Pinning Control of Complex Networks

GUANRONG CHEN

Centre for Chaos and Complex Networks City University of Hong Kong, P. R. China

Acknowledgements

Zhengping Fan Xiaofan Wang Xiang Li

OUTLINE

Introduction

Control of Scale-Free Networks

Pinning: Randomly Selective Control
 Pinning: Specially Selective Control
 Comparisons

Conclusions

Introduction

Control (electronic or mechanical devices, stimuli, policy or commands, ...)

For a single node (a single system): What kind of controller to use? How to design it?

For **a network of nodes**: (In addition), How many nodes to control? Which nodes to control? – Network topology matters

Introduction

Control of Networks

Network Synchronization
 Network Stabilization
 Network Utilization
 Networked Sensing
 Networked Controlling

Introduction

Pinning Control of Networks

For a network of nodes: How many nodes to control? Which nodes to control? – to pin (a controller will not be removed after being placed in)

Random-Graph Networks
 Scale-Free Networks

Random Graph Model

(Erdös-Rényi: 1960)

Start with *N* nodes and no links
 With probability *p*, connect two randomly selected nodes with a link

Small-World Network Model (Watts-Strogatz:1998)

- Start with a lattice of *N* nodes with links between the nearest and next-nearest neighbors
- **Each link is <u>rewired</u>** with probability *p*

Here, <u>rewiring</u> means shifting one end of a link to a randomly selected node

Small-World Network Model

Random Graph Model and Small-World Network Model

Some Common Features:

 Connectivity Distribution: Poisson/binomial or near uniform distribution
 Homogeneous Nature: Each node has roughly the same number of links
 Network Size: Network does not grow

Scale-free Network Model (Barabasi-Albert:1999)

Features:

- Connectivity Distribution: power-law distribution
 ~ k^{-r} with r = 3
- Non-homogeneous Nature: A few nodes have many links but most other nodes only have a few links

Network Size: Network continuously

Network continuously grows

Extended BA (EBA) Model (allows r < 3)</th>(Albert and Barabasi: 2000)

Extended BA (EBA) Model

The EBA model (Albert and Barabasi: 2000) --

(i) Add new links between existing nodes:

With probability $P, m (m \le m_0)$ new links are added into the network: one end of each link is chosen at random, and the other end is selected with probability

$$\Pi(k_i) = \frac{k_i + 1}{\sum_l (k_l + 1)}$$

EBA Model

(ii) **Re-wiring:** With probability q, m links are rewired: First, a node i with a link l_{ij} is selected at random. Then, this link is replaced with a new link $l_{ij'}$ that connects node i to node j' which is chosen with probability $\Pi(k_{ij'})$

(iii) Incremental growth: With probability 1 - p - q, a new node is added into the network: The new node has *m* new links to the already existing nodes in the network with probability $\Pi(k_i)$.

EBA Model

In this model, $0 \le p < 1$ and $0 \le q < 1 - p$.

If $q < \min(1 - p, (1 - p + m)/(1 + 2m))$, then the connectivity distribution of nodes will be in a **power-law** form:

 $P(k) \propto (k + A(p,q,m) + 1)^{-\gamma}$

where $\gamma = 1 + B$.

$$A(p,q,m) = (p-q) \left(\frac{2m(1-q)}{1-p-q} + 1 \right)$$
$$B(p,q,m) = \frac{2m(1-q)+1-p-q}{m}$$

A Typical Model of Scale-Free Networks

A network with N linearly coupled nodes:

$$\dot{x}_{i} = f(x_{i}) + c \sum_{\substack{j=1\\j\neq i}}^{N} a_{ij} \Gamma(x_{j} - x_{i}), i = 1, 2, \cdots, N$$
(1)

Here:

 $\begin{aligned} x_i &= (x_{i1}, x_{i2}, \cdots, x_{in}) \in \mathbb{R}^n \quad \text{- state vectors} \\ f(\cdot) &= \text{nonlinear function} \\ \Gamma &\in \mathbb{R}^{n \times n} \quad \text{- constant 0-1 coupling matrix} \\ \text{Assume: } \Gamma &= diag(r_1, \cdots, r_n) \text{ is diagonal with } r_i = 1 \\ &\text{ for a particular } i \text{ , and } r_j = 0 \text{ for } j \neq i \end{aligned}$

A Typical Model of Scale-Free Networks

Let the constant coupling strength be c > 0. If there is a link between node *i* and node *j* $(j \neq i)$, then let $a_{ij} = a_{ji} = 1$; otherwise, let

$$a_{ij} = a_{ji} = 0 \quad (i \neq j)$$

Define

$$\sum_{\substack{j=1\\j\neq i}}^{N} a_{ij} = \sum_{\substack{j=1\\j\neq i}}^{N} a_{ji} = k_i, \qquad i = 1, 2, \cdots, N$$

and let

$$a_{ii} = -k_i \quad (i = 1, 2, \cdots, N)$$

A Typical Model of Scale-Free Networks

Model (1) can be rewritten as

$$\dot{x}_i = f(x_i) + c \sum_{j=1}^N a_{ij} \Gamma x_j$$
 $i = 1, 2, \cdots, N$ (2)

Here, the coupling matrix $A = (a_{ij}) \in \mathbb{R}^{N \times N}$ represents the coupling configuration of the entire network. **Assume:** $A = (a_{ij})_{N \times N}$ is a symmetric and irreducible matrix. Then, λ_1 , the largest eigenvalue of the matrix A, is zero, with multiplicity 1, and all the other eigenvalues are strictly negative: $\lambda_N \leq \cdots \leq \lambda_2 < 0$

[C. W. Wu: Synchronization in Coupled Chaotic Circuits and Systems, World Scientific, 2002]

Control of Scale-Free Networks

Here, the control objective is:

To stabilize network (2) onto a particular solution of the network:

$$x_1(t) = x_2(t) = \dots = x_N(t) \to \overline{x}, as t \to \infty$$

Here, $\overline{x} \in \mathbb{R}^n$ is an equilibrium point of an isolated node.

(For example, if the network is not synchronizable, then control is needed.)

Control of Scale-Free Networks

➢ It is very difficult, if not impossible, to control every node in a very large-scale complex dynamical network

> Even if it is possible, the cost would be very high

Pinning Control:

Only a small portion of nodes are selected to apply control

- 1. Decentralized pinning control
- 2. <u>Selective</u> pinning control

[X. F. Wang and G. Chen, Physica A, 2002, 310: 521-531][X. Li, X. F. Wang and G. Chen, IEEE Trans. CAS-I: 2004, 51(10): 2074-2087]

Pinning Control: A Comparison (stabilization)

Percentage of nodes affected by pinning control in the network of 3000 nodes

Pinning Control: A Comparison (attack)

Percentage of remaining connectivity in the network of 3000 nodes

Pinning Control of Scale-Free Networks: Example: Networked Chua's circuits

Chua Circuit

[C. W. Wu and L. O. Chua: IEEE Trans. CAS-I, 1995, 494-497]

[C. W. Wu: *Synchronization in Coupled Chaotic Circuits and Systems*, 2002, World Scientific]

Chua's Circuit:

$$\begin{cases} \frac{dv_1}{dt} = \frac{1}{C_1} [G(v_2 - v_1) - f(v_1)] \\ \frac{dv_2}{dt} = \frac{1}{C_2} [G(v_1 - v_2) + i_3] \\ \frac{di_3}{dt} = -\frac{1}{L} [v_2 + R_0 i_3] \end{cases}$$

$$f(v_1) = G_b v_1 + \frac{1}{2} (G_a - G_b) \{ |v_1 + E| - |v_1 - E| \}$$

If there exists a link between node A and B, then they will be coupled by a linear resistor:

The coupled network of Chua's circuits

[C. W. Wu and L. O. Chua: IEEE Trans. CAS-I, 1995, 494-497]

BA scale-free network of Chua's circuits:

$$\begin{cases} dx_i / dt = \alpha(y_i - x_i - f(x_i)) + c \sum_{j=1}^N a_{ij} x_j + u_i \\ dy_i / dt = x_i - y_i + z_i \\ dz_i / dt = -\beta y_i \end{cases}$$
 $(i = 1, ..., N)$

where

$$f(x_i) = bx_i + \frac{1}{2}(d-b)(|x_i+1| - |x_i-1|)$$
$$u_i = -kx_i \ (i = 1, ..., N)$$

(state feedback controller)

Circuit parameters:

$$\alpha = 9.78, \beta = 14.97, b = -0.75, d = -1.3$$

Network parameters:

Network size: N = 200Coupling strength: c = 22.9

Controllers parameter: Control gain: k = 200

Case I: All nodes are pinned

Case II: Selectively pinned

Case III: Randomly pinned

Recall: A Typical Scale-Free Network Model

The scale-free network model:

$$\dot{x}_{i} = f(x_{i}) + c \sum_{\substack{j=1\\j\neq i}}^{N} a_{ij} \Gamma(x_{j} - x_{i}), i = 1, 2, \cdots, N$$
(1)

$$\dot{x}_i = f(x_i) + c \sum_{j=1}^{N} a_{ij} \Gamma x_j$$
 $i = 1, 2, \cdots, N$ (2)

Here, the coupling matrix $A = (a_{ij}) \in \mathbb{R}^{N \times N}$ represents the coupling configuration of the entire network, which is a symmetric and irreducible matrix.

Suppose that **nodes** $1, 2, \dots l$ are selected to be **pinned** Then, the **controlled network** is

$$\begin{cases} \dot{x}_{i} = f(x_{i}) + c \sum_{j=1}^{N} a_{ij} \Gamma x_{j} + u_{i}, i = 1, 2, \cdots, l \\ \dot{x}_{i} = f(x_{i}) + c \sum_{j=1}^{N} a_{ij} \Gamma x_{j}, i = l + 1, l + 2, \cdots, N \end{cases}$$
(3)

Rewrite network (3) as

$$\dot{x}_{i} = f(x_{i}) + c \sum_{j=1}^{N} a_{ij} \Gamma x_{j} + b_{ii} u_{i}, i = 1, 2, \cdots, N$$
(4)

Here, diagonal element $b_{ii} = 1$, if node *i* is pinned; otherwise, $b_{ii} = 0$.

Apply time-delay feedback control $u_{i} = k_{i}\Gamma(x_{i}(t) - x_{i}(t - \tau))$ (5)

Here, k_i is the constant control gain and τ is the constant delayed time.

Then, network (4) becomes

$$\dot{x}_{i} = f(x_{i}) + c \sum_{j=1}^{N} a_{ij} \Gamma x_{j} + b_{ii} k_{i} \Gamma(x_{i}(t) - x_{i}(t - \tau)), i = 1, 2, \cdots, N$$

Let
$$x_i(t) = \overline{x} + e_i(t)$$
, so that
 $\dot{e}_i = f(\overline{x} + e_i(t)) - f(\overline{x}) + c \sum_{j=1}^N a_{ij} \Gamma e_j + b_{ii} k_i \Gamma(e_i(t) - e_i(t - \tau)),$
 $i = 1, 2, \dots, N$
(6)

Lemma:

The synchronization error system (6) is asymptotically stable about its zero equilibrium if the following linear system is asymptotically stable about the zero equilibrium:

$$\dot{e}_i = (J(t) + b_{ii}k_i\Gamma)e_i(t) + c\sum_{j=1}^N a_{ij}\Gamma e_j - b_{ii}k_i\Gamma e_i(t-\tau),$$

$$i = 1, 2, \cdots, N$$

<u>Theorem</u>: The controlled network (4) will be controlled to the target asymptotically if there exist symmetrical and positive-definite matrices $W, X, Z \in \mathbb{R}^{n \times n}$ such that the following LMI holds:

$$M = \begin{bmatrix} \hat{A} & ca_{i1} \Gamma W & \cdots & ca_{iN} \Gamma W & 0 & \cdots & -b_{ii} \Gamma X & \cdots & 0 \\ ca_{i1} W \Gamma & Z & & & & \\ \vdots & & \ddots & & & \\ ca_{iN} W \Gamma & & Z & & & \\ 0 & & & -Z & & & \\ \vdots & & & & \ddots & & \\ -b_{ii} X \Gamma & & & & & \\ \vdots & & & & & -Z \end{bmatrix} < 0$$

Here: $\hat{A} = WJ^T + JW + b_{ii}X\Gamma + b_{ii}\Gamma X$ and J involves the control gains

Proof: Construct a Lyapunov functional as

$$V = \sum_{i=1}^{N} \left\{ e_{i}^{T}(t) P e_{i}(t) + \sum_{j=1}^{N} \int_{t-\tau}^{t} e_{j}^{T}(\sigma) R e_{j}(\sigma) d\sigma \right\}$$

Here, *P* and *Q* are symmetrical and positive-definite.

$$\dot{V}(e_{1}, e_{2}, \cdots e_{N}) = \sum_{i=1}^{N} \left\{ e_{i}^{T}(t) \left(\left(J^{T}(t) + b_{ii}k_{ii}\Gamma \right) P + P \left(J(t) + b_{ii}k_{ii}\Gamma \right) \right) e_{i}(t) + 2c \left[\sum_{j=1}^{N} a_{ij}\Gamma e_{j}(t) \right]^{T} P e_{i}(t) - 2b_{ii}k_{i}e_{i}^{T}(t-\tau)\Gamma P e_{i}(t) + \sum_{j=1}^{N} e_{j}^{T}(t)\operatorname{Re}_{j}(t) - \sum_{j=1}^{N} e_{j}^{T}(t-\tau)\operatorname{Re}_{j}(t-\tau) \right\}$$

Therefore, the derivative of $V(e_1, e_2, \dots e_N)$ is negative if

Here, $\tilde{A} = P^{-1}(J^{T}(t) + b_{ii}k_{i}\Gamma) + (J(t) + b_{ii}k_{i}\Gamma)P^{-1}$

Let $W = P^{-1}$, $X = k_i P^{-1}$, $Z = P^{-1}RP^{-1}$. Then, it completes the proof of the theorem.

Example: A coupled scale-free dynamical network

$$\dot{x}_{i} = \begin{pmatrix} \dot{x}_{i1} \\ \dot{x}_{i2} \\ \dot{x}_{i3} \\ \dot{x}_{i4} \end{pmatrix} = \begin{pmatrix} -x_{i3} - x_{i4} + c \sum_{j=1}^{N} a_{ij} x_{j1} \\ 2x_{i2} + x_{i3} + c \sum_{j=1}^{N} a_{ij} x_{j2} \\ 14x_{i1} - 14x_{i2} + c \sum_{j=1}^{N} a_{ij} x_{j3} \\ 100x_{i1} - 100x_{i4} \\ + 100((x_{i4} + 1) - (x_{i4} - 1)) \\ + c \sum_{j=1}^{N} a_{ij} x_{j4} \end{pmatrix}$$

$$(i = 1, 2, \dots N)$$

Here, network size N = 60, coupling strength c = 8.246, and number of pinning nodes l = 15

Selective Pinning Control: Only pin the first 15 largestdegree nodes, with control gains $k_i = 29.7603$

Comparison:

Random Pinning Control: Randomly select 15 nodes.Control gains are $k_i = 513.3709$ Much larger than the last one: $k_i = 29.7603$

And, it takes twice-long time to stabilize the network

The controlled state x1

The selective pinning control scheme utilizes the special structures of scale-free complex networks. Therefore, it can give much better control performance than the random pinning control scheme

 \rightarrow A good control strategy should <u>utilize the</u> <u>structures</u> of the complex networks

Pinning Control of Scale-Free Networks: Possibly the <u>Simplest Pinning Control</u>

Apply pinning control with a constant control input: $u_i = -kd_i\Gamma B$ (8)

Here, k is the constant control input; $d_i = 1$ if node i is pinned; otherwise, $d_i = 0$. Moreover, $B = [1,1,...,1]^T \in R^{n \times 1}$.

Let $x_i(t) = \overline{x} + e_i(t)$, so that

$$\begin{cases} \dot{e}_{i} = \frac{\partial f(e_{i})}{\partial e_{i}}e_{i} + c\sum_{j=1}^{N}a_{ij}\Gamma e_{j} + u_{i}, i = 1, 2, \cdots, l\\ \dot{e}_{i} = \frac{\partial f(e_{i})}{\partial e_{i}}e_{i} + c\sum_{j=1}^{N}a_{ij}\Gamma e_{j}, i = l+1, l+2, \cdots, N \end{cases}$$
(9)

Example: Consider a coupled scale-free dynamical network consisting of Lorenz systems:

$$\dot{x}_{i} = \begin{pmatrix} a(x_{i2} - x_{i1}) + c \sum_{j=1}^{N} a_{ij} x_{j1} \\ cx_{i1} - x_{i1} x_{i3} - x_{i2} + c \sum_{j=1}^{N} a_{ij} x_{j2} \\ x_{i1} x_{i2} - b x_{i3} + c \sum_{j=1}^{N} a_{ij} x_{j3} \end{pmatrix}.$$

$$(11)$$

$$(i = 1, 2, \dots N)$$

Parameters:

$$a = 10, b = 8/3, c = 28, \gamma = 45, \beta = 30$$

The network size is 50. With 24 nodes being controlled, the network is well stabilized:

The controlled state *X*³ in the largest-degree node

Conclusions

- Pinning is a good control strategy for scale-free dynamical networks
- Selective pinning control scheme is much more efficient than the random pinning control scheme
- A sufficient condition can be given to selective pinning of scale-free networks in terms of LMI
- Example shows that even constant pinning control input works well for some scale-free networks
- More efficient, and yet simple and cost-effective, control approaches are to be further developed

SCI papers: Complex Networks

EI papers: Complex Networks

SCI papers: Small-World Networks

EI papers: Small-World Networks

SCI papers: Scale-Free Networks

EI papers: Scale-Free Networks

