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• Some ISPs may support both:
– Traditional destination-based, hop-by-hop forwarding of low-

priority, TCP traffic (which we will also refer to as ‘best effort’
traffic)

– Connection-oriented, end-to-end routing of high priority traffic 
with QoS requirements
• E.g., via LSPs in an MPLS network

• Potential problem:
– At heavily loaded links carrying QoS and TCP traffic, the low-

priority TCP traffic may experience delay, bandwidth starvation

• Objective
– BE-friendly routing of a QoS connection in response to a trunk 

request; maximize revenue from QoS service

Highlights: Motivation
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• Link constraint: to be a part of the path
– A link must have enough unreserved effective bandwidth
– If a link will have too little bandwidth for BE after 

accommodating the trunk, that link Is not eligible. 
– Can take advantage of the excessive effective bandwidth

Highlights: Approach

s
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• Two-stage optimization
– Among the multiple routes with minimum effective 

bandwidth consumption,
– Choose the one that hurts the BE the least.
– We found a method to do this two-stage 

optimization through a single run of the shortest 
path finding

Highlights: Approach
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• BE-friendly routing of (trunks of) QoS connections
– Limit the BE traffic delay that results from routing high-priority 

QoS trunks
• Maintain a minimum level of service for BE traffic

– When multiple paths are equally attractive for routing a QoS
trunk, select one that impacts low-priority BE traffic the least

Objective

Heavy BE
traffic load

E.g., select s-v-d, not s-u-d

v

u
s d
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• BE delay metric
– An approximate measure of BE traffic delay at each link

• An additional constraint on QoS trunk routing:
– BE delay metric must not be excessive at any link

• An additional cost of candidate path to support QoS
trunk:
– BE path cost defined in terms of BE delay metric

• A constrained, two-stage optimization to route QoS
trunks

Approach
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• Example BE delay metrics
– M/M/1-based approximation of time spent by BE traffic at each 

directed link, e

– G/G/1-based upper bound on BE queueing delay at each 
directed link

BE Delay Metric
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Constraints on QoS Trunk Routing
• A candidate path is feasible if at each link along path:

– Effective bandwidth of QoS trunk does not exceed residual link 
capacity

– Additional, BE constraint:
• BE delay metric (that results if path is selected) must not exceed a 

maximum acceptable limit

• Implemented as an additional residual link capacity constraint:
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• Costs of a feasible candidate path:
– QoS path cost:

• Exclusive of effects on BE traffic

• E.g., added effective bandwidth consumption

– Additional, BE path cost:
• Based on BE delay metric

• Indicative of increase in BE traffic delay if path is selected to 
support QoS trunk

Path Costs
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• A constrained, two-stage optimization for routing QoS
trunks
1 Find feasible candidate paths that minimize QoS cost

2 Secondary optimization:
• In case of ties (multiple feasible paths with minimum QoS cost), 

select a path that minimizes BE cost

QoS Routing Optimization
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• Efficient implementation of QoS routing optimization 
(Dijkstra’s algorithm)
– Based on observations:

• Quantization condition may hold

• Bounded BE cost

• Exploitation of “excess effective bandwidth” to enhance 
QoS routing performance

Implementation Tricks
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• Quantization condition:
– The QoS cost of a path may be quantized

• E.g., if QoS cost is number of hops in path, the quantum, q, is 1

• E.g., if QoS cost is net bandwidth reservation for path, it may be 
quantized with a quantum, q, in bits per second

• Bounded BE cost:
– BE cost of any feasible path is upper-bounded

• Due to BE constraint which limits BE traffic delay

Observations
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• Form weighted sum cost of path,
[QoS cost] + wBE [BE cost],

where weighting coefficient wBE is small enough so that

wBE [BE cost]  <  q  for any path

• If feasible path, p, minimizes weighted sum cost,
1 Then p minimizes QoS cost
2 Among all feasible minimum QoS cost paths, path p is one with 

minimum BE cost

• Two-stage optimization by Dijkstra with link metric:

Efficient Implementation
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• Bandwidth reserved for a QoS trunk
=  effective bandwidth of QoS trunk
≥ average bandwidth that trunk actually consumes

• “Excess effective bandwidth”
– The average amount of bandwidth that is reserved for but 

unused by a QoS trunk
– Exploit excess effective bandwidth to support BE traffic
– Take excess effective bandwidth into account when calculating 

BE delay metric for each link
• Eases the BE constraint on QoS routing

Excess Effective Bandwidth
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• BE-friendly LSP routing with path restoration
– “Path restoration with exact reservations” in 15-node test 

network [Kodialam, Lakshman '02]
• Additional BE constraint tends to increase blocking probability of 

LSP requests to support QoS trunks, but effect is small over wide 
range of BE traffic loads

Example Simulation and Findings
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• Sample US nationwide topology” [Rai,.., Mukherjee, 05] 
with 24 nodes and 86 directed links.

Example Simulation and Findings
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• Sample US nationwide topology” with 24 nodes and 
86 directed links.

Example Simulation and Findings
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• Sample US nationwide topology” with 24 nodes and 86 directed links. 
Non-uniform s-d pairs (8 nodes are more likely to be an ingress-egress 
nodes.)

Example Simulation and Findings

Blocking Prob. versus F/C, ρ = 10000 E, with r uniform on [1.5, 2.5]. 
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• BE constraint on routing of QoS trunks
– Guarantee minimum level of service for low-priority TCP (BE) 

traffic

– Exploitation of excess effective bandwidth eases BE constraint 
on QoS routing

– Simulation results suggest that increase in QoS blocking 
probability due to BE constraint need not be prohibitive

• Ties between candidate QoS paths, decided by BE cost
• Quantization condition permits efficient QoS routing 

implementation
– Dijkstra’s algorithm simultaneously implements two stages of 

routing optimization

Discussions
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