be a datum node by default.
This would involve further changes to the code. Making the ground node as
the datum node provided user with the equations mentioned in literature. This
made it easy to compare the equations generated by the Parser with equations
available in the literature .

In further improvements to the Parser, user may be given the choice of the
datum node.

7.2 Nodal and Modified Nodal Equations

The parser generates nodal and modified nodal equations as per the selection
of the user. Since the ground node was made as the universal datum node,
some of the equations had missing node voltages. The source of these error was
unclear. These were rectified by using the flow map and Locals window. Flow
maps depicted which function was responsible for generating the equations. The
Locals window gave an idea of how the variables changed. Using the above tools,
the appropriate changes have been made and errors have been rectified.

Figure 6: The code flow map for printing equations and Jacobians

6



7.3 Equation Numbering

The equations in the older version of the parser were being numbered corre-
sponding to the node they belonged. Modified nodal analysis has all the nodal
analysis equations and current equations at all the sources. Since the source
node voltage equations had already been written, making current equations at
the same node gave two different equations same number. This also caused
errors in jacobian calculation as there were two values of jacobian at the same
indices.

So a new method has been used to number the equations. They have been
consecutively numbered. The unknowns, that is, the voltages and currents are
still numbered corresponding to the node they belong to. The equations have
to be equated to zero, so numbering them consecutively does not make any
difference. Similarly, the Jacobians have been calculated with respect to the
new reference for the equations.

Figure 7(a): Older version equations.

7



Figure 7(b): Modified version equations.

7.4 Jacobian

The Jacobians are required by the Matlab script to solve for the DC operating
points. There were errors in calculation of the Jacobian values. There were two
or more different values of Jacobians for the same indices because there were two
or more equations with the same number. This problem was rectified when the
consecutive naming of equations was implemented. In addition to this issue, the
Jacobians were not being printed for a few nodal equations. The code has been
appropriately modified to get the output. One other issue included repetition of
Jacobian for some equations. The value of Jacobian at some nodes were being
repeated because they were being visited more than once. The values of the
repeated Jacobian were not faulty but to maintain the output uniformity, they
have been fixed to be printed only once.

8



Figure 8(a): Older Version Jacobians

9



Figure 8(b): Modified Version Jacobians

8 Conclusion

The parser has been improved in terms of quality of output. The equations
are in the format required by the Matlab code. The equations, nodal as well
as modified nodal equations, have been corrected. The Jacobians that posed
a lot of issues have also been corrected to produce the result that can be used
to employ homotopy. Further improvements can be made to incorporate more
devices like current sources, MOSFET’s into the parser.

References

[1] L. Trajkovic, ”DC Operating points of transistor circuits,” Nonlinear Theory
and Its Applications, IEICE, vol. 3, no. 3, pp. 287-300, July 2012.

[2] E. Chan, Documentation on the parser program, Technical Report, UC
Berkeley, 1996.

[3] A. Dyess, Finding dc operating points of chua’s circuit using homotopy meth-
ods, Technical report, University of Alabama, 1997.

[4] A. Dyess, E. Chan, H. Hofmann, W. Horia, and L. Trajkovic, ”Simple im-
plementations of homotopy algorithms for finding dc solutions of nonlinear
circuits,” Proceedings of the 1999 IEEE International Symposium on Cir-
cuits and Systems, volume 6, pages 290–293 vol.6, Jul 1999.

[5] J. Eric Melo and L. Trajkovic, Improving an electronic circuit simulator
based on homotopy methods, Technical report, SFU Burnaby, 2014.

[6] https://www.visualstudio.com/en-us/downloads/download-visual-studio-
vs.aspx

10


