
  

 

  

 

VNE-Sim Tool User Guide 
 
 
 

Nashila Jahan 
Kamila Bekshentayeva  

Soroush Haeri 
Ana Gonzalez 

 
 
 
 
 
 
 
 
 
 
 
 

Simon Fraser University 
20/09/2019 

 



2 
 

VNE-Sim is a discrete event simulator written in C++ 11. It is publicly available under the 
terms of the MIT License. This tool may be used to simulate virtualization algorithms and 
compare their performance using various topologies of data center networks. CMake 
build system is used to compile all required packages before the test cases are run for 
various scenarios. Furthermore, being written in C++, VNE-Sim offers good memory 
management and enables batch simulations using any scripting language. A step by step 
procedure is provided to enable effective use of the tool. 
 
1. Gathering Pre-Requisites 
 
Follow the next steps to install VNE-sim and required packages: 
Download the package from website: https://bitbucket.org/shaeri/vne-sim 
and unzip it in your home directory. VNE-Sim code may be also downloaded using a 
command line:   
 
git clone https://bitbucket.org/shaeri/vne-sim 
 

The root directory of vne-sim should be /home/username/vne-sim. 
 
Install the following pre-requisites available via Linux distribution: 

• CMake  
• Boost libraries  
• GSL: GNU scientific library 
• GLPK: GNU linear programming kit. 

For Ubuntu, use specific version or name of the library: 
 
sudo apt-get install <name of the library> 
 

For MacOS, use the following commands: 
to install Homebrew, a free and open-source software package management system 
that simplifies the installation of missing packages: 
 
ruby -e "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/master/install)" 
 
then to install the prerequisite libraries: 
 
brew install <name of the library> 

example: brew install boost 
 
Other required libraries will be installed as part of VNE-Sim package are: 

• Fast Network Simulation Setup (FNSS): used to create data center 
topologies 

• Boston University Representative Topology Generator (BRITE): for    
generating network topologies together with FNSS 

• Hiberlite: for saving simulation results 
• Adevs: for modeling virtual network embedding processes 



3 
 

• SQLite3: used for handling simulation results exported automatically as 
SQLite databases. 

 
CMake relies on scripts to search for the listed libraries and applies the required 
modifications after downloading these libraries. A C++11 compiler is required to 
compile the code.  
 
2. Compiling Source Code 
 
To compile the source code, change directory to /home/username/vne-sim created 
in the previous step and type the following commands in the terminal window: 
 
mkdir build && cd build 
cmake .. -DWITH_FNSS_SUPPORT=off  
make 

 
This will create a build directory under vne-sim directory and install all required 
libraries after successful compilation. At the beginning, all required modules are 
checked: 
 
-- The CXX compiler identification is GNU 4.9.4 
-- Check for working CXX compiler: /usr/bin/c++ 
-- Check for working CXX compiler: /usr/bin/c++ -- works 
-- Detecting CXX compiler ABI info 
-- Detecting CXX compiler ABI info - done 
-- ADEVS DOES NOT EXIST 
-- HIBERLITE DOES NOT EXIST... 
-- Found Git: /usr/bin/git (found version "1.9.1")  
-- Boost version: 1.56.0 

 
After initiating the build for the first time, CMake attempts to download and patch 
some of the dependencies (FNSS, Hiberlite, ADEVS). Samples of errors if this step 
fails or gets interrupted are: 
 
make[2]: *** No rule to make target `../external-libs/hiberlite/ 
libhiberlite.a', needed by `lib/libcore.so'.  Stop. 
 

In this case, following directories need to be deleted in the vne-sim root directory: 
• external-libs/adevs 
• external-libs/hiberlite 

When installing Hiberlite, Github may request for your name and email address. 
Also delete all CMake generated files under the vne-sim/build directory. Then, 
attempt to build the code again from scratch. If successfully compiled, the display 
should show:  
 
[ 98%] Building CXX object src/network-file-generator/test/CMakeFiles/nfg-
test.dir/network-file-generator-test.cc.o 
Linking CXX executable ../../../bin/nfg-test 
[ 98%] Built target nfg-test 
Scanning dependencies of target vineyard-test 



4 
 

[100%] Building CXX object src/Vineyard/test/CMakeFiles/vineyard-
test.dir/vy-test.cc.o 
Linking CXX executable ../../../bin/vineyard-test 
[100%] Built target vineyard-test 
 

3. Modifying Configuration File 
 
All configurations and runtime parameters required for VNE-sim execution are stored 
in an XML file configurations.xml, which resides in the root folder of VNE-sim. It is 
important to set correct run-time paths pointing to VNE-sim root directory in the 
configurations.xml. The GLPK files <glpk></glpk> are part of the code. Hence, 
change only the beginning of the paths to point to the VNE-sim directory. 
 
Next, download the latest network files network_files.zip, save them outside the 
VNE-sim folder in the home directory, and unzip them: 

http://www2.ensc.sfu.ca/~ljilja/cnl/projects/VNE-Sim/vne-sim-
web/index.html#network  

The network files are already available and hence they do not need to be generated 
again. Ignore all the configurations within the tag: 
 
<NetworkFileGenerator></NetworkFileGenerator>  

 
Set the correct path within the tags pointing to the network files you have unzipped: 
 
<SubstrateNetwork></SubstrateNetwork> 

 
and 
 
<VirtualNetRequest></VirtualNetRequest> 

  
NOTE: The directory listed in configurations.xml file refers to a set of network files for 
mean arrival rate of 100 (1 request per 100 units of time or 10 Erlangs). This directory 
name should be changed to arrival rate of 12 because network files network_files.zip 
downloaded from the website only have a subset of files for traffic with mean arrival 
rate of 12 (12.5) (8 requests per 100 units of time or 80 Erlangs ) 
 
Change: 
 
<dir>reqs-100-1000-nodesMin-3-nodesMax-10-grid-25</dir> 

 
to 
 
<dir>reqs-12-1000-nodesMin-3-nodesMax-10-grid-25</dir> 

 
These two paths in configurations.xml file need to be changed to point to correct 
network files: 
 
<SubstrateNetwork> 
<path>/home/username/network_files/SN</path> 



5 
 

<filename>vy_substrate_net_n_50_outergrid_25_inner_grid_25.txt</filename> 
</SubstrateNetwork> 
<VirtualNetRequest> 
<path>/home/username/network_files/VNRs</path> 
<dir>reqs-12-1000-nodesMin-3-nodesMax-10-grid-25</dir> 
<reqfileExtension>.txt</reqfileExtension> 
</VirtualNetRequest> 

 

The configuration within the <vineyard></vineyard> tag should be correctly set and 
point to the existing files. The directory and filenames should match with actual 
directory and filenames in the SN and VNRs directories within the network files 
network_files.zip used in the test simulation. The modified configurations file is listed 
in the Appendix A1. 

4. Executing the Test Case 
 
The source code of the test cases is placed in various packages under the test folder. 
All package/test/testname.cc (e.g., vineyard/test/vineyard-test.cc) files are compiled 
into executables. For the first test cases, only use this "experiment-test" located at: 

src/experiments/test/expriments-test.cc 
  

It is compiled into an executable under: 

build/bin/experiments-test  

These test cases have been reported in References [1]-[5] listed at the end of this 
Guide. The experiments and tests are written using the Boost library unit test 
framework. The documentation describing the framework is available at: 

http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/utf/user-
guide/runtime-config/run-by-name.html 

Open the file src/experiments/test/expriments-test.cc. After the #include and using 
clauses, review the section: 

BOOST_AUTO_TEST_SUITE (AlgorithmExperiments) 
BOOST_AUTO_TEST_CASE(ARRIVAL_RATE_TESTS) 
 

“AlgorithmExperiments” is the name of test suite and “ARRIVAL_RATE_TESTS” is the 
name of test case that we wish to run. Some minor modifications are required in 
experiments-test.cc file because it was originally written for a complete set of network 
files. However, we shall only use  a subset of these network files. Now, modify original 
experiments-test.cc file, within the scope of: 

BOOST_AUTO_TEST_CASE(ARRIVAL_RATE_TESTS) 
{ 
} 

Change: 

std::string vnr_dirs[] = 
{"reqs-12-1000-nodesMin-3-nodesMax-10-grid-25", "reqs-14-1000-nodesMin-3-
nodesMax-10-grid-25","reqs-16-1000-nodesMin-3-nodesMax-10-grid-25", "reqs-
20-1000-nodesMin-3-nodesMax-10-grid-25","reqs-25-1000-nodesMin-3-nodesMax-



6 
 

10-grid-25","reqs-33-1000-nodesMin-3-nodesMax-10-grid-25" "reqs-50-1000-
nodesMin-3-nodesMax-10-grid-25", "reqs-100-1000-nodesMin-3-nodesMax-10-
grid-25”}; 
 

to:  

std::string vnr_dirs[] = {"reqs-12-1000-nodesMin-3-nodesMax-10-grid-25”}; 

and all the for loops: 

for (int j = 0; j < 8; j++) 
  { … } 

to:  

for (int j = 0; j < 1; j++) 
  { … } 

After we have modified experiments-test.cc, the entire code needs to be recompiled 
using make command as instructed in Section 2.  

Finally, to run the first test, type in the terminal: 

./experiments-test --run_test=AlgorithmExperiments/ARRIVAL_RATE_TEST  
  

5. Extracting Simulation Results 
 
After successful completion of the test run, unprocessed data generated by discrete 
events that occur during simulations are saved as SQLite databases in VNE-sim 
directory. These data may be processed using SQL queries or other statistical 
analysis tools. The shell script (that can be found on the website) may be used to 
extract key performance data from database files generated through the test. 

Save export_overal_avg_data.sh outside of vne-sim directory. In terminal, change 
directory to where the script is saved and type below command to run the script: 

./export_overal_avg_data.sh 
  

Based on which test cases you are running in step 4, you may not have all required 
database tables mentioned in the script. You will see error messages for missing 
database files. Same time CSV files with key performance statistics will be generated 
from existing database files in VNE-sim directory. 

Note that we are using only one arrival rate of 12 for test simulation. This can be easily 
extended to a range of arrival rates by using for loop: 

 

for  
arrivalRate in 12 14 16 20 25 33 50 100 
do 
sqlite3vne-sim/mcvne_bfs_mcf_reqs-$arrivalRate-1000-nodesMin-3-nodesMax-10-
grid-25.db < query.sql 



7 
 

The table below lists average performance data for various algorithms: 

 

 
6. Network File Generation using BRITE Handler 
 
This Section describes various parameters used for generating network files for 
Substrate Network (SN) and Virtual Network Requests (VNRs).  

Both SN and VNRs are generated using BRITE [6] library with RT Waxman algorithm. 
Substrate graph is composed of 50 nodes where each node is randomly connected 
to a maximum of 5 other nodes. The substrate graph generated for the simulation 
scenarios consists of 221 edges. Each node of the substrate network is randomly 
placed on a 25 by 25 grid as: 

<nodePlacement>1</nodePlacement> 
<numNeighbors>5</numNeighbors> 
<innerGridSize>25</innerGridSize> 
<outerGridSize>25</outerGridSize> 
<RTWaxman> 
     <growthType>2</growthType> 
     <alpha>0.5</alpha> 
     <beta>0.2</beta> 
</RTWaxman> 
 

For each VNR, number of nodes are uniformly distributed between 3 and 10 and each 
virtual host is connected to maximum of 3 neighbor hosts. The CPU requirements of 
the virtual nodes are uniformly distributed between 2 and 20 units while the 
bandwidth requirements of the virtual links are uniformly distributed between 0 and 
50 units, or 1 and 10 (as used below). Duration of each simulation scenario is 50,000 
time units. The listed code shows the network file parameters for simulating VNRs: 

<TotalTime>50000</TotalTime> 
<VNTopologyType>Waxman</VNTopologyType> 
<VNRLinkSplittingRate>0.1</VNRLinkSplittingRate> 
<VNRNumNodesDist>0</VNRNumNodesDist> 
<VNRNumNodesDistParam1>3</VNRNumNodesDistParam1> 
<VNRNumNodesDistParam2>10</VNRNumNodesDistParam2> 
<VNRNumNodesDistParam3>-1</VNRNumNodesDistParam3> 
<VNRDurationDist>1</VNRDurationDist> 
<VNRDurationDistParam1>1000</VNRDurationDistParam1> 
<VNRDurationDistParam2>-1</VNRDurationDistParam2> 
<VNRDurationDistParam3>-1</VNRDurationDistParam3> 
<VNRArrivalDist>2</VNRArrivalDist> 

Algorithm 
Acceptance 
Ratio 

Average 
Revenue 

Average 
Cost 

Average 
Node Util-n 

Average 
Link Util-n 

Average 
Proc. Time 

mcvne_mcf_mcf 0.593 99.52720777 116.488989 0.845251659 0.150005423 47.407665 
mcvne_bfs_mcf 0.59775 99.96272148 117.6633616 0.846695419 0.151604332 1.298086342 
mcvne_bfs_bfs 0.59275 100.0233351 116.828891 0.845651886 0.157358927 1.191999576 
grc_mcf 0.59725 99.60965667 129.7124461 0.844490922 0.184736977 0.184035019 
grc_bfs 0.59725 99.39737272 129.1837899 0.840446143 0.193236378 0.018504416 
dvine_mcf 0.58125 97.84037373 133.1728131 0.805088215 0.192580523 0.622051665 
rvine_mcf 0.59125 97.93744992 134.3247153 0.819640308 0.197085074 0.608317071 



8 
 

<VNRArrivalDistParam1>12.5</VNRArrivalDistParam1> 
<VNRArrivalDistParam2>-1</VNRArrivalDistParam2> 
<VNRArrivalDistParam3>-1</VNRArrivalDistParam3> 
<VNRMaxDistanceDist>1</VNRMaxDistanceDist> 
<VNRMaxDistanceDistParam1>15</VNRMaxDistanceDistParam1> 
<VNRMaxDistanceDistParam2>25</VNRMaxDistanceDistParam2> 
<VNRMaxDistanceDistParam3>-1</VNRMaxDistanceDistParam3> 
<VNCPUDist>0</VNCPUDist> 
<VNCPUDistParam1>2</VNCPUDistParam1> 
<VNCPUDistParam2>20</VNCPUDistParam2> 
<VNCPUDistParam3>-1</VNCPUDistParam3> 
<VLBWDist>0</VLBWDist> 
<VLBWDistParam1>1</VLBWDistParam1> 
<VLBWDistParam2>10</VLBWDistParam2> 
<VLBWDistParam3>-1</VLBWDistParam3> 
<VLDelayDist>0</VLDelayDist> 
<VLDelayDistParam1>50</VLDelayDistParam1> 
<VLDelayDistParam2>100</VLDelayDistParam2> 
<VLDelayDistParam3>-1</VLDelayDistParam3 

 

Note that you may change any of the above parameters in configurations.xml file to 
generate various sizes and scales of SN and VNRs. 

6.1 Generating VNR files for varying traffic load  
 

Sample network files only include subset of VNRs, we need to generate VNR network 
files for a range of arrival rates. VNRs arrive according to a Poisson process with a 
mean arrival rate of λ requests per unit time. Their lifetimes are exponentially 
distributed with a mean 1/μ yielding to a VNR traffic of λ × 1/μ Erlangs. For simulation 
scenarios, we assume 1/μ = 1, 000. Therefore, for 8 requests per 100-unit time, arrival 
rate parameter is 100/8 = 12.5 and VNR traffic is equivalent to  !

"##
 * 1000 = 80 Erlangs.  

From this point onwards, we shall require Network File Generator module of the tool. 
This part was commented out before in step 3. Include all the configurations in 
configurations.xml file within the tag: 

<NetworkFileGenerator></NetworkFileGenerator>  
 

Then modify VNRArrivalDistParam1 to a range of values (12, 14, 16, 20, 25, 33, 50, 
100) and generate VNR files for each value. 

<VNRArrivalDistParam1>12</VNRArrivalDistParam1> 
 

Save the files in a directory outside of vne-sim directory as before - 

<path>/home/username/network_files/VNRs</path> 
 

After modifying configuration file, the tool must be recompiled using make command 
under vne-sim/build listed in step 2 to include NetworkFileGenerator module and 
related test cases. Next, change directory to vne-sim/build/bin to run VNRGenerator 
test. Source code for the test is in vne-sim/src/network-file-generator/test directory. 
The executable is in build/bin/ folder after recompiling the tool. To generate VNR files, 
type in terminal: 



9 
 

./nfg-test –run_test=FileGenerator/VNRGenerator 
 

6.2 Generating SN files with BRITE  
 

To generate substrate network file with BRITE parameters (same or modified) listed 
above type: 

./nfg-test –run_test=FileGenerator/SubstrateNetworkGenerator 

 
Save substrate network files with a directory path- 

<path>/home/username/network_files/SN</path> 
 

Now a complete set of files is generated using BRITE handler of VNE-Sim tool which 
may be used to run tests and produce results as explained in steps 4 and 5. 

7. Datacenter Network (DCN) Topology Generation using 
FNSS Handler 
 
Various network topologies such as Two-Tier, Three-Tier, FatTree, BCube and 
Diamond may be used to create substrate networks using Fast Network Simulation 
Setup (FNSS) [12]. Then, these SN graphs may be used together with the VNR graphs 
produced in step 6 to compare performances over various topologies as described 
in [2].  

First, FNSS handler needs to be selected in configuration.xml file: 

<NetworkFileGenerator> 
  <!-- Select network file generator: BRITE or FNSS--> 
  <Handler>FNSS</Handler> 

 
Then under /home/username/vne-sim directory open file CMakeLists.txt and include 
FNSS option (previously commented out) - 

option (WITH_FNSS_SUPPORT “WITH FNSS SUPPORT” ON)  

correct the paths for the FNSS patches in the following way:  

/home/username/vne-sim/cmake/patches/fnss.fix_quantity_clang.patch  
/home/username/vne-sim/cmake/patches/fnss.fix_macos_sed.patch  

(Make sure that the patches exist under VNE-sim/cmake folder).  

After the reorganization of folders in the 0.8.2 version of FNSS, user may encounter 
the following errors: 

Error: cpp/src/quantity.cpp: No such file or directory 
Action: Copy "cpp" folder from https://github.com/fnss to FNSS directory in external 
libraries.  



10 
 

Fatal error: fnss/cpp/include/topology.h: No such file or directory #include 
"fnss/cpp/include/topology.h" 
Action: Rename the folder "src" to "include" and make sure this folder is under cpp (not 
cpp/cpp). 

Make[2]: *** No rule to make target '../external-libs/fnss/cpp/lib/libfnss.a', needed by 
'lib/libnfg.so'.  
Action: Download C++ zip file from http://fnss.github.io, and unzip it to a convenient 
location. In terminal cd to the cpp folder in the unzipped file and type “make”. This will 
generate new folders, including “lib”, which contains libfnss.a. Copy the folder into 
../external-libs/fnss/cpp/  

Next to recompile the source code with FNSS handler, change directory to 
/home/username/vne-sim/build, remove everything from build directory and type in 
the terminal window: 
 
cmake .. -DWITH_FNSS_SUPPORT=on  
make 

VNE-Sim tool already had three DCN topologies implemented with FNSS handler. 
They are BCube, FatTree and TwoTier topologies. You may select any of these 
topologies in configurations.xml file and generate SN files as in step 6. 

<SNTopologyType>DCNFatTree</SNTopologyType> 

This section describes implementing a new ThreeTier DCN topology in this tool. 
Implementation of this DCN topology in VNE-Sim is achieved by modifying of the 
network-file-generator and experiment_parameters packages located in the core 
directory. In the header file fnss-handler.h, the structure for the three-tier DCN 
topology is defined based on parameters required by FNSS three-tier class. This 
class may be found under the external libraries/fnss/fnss/topologies folder. Three-tier 
DCN parameters include number of core switches (n_core), aggregation switches (n_ 
aggregation), edge switches (n_edge) per aggregation switch, and hosts (n_hosts) per 
edge switch. Instances for other parameters such as CPU distance, virtual link 
bandwidth and delay distances are also defined for this topology. After implementing 
the structure and parameters, six new templates for the network are created. The first 
one establishes the default name format of the topology file while the second returns 
the CPU, bandwidth, and delay distance parameters. A third template initializes the 
FNSS python script to generate the three-tier and a fourth one retrieves the values of 
the attributes established in the configurations.xml file. The last two templates are 
used to initialize the structure and parameters. Implemented code is shown in 
Appendix A1. 

We also modified the header experiment-parameters.h and source code experiment-
parameters.cc as presented in Appendix A2. In the header file, the internal structure 
of three-tier DCN topology is included by configuring access method as well as 
declaring variables for parameters n core, n aggregation, n edge, n host, and core 
bandwidth multiplier. Variables created are initialized in the source code based on 
settings provided in configurations.xml file.  



11 
 

References 

 
[1] S. Haeri and Lj. Trajkovic, "Virtual network embedding via Monte-Carlo tree search," 
IEEE Transactions on Cybernetics, vol. 47, no. 2, pp. 1–12, Feb. 2017. 
 
[2] H. Ben Yedder, Q. Ding, U. Zakia, Z. Li, S. Haeri, and Lj. Trajkovic, "Comparison of 
virtualization algorithms and topologies for data center networks," The 26th International 
Conference on Computer Communications and Networks (ICCCN 2017), 2nd Workshop 
on Network Security Analytics and Automation (NSAA), Vancouver, Canada, Aug. 2017. 
 
[3] S. Haeri and Lj. Trajkovic, "VNE-Sim: a virtual network embedding simulator," 
SIMUTOOLS, Prague, Czech Republic, Aug. 2016, pp. 112–117. 
 
[4] S. Haeri, Q. Ding, Z. Li, and Lj. Trajkovic, "Global resource capacity algorithm with 
path splitting for virtual network embedding," IEEE Int. Symp. Circuits and Systems, 
Montreal, Canada, May 2016, pp. 666–669. 
 
[5] S. Haeri and Lj. Trajkovic, "Virtual network embeddings in data center networks," IEEE 
Int. Symp. Circuits and Systems, Montreal, Canada, May 2016, pp. 874–877. 
 
[6] (2018, Aug.) Boston University Representative Internet Topology Generator. [Online]. 
Available: http://www.cs.bu.edu/brite/. 
 
[7] (2018, Aug.) SQLite: Small. Fast. Reliable. Choose any three. [Online]. Available: 
https://www.sqlite.org/. 
 
[8] (2018, Aug.) CMake Build System. [Online]. Available: https://cmake.org/. 
 
[9] (2018, Aug.) Boost C++ Libraries. [Online]. Available: http://www.boost.org/. 
 
[10] (2018, Aug.) GSL-GNU Scientific Library. [Online]. Available: 
https://www.gnu.org/software/gsl/. 
 
[11] (2018, Aug.) GLPK-GNU Linear Programming Kit. [Online]. Available: 
http://www.gnu.org/software/glpk/. 
 
[12] (2018, Aug.) Fast Network Simulation Setup. [Online]. Available: 
http://fnss.github.io/. 
 
[13] (2018, Aug.) Hiberlite Library. [Online]. Available: 
https://github.com/paulftw/hiberlite/. 
 
 



12 
 

A. Appendix 

A1. FNSS-Handler.h Code Sections 

Listing	1:	Structure	Constructor	(struct	Parameters)	

struct DCNThreeTier 

        { 
         DCNThreeTier (); 
         int n_core; 
         int n_aggregation; 
         int n_edges; 
         int n_hosts; 
         int coreBWMultiplier; 
        } threetier; 

Listing	2:	Topology	Parameters	

. . . 
private: 
int numHosts = 0; 
int numSwitches = 0; 
Topology_Type _Topology_Type; 
Parameters params; 
. . . 
std::shared_ptr<Network<A, B>> getNetwork_DCNThreeTier 
(Distribution cpu_dist, double cpu_param1, double cpu_param2, double cpu_param3, 
Distribution bw_dist, double bw_param1, double bw_param2, double bw_param3, 
Distribution delay_dist, double delay_param1, double delay_param2, double delay_param3); 
}; 

Listing	3:	Default	Name	Format	of	Topology	File	(getPreferredFileName())	

template <typename A, typename B> 
std::string FNSSHandler<A,B>::getPreferredFileName () 
{ 
stringstream ss; 
 . . . 
else if (_Topology_Type == Topology_Type::DCNThreeTier) 
        ss << "_nCore_" << params.threetier.n_core << "_nAggregation_" << params.threetier.n_aggregation << "_nEdges_" << 
params.threetier.n_edges << 
         "_nHosts_" << params.threetier.n_hosts << "_coreMultiplier_" << params.threetier.coreBWMultiplier << 
         "_nHosts_" << numHosts << "_nSwitches_" << numSwitches; 
else 
ss << "_k_" << params.fattree.k << "_coreMultiplier_" << params.fattree.coreBWMultiplier << 
"_nHosts_" << numHosts << "_nSwitches_" << numSwitches; 
return ss.str(); 
} 

Listing	4:	Substrate	Network	Parameters	(getNetwork)	

template <typename A, typename B> 

std::shared_ptr<Network<A, B>> FNSSHandler<A,B>::getNetwork 

(Topology_Type tt, int n, Distribution cpu_dist, double cpu_param1, double cpu_param2, double cpu_param3, 

Distribution bw_dist, double bw_param1, double bw_param2, double bw_param3, 

Distribution delay_dist, double delay_param1, double delay_param2, double delay_param3) 

{ 

_Topology_Type = tt; 
 . . . 
else if (tt == Topology_Type::DCNThreeTier) 

return getNetwork_DCNThreeTier (cpu_dist, cpu_param1, cpu_param2, cpu_param3, bw_dist, bw_param1, bw_param2, bw_param3, 

delay_dist, delay_param1, delay_param2, delay_param3); 



13 
 

 
 . . .  

Listing	5:	Substrate	Network	Generation	Using	Python	Script	(getNetwork	DCNThreeTier)	

template<typename A, typename B> 
std::shared_ptr<Network<A, B>> FNSSHandler<A,B>::getNetwork_DCNThreeTier 
(Distribution cpu_dist, double cpu_param1, double cpu_param2, double cpu_param3, 
Distribution bw_dist, double bw_param1, double bw_param2, double bw_param3, 
Distribution delay_dist, double delay_param1, double delay_param2, double delay_param3) 
{ 
std::stringstream pythonScript; 
Py_Initialize(); 
pythonScript << "import fnss\n"; 
//pythonScript << "import networkx as nx\n"; 
pythonScript << "topology = " << "fnss.three_tier_topology(n_core=" << params.threetier.n_core << 
", n_aggregation" << params.threetier.n_aggregation << ", n_edge= " << params.threetier.n_edges << 
", n_hosts=" << params.twotier.n_hosts << ")\n"; 
pythonScript << "fnss.write_topology(topology, '.datacenter_topology.xml')\n"; 
PyRun_SimpleString(pythonScript.str().c_str()); 
Py_Finalize(); 
fnss::Topology t = fnss::Parser::parseTopology(".datacenter_topology.xml"); 
std::set<std::pair <std::string, std::string> > edges = t.getAllEdges(); 
std::set<std::string> nodes = t.getAllNodes(); 
assert (nodes.size() > 0 && edges.size() > 0); 
std::shared_ptr<Network<A, B>> net (new Network<A, B>()); 
std::map<std::string, int> fnssNodeIdToVNESimNodeId; 
for(set<string>::iterator it = nodes.begin(); it != nodes.end(); it++) 
{ 
fnss::Node fnssNode = t.getNode(*it); 
std::shared_ptr<A> n = nullptr; 
// If the node is a host create it with a cpu capacity 
if (fnssNode.getProperty("type").compare("host") == 0) 
{ 
numHosts++; 
double node_cpu = RNG::Instance()->sampleDistribution<double,double,double,double> 
(cpu_dist, std::tuple<double,double,double> (cpu_param1, cpu_param2, cpu_param3)) ; 
n.reset (new A (node_cpu, 0, 0)); 
} 
else 
{ 
numSwitches++; 
n.reset (new A (0,0,0)); 
} 
fnssNodeIdToVNESimNodeId[*it] = n->getId(); 
net->addNode (n); 
} 
for(set<pair <string, string> >::iterator it = edges.begin(); it != edges.end(); it++) 
{ 
double link_bw = RNG::Instance()->sampleDistribution<double,double,double,double> 
(bw_dist, std::tuple<double,double,double> (bw_param1, bw_param2, bw_param3)); 
double link_delay = RNG::Instance()->sampleDistribution<double,double,double,double> 
(delay_dist, std::tuple<double,double,double> (delay_param1, delay_param2, delay_param3)); 
std::shared_ptr<B> l = nullptr; 
int nodeFromId = fnssNodeIdToVNESimNodeId[(*it).first]; 
fnss::Node fnssNodeFrom = t.getNode ((*it).first); 
int nodeToId = fnssNodeIdToVNESimNodeId[(*it).second]; 
fnss::Node fnssNodeTo = t.getNode ((*it).second); 
if ((fnssNodeFrom.getProperty("type").compare("host") == 0 || fnssNodeTo.getProperty ("type").compare("host") == 0 )) 
{ 
l.reset (new B (link_bw, link_delay, nodeFromId, nodeToId)); 
} 
else 
l.reset (new B (params.twotier.coreBWMultiplier * link_bw, link_delay, nodeFromId, nodeToId)); 
net->addLink (l); 
} 
this->pt.put ("n_switches", numSwitches); 
this->pt.put ("n_hosts", numHosts); 
this->pt.put ("n_links", net->getNumLinks()); 
return net; 
} 



14 
 

Listing	6:	Retrieval	of	Values	for	DCN	Three-Tier	Parameters	from	\con_guration.xml"	File	

template <typename A, typename B> 
FNSSHandler<A,B>::Parameters::DCNThreeTier::DCNThreeTier () : 
n_core(ConfigManager::Instance()->getConfig<int>("NetworkFileGenerator.FNSSHandler.DCNThreeTier.n_core")), 
n_aggregation(ConfigManager::Instance()->getConfig<int>("NetworkFileGenerator.FNSSHandler.DCNThreeTier.n_aggregation")), 
n_edges(ConfigManager::Instance()->getConfig<int>("NetworkFileGenerator.FNSSHandler.DCNThreeTier.n_edges")), 
n_hosts(ConfigManager::Instance()->getConfig<int>("NetworkFileGenerator.FNSSHandler.DCNThreeTier.n_hosts")), 
coreBWMultiplier (ConfigManager::Instance()->getConfig<int>("NetworkFileGenerator.FNSSHandler.DCNThreeTier.coreBWMultiplier")) 
{ 
} 

Listing	7:	DCN	Three-Tier	Structure	Initialization	

template<typename A, typename B> 
FNSSHandler<A,B>::Parameters::Parameters () : 
... 
    threetier(DCNThreeTier()) 
{ 
} 

Listing	8:	DCN	Three-Tier	Parameters	Initialization	
template <typename A, typename B> 
FNSSHandler<A,B>::FNSSHandler () : 
ExternalLibHandler<A,B> (), 
params(Parameters()) 
{ 
. . . 
this->pt.put ("DCNThreeTier.n_core", params.threetier.n_core); 
     this->pt.put ("DCNThreeTier.n_aggregation", params.threetier.n_aggregation); 
     this->pt.put ("DCNThreeTier.n_edges", params.threetier.n_edges); 
     this->pt.put ("DCNThreeTier.n_hosts", params.threetier.n_hosts); 
this->pt.put ("DCNThreeTier.coreBWMultiplier", params.threetier.coreBWMultiplier); 
} 

 

A2. Experiment Parameters Code Sections 

Listing	9:	Hiberlite	Access	to	DCN	Three-Tier	Parameters	(experiment-parameters.h)	

class ExperimentParameters 
{ 
friend class hiberlite::access; 
template<class Archive> 
void hibernate(Archive & ar) 
{ 
. . . 
ar & HIBERLITE_NVP (sn_three_tier_core); 
ar & HIBERLITE_NVP (sn_three_tier_aggregation); 
ar & HIBERLITE_NVP (sn_three_tier_edge); 
ar & HIBERLITE_NVP (sn_three_tier_host); 
ar & HIBERLITE_NVP (sn_three_tier_core_bw_multiplier); 
ar & HIBERLITE_NVP (sn_fat_tree_k); 
ar & HIBERLITE_NVP (sn_fat_tree_core_bw_multiplier); 
} 

Listing	10:	DCN	Three-Tier	Topology	Parameters	Variables	De_nition	(experiment-parameters.h)	

class ExperimentParameters 
. . . 
private : 
 . . . 
int sn_three_tier_core; 
int sn_three_tier_aggregation; 
int sn_three_tier_edge; 
int sn_three_tier_host; 
int sn_three_tier_core_bw_multiplier; 
int sn_fat_tree_k; 



15 
 

int sn_fat_tree_core_bw_multiplier; 
} 

Listing	11:	DCN	Three-Tier	Topology	Parameters	Variables	Initialization	(experiment-parameters.cc)	

void ExperimentParameters::setSNNetParams (boost::property_tree::ptree &pt, Topology_Type tt) 
{ 
 . . . 
else if (tt == Topology_Type::DCNThreeTier) 
{ 
sn_dcn_n_switches = pt.get<int> ("n_switches"); 
sn_dcn_n_hosts = pt.get<int> ("n_hosts"); 
sn_dcn_n_link = pt.get<int>("n_links"); 
sn_three_tier_core = pt.get<int>("DCNThreeTier.n_core"); 
sn_three_tier_edge = pt.get<int>("DCNThreeTier.n_aggregation"); 
sn_three_tier_edge = pt.get<int>("DCNThreeTier.n_edges"); 
sn_three_tier_host = pt.get<int>("DCNThreeTier.n_hosts");sn_three_tier_core_bw_multiplier = 
pt.get<int>("DCNThreeTier.coreBWMultiplier"); 
} 

 


