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In this talk we shall address the questions:

• What are border collision bifurcations?

• How to recognize them?

• In what kind of systems do they occur?

• How developed is the theory of border collision bifurcation?

• Can the theory be used for some useful purpose (design,
control etc.)?
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Q1: What are the distinctive features of border collision
bifurcations?
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The “textbook” structure of bifurcation diagram in smooth systems:

• Period doubling cascade

• Periodic windows within chaos
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The nonstandard appearance of bifurcation diagrams in
nonsmooth systems:
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More examples of “nonstandard” features:
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Q2: In what kind of systems do BCBs occur?
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Switching (or hybrid) systems are dynamical systems with
continuous-time evolution punctuated by discrete switching events.

In switching dynamical systems, discrete switching events occur
when certain conditions on the state variables are satisfied. The
discrete events signify some change in the continuous-time state
variable equations.
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Schematic diagram showing the structure of the state space of a
hybrid system.
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Mathematically, these systems can be described by piecewise
smooth vector fields

ẋ = f(x, ρ) =







f1(x, ρ) for x ∈ R1

f2(x, ρ) for x ∈ R2

...

fn(x, ρ) for x ∈ Rn

where R1, R2 etc. are different regions of the state space, and ρ is
a system parameter.
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The regions are divided by the discrete event conditions. In the
state space these are (n − 1) dimensional surfaces given by
algebraic equations of the form

Γn(x) = 0.

These are the “switching manifolds.”
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There can also be systems where the state does not move
between compartments in the state space, but switching events
change the state equations:

ẋ = f(x, ρ) =







f1(x, ρ) for Γ1(x) = 0

f2(x, ρ) for Γ2(x) = 0
...

fn(x, ρ) for Γn(x) = 0

where Γ1(x), Γ2(x) etc. are switching conditions.
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There can also be systems where the state equations do not
change, but the state variable jumps to a different value as a
switching condition is satisfied.

ẋ = f(x, ρ)

and if x ∈ B : Γ(x) = 0, then x 7→ x
′.
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Examples:

• Power electronic circuits

• Systems involving relays

• Impacting mechanical systems

• Systems involving dry friction (stick-slip motion)

• Nonlinear circuits like the Colpitt’s oscillator, Chua’s circuit etc.

• Walking robots

• Hydraulic systems with on-off valves, the human heart

• Continuous systems controlled by discrete logic.
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In case of hybrid systems there can be two (or more) different types
of orbits depending on which regions in the state space are visited.
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Therefore the Poincaré section must yield different functional forms
of the map depending on the number of crossing of the switching
manifold.
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This implies that the structure of the discrete state space for a
hybrid system must be piecewise smooth (PWS).

x 2

x1

x           x=fn+1 1( n)

x           x=fn+1 ( n)2

Borderline

The borderline in discrete domain corresponds to the condition
where the orbit grazes the switching manifold in the
continuous-time system.

BORDER COLLISION BIFURCATION:. . . 17



Dynamics of Piecewise Smooth Maps

• If a fixed point loses stability while in either side, the resulting
bifurcations can be categorized under the generic classes for
smooth bifurcations.

• But what if a fixed point crosses the borderline as some
parameter is varied?
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The Jacobian elements discretely
change at this point
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• The eigenvalues may jump from any value to any other value
across the unit circle.

• The resulting bifurcations are called
Border Collision Bifurcations.

Continuous movement of
eigenvalues in a smooth
bifurcation

Discontinuous jump of
eigenvalues in a border
collision bifurcation
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Therefore,

➜ In switching dynamical systems the bifurcation sequence is governed
by a complex interplay between smooth bifurcations and border
collision bifurcations.

➜ The different types of smooth bifurcations are well known. What are
the different types of BCBs?

➜ The answer to this question depends on the character of the
borderline and that of the functions at the two sides of the border.
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Q3: What are the different types of 1-D piecewise smooth
maps?
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1. Map continuous, derivative discontinuous but finite.

x

xn

n+1

1. H. E. Nusse and J. A. Yorke, “Border-collision bifurcations for piecewise smooth one
dimensional maps,” International Journal of Bifurcation and Chaos, vol. 5, no. 1,
pp. 189–207, 1995.

2. S. Banerjee, M. S. Karthik, G. H. Yuan, and J. A. Yorke, “Bifurcations in one-dimensional
piecewise smooth maps — theory and applications in switching circuits,” IEEE
Transactions on Circuits and Systems-I, vol. 47, no. 3, 2000.
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The current mode controlled buck converter
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Case 1 Borderline case Case 2
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Example 2: Internet packet transfer using TCP-RED
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The graph of the map

BORDER COLLISION BIFURCATION:. . . 26



2. Map and the derivative both discontinuous, but finite

x

xn+1

n

1. P. Jain and S. Banerjee, “Border collision bifurcations in one-dimensional discontinuous

maps.” IJBC, Vol. 13, No. 11, 2003, pp.3341-3352.
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Example: The Sigma-Delta modulator

xn+1 = pxn + s − sign(xn).

Here s ∈ [−1, 1] is the input signal of the circuit (a parameter),

x represents the output of the circuit, and

p > 0 is a non-ideality parameter.

-1

 0

 1

 2

 0  1
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3. Map continuous but has square-root singularity; derivative
discontinuous.

Example:

Fµ(x) =

{

αx + µ if x ≤ 0

β
√

x + µ if x ≥ 0

where 0 < α < 1 and β < −1.

x

x

n

n+1

It represents the impact oscillator. Extensive investigation has
been reported.
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4. Map discontinuous, and has square-root singularity

xn

xn+1

Theory not yet developed.
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Example : The Colpitt’s
Oscillator

G. M. Maggio, M. di Bernardo and M.

P. Kennedy, “Nonsmooth Bifurcations in a

Piecewise-Linear Model of the Colpitts Os-

cillator”, IEEE Trans. CAS-I, 47, 2000.
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5. Map with singularity at borderline — both in magnitude and
slope

xn+1 = γxn +
αxn

(xn − λ)2
for xn < λ

xn+1 = β +
ρxn

(xn − λ)2
for xn > λ

1. W. Tao Shi, Christopher L. Good-
eridge, and Daniel P. Lathrop, Break-
ing waves: bifurcations leading to a
singular state, Physical Review E 56
(1997), 4157–4161.

2. Aloke Kumar and Soumitro Baner-
jee, “Dynamics of a piecewise smooth
map with singularity,” Physics Letters
A, Vol. 337/1-2, 2005, pp. 87-92.

xn

x n
+

1

λ
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Likewise in 2-D systems, the classification will depend on the
continuity of the function across the border and the Jacobian
elements at the two sides of the border.

x 2

x1

x           x=fn+1 1( n)

x           x=fn+1 ( n)2

Borderline

There are the following possibilities:
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System type 1: The function is continuous, but Jacobian changes
discontinuously across borderline.

1. S. Banerjee, C. Grebogi, “Border Collision Bifurcations in Two-Dimensional Piecewise
Smooth Maps”, Physical Review E, Vol.59, No.4, 1 April, 1999, pp.4052-4061.

2. S. Banerjee, P. Ranjan and C. Grebogi, “Bifurcations in two-dimensional piecewise smooth
maps — theory and applications in switching circuits”, IEEE Trans. Circuits & Systems–I,
vol.47, no. 5, pp.633-643, 2000.
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Q4: How can we analyse the bifurcation in such a system?
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Basic tool: The normal form

x 2

x1

*

(

xn+1

yn+1

)

=

(

τL 1

−δL 0

)(

xn

yn

)

+ µ

(

1

0

)

for xn ≤ 0

(

τR 1

−δR 0

)(

xn

yn

)

+ µ

(

1

0

)

for xn > 0
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Any system of the form



x̄k+1

ȳk+1



 =




a1 a2

a3 a4





︸ ︷︷ ︸

A




x̄k

ȳk



+




1

0



µ

with a3 6= 0 can be transformed to the 2-D normal form



xk+1

yk+1



 =




τ 1

−δ 0








xk

yk



+




1

0



µ

using the transformation

xk = T x̄k and T =




1 a4

a3

0 − δ
a3





where τ :=trace(A) = a1 + a4 and δ :=det(A) = a1a4 − a2a3.
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Classification of border collision bifurcations

To work out the asymptotically stable orbits depending on which
type of fixed point collides with the border and turns into which
other type, and to partition the parameter space into regions of the
same type of asymptotic behavior. a

aBanerjee, Yorke and Grebogi, PRL, 80, 1998;
Banerjee and Grebogi, PRE, 59, 1999;
Banerjee, Karthik, Yuan and Yorke, IEEE CAS-I, 47, 2000;
Banerjee, Ranjan and Grebogi, IEEE CAS-I, 47, 2000
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The fixed point is a flip saddle if 

The fixed point is a flip attractor if 

The fixed point is a spiral attractor if 

The fixed point is a regular attractor if 

The fixed point is a regular saddle if 
τ > (1+δ)

2  δ < τ < (1+δ)

−2  δ < τ < 2  δ

−(1+δ) < τ < −2  δ

τ < −(1+δ)
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The possible types of fixed points of the normal form map.

Type eigenvalues condition identifiers

For positive determinant

Regular attractor real, 0<λ1, λ2 <1 2
√

δ<τ <(1 + δ) σ+ =0, σ− =0

Regular saddle real, 0<λ1 <1, λ2 >1 τ >(1 + δ) σ+ =1, σ− =0

Flip attractor real, 0>(λ1, λ2)>−1 −2
√

δ>τ >−(1 + δ) σ+ =0, σ− =0

Flip saddle real, 0<λ1 <1, λ2 <−1 τ <−(1 + δ) σ+ =0, σ− =1

Spiral attractor complex, |λ1|, |λ2|<1

(a) Clockwise spiral 0<τ <2
√

δ σ+ =0, σ− =0

(b) Counter-clockwise spiral −2
√

δ<τ <0 σ+ =0, σ− =0

For negative determinant

Flip attractor 0>λ1 >−1, 1>λ2 >0 −(1 + δ)<τ <(1 + δ) σ+ =0, σ− =0

Flip saddle λ1 >1,−1<λ2 <0 τ >1 + δ σ+ =1, σ− =0

Flip saddle 0<λ1 <1, λ2 <−1 τ <−(1 + δ) σ+ =0, σ− =1
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attractor
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−2  δ 2  δ

−2  δ 2  δ

2  δ

−2  δ

0−(1+δ) (1+δ)
τ

−(1+δ  )

(1+δ  )

(1+δ  )−(1+δ  ) τ

τ

Each box in this pa-

rameter space partitioning

means a specific type of

fixed point changes to an-

other specific type.
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Primary partitioning

Depending on the types of fixed point at the two sides of the
border, there can be three basic types of BCBs.

1. Scenario A: Persistent fixed point

2. Scenario B: Border collision pair bifurcation

3. Scenario C: Border crossing bifurcation.
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It was found that the asymptotic behavior is not the same
throughout each partition. Need was felt to make a “secondary
partitioning.”

A2

C1(a)

A1

B1 A2

B1

B2(b)

B2(c)

B2(b)

B2(C)

C
2(

b)

C
1(

b)

C
2(

c)

C
3(

a)
C

3(
b)

C2(a)

C2(a)

C2(c)

C2(b)

C1(b)

C3(a)C3(b)
���

����
�	��


������
���



���
�	�

��
��

�

� ��� �� � �

��� �� � �

� �� �
� � �� �

� �

� �
BORDER COLLISION BIFURCATION:. . . 44



Scenario A1: A fixed point remains stable. But ...

µ

x

The “normal” case.

µ

x

M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke and G-H. Yuan,

PRL, 83, 1999.

µ

x

Anindita Ganguli and Soumitro Banerjee, “Dangerous bi-

furcation at border collision — when does it occur?” PRE,

Vol.71, No.5, 2005.
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Scenario B: A pair of fixed points are born. But ...
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Scenario C: A fixed point loses stability as it moves across the
border.

µ

x

µ

x

µ

x

µ

x

µ

x

µ

x
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2D System type 2: Determinant greater than unity in one side of
borderline (fixed point can be repeller). Birth of a torus through
border collision bifurcation.

Z. T. Zhusubaliyev, E. Mosekilde, S. Maiti, S. Mohanan and S. Banerjee “The Border-Collision

Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation,” Chaos,

Sept. 2006.
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2D System type 3: The function as well as the Jacobian are
discontinuous across the borderline.

Work in progress.
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2D System type 4: Maps with square root singularity.

For mechiancal systems undergoing soft impacts, it has been shown that

the determinant remains constant but the trace of the Jacobian shows a

square-root singularity.

Yue Ma, Manish Agarwal, and Soumitro Banerjee, “Border Collision Bifurcations in a Soft Impact

System,” Physics Letters A, Vol. 354, No.4, 2006, pp. 281-287.
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2D System type 5: System dimension different at the two sides of a
borderline.

Sukanya Parui and Soumitro Banerjee, “Border Collision Bifurcation at the Change of

State-Space Dimension”, Chaos, Vol. 12, No.4, pp. 1160-1177, 2002.
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Q5: Is there any tool to analyse the bifurcations in systems of
dimension 3 or higher?
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Feigin’s approach: Classify the BCBs according to the existence
and stability of period-1 and period-2 fixed points.

M. di Bernardo, M. I. Feigin, S. J. Hogan, M. E. Homer, “Local analysis of C-bifurcations in

n-dimensional piecewise smooth dynamical systems”, “Chaos, Solitons & Fractals”, Vol.10,

No.11, pp. 1881-1908, 1999.
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Step 1: define the following identifiers:

σ
+

L := number of real eigenvalues of JL > +1

=

{

1 if τL > (1 + δL)

0 if τL < (1 + δL)

σ
−

L := number of real eigenvalues of JL < −1

=

{

1 if τL < −(1 + δL)

0 if τL > −(1 + δL)

σ
+

R := number of real eigenvalues of JR > +1

=

{

1 if τR > (1 + δR)

0 if τR < (1 + δR)

σ
−

R := number of real eigenvalues of JR < −1

=

{

1 if τR < −(1 + δR)

0 if τR > −(1 + δR)
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σ+
LL := number of real eigenvalues of JLJL > +1

=







1 if τL > (1 + δL)

0 if τL < (1 + δL)

σ+
LR := number of real eigenvalues of JLJR > +1

=







1 if τLτR > (1 + δL)(1 + δR)

0 if τLτR < (1 + δL)(1 + δR)

σ−
LR := number of real eigenvalues of JLJR < −1

=







1 if τRτL < −(1 − δR)(1 − δL)

0 if τRτL > −(1 − δR)(1 − δL)
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Step 2: The basic classification

If σ+
L + σ+

R is even,
then there is a smooth transition of one orbit to another at a
border collision.

If σ+
L + σ+

R is odd,
then two orbits merge and disappear at the border.

If σ−
L + σ−

R is odd,
then a period-2 orbit exists after border collision.
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Q5: How to apply this knowledge?
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The conditions for the occurrence of such bifurcations are now
available in terms of the Jacobian matrices at the two sides of the
borderline.

In practical systems, if such phenomena are observed,

• obtain the eigenvalues before and after a border collision,

• obtain the trace and the determinant, and

• match with the available theory.
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➜ Prediction of bifurcation
➜ Control of bifurcation.

➜ Controlling the position of
the borderline

➜ Controlling the Jacobian
at the two sides of the
borderline
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Thank You
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