
Implementation of BGP in a Network Simulator

Tony Dongliang Feng, Rob Ballantyne, and Ljiljana Trajković
Simon Fraser University

Vancouver, British Columbia
Canada

{tdfeng, ballanty, ljilja}@cs.sfu.ca

Abstract
 Border Gateway Protocol (BGP) is the inter-domain
routing protocol currently employed in Internet. Internet
growth imposes increased requirements on BGP
performance. Recent studies revealed that performance
degradations in BGP are due to the highly dynamic nature of
the Internet. In this paper, we describe the design of the ns-
BGP model and its implementation in the ns-2 network
simulator. We describe a validation test for route reflection
and provide a scalability performance analysis of the ns-
BGP model.

Keywords: inter-domain routing, BGP, scalability, route
reflection, ns-2.

1. INTRODUCTION
 The Internet consists of thousands of interconnected
Autonomous Systems (ASs) loosely defined as networks and
routers under a single administrative control. Routing in the
Internet is performed on two levels (intra-domain and inter-
domain) implemented by two sets of protocols. Interior
gateway protocols (IGP), such as RIP, IS-IS, OSPF, IGRP,
and EIGRP, route packets within a single AS (intra-domain).
Exterior gateway protocols (EGP), such as EGP and BGP
routes packets between ASs (inter-domain).
 Although the Border Gateway Protocol (BGP) has been
analyzed in detail, routing instability [1], [2], inefficient
routing [3], [4], and scalability issues [5] still remain.
Theoretical analysis and empirical measurements have been
employed in the past, albeit with certain limitations [6].
Simulations allow more realistic experiments with fewer
simplifications than the theoretical approach and with
enhanced flexibility than empirical studies permit. We
implemented a BGP-4 [7] model, the current version of
BGP, in the network simulator ns-2 [8] by porting the BGP-
4 implementation from SSFNet [9].
 The rest of the paper is organized as follows. In Section
2, we introduce background on BGP, ns-2, and SSFNet. The
design and implementation of ns-BGP are described in
Section 3. A validation example for route reflection is
presented in Section 4. We analyze the scalability of ns-BGP
in Section 5 and conclude with Section 6.

2. BGP IMPLEMENTATIONS
 A short introduction to BGP, ns-2, and the SSFNet
network simulator follows.

2.1 Border Gateway Protocol
 BGP-4 is the de facto inter-domain routing protocol [7].
It is used by BGP routers in ASs to exchange reachability
information and to determine the end-to-end path for packets
traversing multiple ASs.
 BGP employs TCP as its transport protocol, which
ensures transport reliability and eliminates the need for BGP
to handle retransmissions. Routers that use BGP are called
BGP speakers. Two BGP speakers that participate in a BGP
session are called neighbors or peers. Peer routers exchange
four types of messages: open, update, notification, and keep-
alive. The update message carries routing information while
the remaining three messages handle the session
management [7].

2.2 ns-2 network simulator
 We implemented ns-BGP as an extension to the latest
version of ns-2 network simulator (ns-2.26) [8]. ns-2, one of
the most popular network simulators, supports simulation of
TCP, routing, and multicast protocols over wired and
wireless networks. ns-2 is written in both C++ and OTcl and
employs an object-oriented paradigm. C++ is used for the
low level implementation of packet oriented processing,
where performance is important. OTcl is a scripting
language used for higher level implementation where
flexibility is more important than performance. A graphical
animator nam is used to visualize simulation results.

2.3 BGP implementation in SSFNet
 SSF.OS.BGP4 is the BGP-4 model [6] in the SSFNet
[9] network simulation package. SSFNet is a Java-based
simulator for modeling large communication networks. It
includes a simulation kernel, an open source suite of
network component models, a management suite, and a
configuration language called Domain Modeling Language
(DML).
 SSF.OS.BGP4, implemented in Java, was designed with
a purely object-oriented approach. We ported to ns-2 the

class hierarchy that implements the BGP-4 model in
SSF.OS.BGP4.

2.4 Related work in BGP implementation
 OPNET [10], a commercial network simulator, also
provides substantial support for BGP. However, differences
between OPNET and ns-2, would have made porting the
BGP model from OPNET to ns-2 rather difficult. GNU
Zebra (written in C) is a free routing software package [11],
supporting BGP [12] and other routing protocols. The Zebra
BGP daemon has been recently ported to ns-2 [13]. Our
project has been developed in parallel. We preferred the
SSF.OS.BGP4 implementation because of its object oriented
paradigm.

3. DESIGN AND IMPLEMENTATION OF ns-BGP
 The ns-BGP classes are derived from the existing ns-2
class hierarchy. A brief introduction to the ns-2 unicast
routing structure follows.

3.1 ns-2 unicast routing structure
 The ns-2 unicast routing structure consists of the
forwarding and the control plane [8], as shown in Figure 1.
 The forwarding plane is responsible for classifying and
forwarding packets to the destination nodes. It includes
various types of connected classifiers and routing modules.

Classifiers deliver the incoming packets either to the correct
agent or to the outgoing link. A routing module manages a
node’s classifier and provides an interface to the control
plane. Address classifier (classifier_) and port classifier
(dmux_) are two types of classifiers (trapezoids) in an ns-2
unicast node. A classifier_ examines the destination address
of an arriving packet and forwards the packet to the dmux_
if the node is the packet’s destination. Otherwise, the
classifier_ sends the packet to a downstream node. dmux_
forwards the packet to an agent corresponding to the
packet’s destination port number.
 The control plane handles route computation, creation,
and the maintenance of routing tables. It also implements
specific routing algorithms. The components of the control
plane are route logic, route object, route peer, and routing
protocol. The route logic is the centrally created and
maintained routing table. Route objects are employed only
in simulations of dynamic routing. The route object
associated with a node acts as a coordinator for the node’s
routing instances. A route peer object acts as a container
object used by the routing protocol. It stores the address of
the peer agent, the metric, and the preference for each route
advertised by the peer. Routing protocols implement
specific routing algorithms, such as distance vector and link
state algorithms [14].

Figure 1. ns-2 unicast routing structure. Address classifier (classifier_) and port classifier (dmux_) are two types of

classifiers (trapezoids) in an ns-2 unicast node. Classifier_ forwards a packet to the dmux_ or sends it to a downstream node.
dmux_ forwards the packet to the corresponding agent.

3.2 Unicast routing architecture of ns-BGP
 The ns-BGP node is based on the existing ns-2 unicast
node and the SSF.OS.BGP4 model from SSFNet. We
converted the SSF.OS.BGP4 model to ns-2 and added the
socket layer and the IPv4 addressing and packet forwarding
schemes.

 In order to provide socket support and at the same time
maintain the structure of SSF.OS.BGP4, we also ported to
ns-2 TcpSocket, the socket layer implementation of SSFNet.
In order to support the IPv4 addressing and packet
forwarding, the basic address classifier was replaced with a
new address classifier named IPv4Classifier. To support

user data transmission, we modified FullTcpAgent [8], the
TCP agent for TcpSocket.
 Figure 2 shows the unicast structure of ns-BGP.
Address classifier classifier_ is an IPv4Classifier. A new
routing module rtModule/BGP manages the IPv4Classifier
and replaces the basic routing module rtModule/Base.
TcpSocket has been added to the modified FullTcpAgent,
encapsulating the TCP services into a socket interface. A
new routing protocol rtProtoBGP relies only on TcpSocket
for packet transmission. rtProtoBGP has one PeerEntry for

each peer. PeerEntry establishes and closes a peer session
and exchanges BGP messages with a peer. Each instance of
PeerEntry contains one AdjIn, one AdjOut, and a variable
BGP_Timer. LocRIB, AdjIn, and AdjOut correspond to the
three parts of the BGP Routing Information Base (RIB):
Loc-RIB, Adj-RIBs-In, and Adj-RIBs-Out [7]. BGP_Timer
provides support for the BGP timing features (timers).
 The four important classes of ns-BGP are TcpSocket,
IPv4Classifer, rtModule/BGP, and rtProtoBGP.

Figure 2. Unicast structure of ns-BGP. rtModule/BGP manages classifier_. TcpSocket resides on top of Agent/TCP/FullTcp,

while routing protocol rtProto/BGP is introduced on top of TcpSocket. rtProto/BGP has one PeerEntry for each peer.

3.2.1 TcpSockets
 A socket is an Application Programming Interface
(API) used in network communications. Socket applications
treat network connections as UNIX file descriptors. Similar
to files, communication endpoints can be written to, read
from, or deleted.
 The TcpSocket class is an implementation of the sockets
API, similar to UNIX implementations. Its most important
functions are: bind, listen, connect, close, read, and write.
The TcpSocket interface involved implementation of
blocking calls using the Continuation caller, a class
consisting of two callback functions: Success and Failure.
Necessary data structures and classes, such as queue classes
that store the data and a TcpData class that contains the
transmitted user data, were also added to ns-2. The
FullTcpAgent was modified to send and receive data packets
containing user data and to inform the corresponding
TcpSocket of changes in the TCP status.

3.2.2 IPv4Classifier
 The IPv4Classifier is derived from Classifier. It is
implemented as one of the ns-2 dual classes (in both C++
and OTcl). The IPv4Classifier uses map from the C++
Standard Template Library to store and search the routing
table. To classify an incoming packet, the IPv4Classifier
examines the packet’s destination address. It then matches
this address in the routing table of the classifier in order to
find a route that has the longest prefix match.

3.2.3 rtModule/BGP
 The rtModule/BGP, a new routing module implemented
in Tcl, provides a registration interface. When a node is
created, active route models must register with the node.
This registration replaces the existing classifier objects in
the node.

3.2.4 rtProtoBGP
 The rtProtoBGP class (Agent/rtProto/BGP) is
implemented as an ns-2 dual class. An instance of this class
implements BGP-4 in a node. This new routing protocol
performs most BGP operations: establishing BGP peer
sessions, learning multiple paths via internal and external
BGP speakers, selecting the best path and storing it into the
IP forwarding table (IPv4Classifier), and managing the BGP
finite state machine.

3.3 Supported features
 The implementation of the ns-BGP is compliant with
the BGP-4 specification RFC 1771 [7]. Nevertheless, it
currently does not support the multiprotocol extensions for
BGP-4 [15]. It includes several optional protocol extensions
and additional experimental features. We implemented
experimental features: sender-side loop detection,
withdrawal rate limiting, unjittered Minimum Route
Advertisement Interval timer, and per-peer and per-
destination rate limiting. Implemented optional features are

Multiple Exit Discriminator, Aggregator, Community,
Originator ID, and Cluster List path attributes. We have also
implemented route reflection.

4. VALIDATION TEST: ROUTE REFLECTION
 SSF.OS.BGP4 includes a suite of tests that ensured that
the SSF.OS.BGP4 model complies with the BGP-4
specifications, including BGP-4 features such as: basic peer
session maintenance (keep-alive and hold timer operation),
route advertisement and withdrawal, route selection, internal
BGP (iBGP), and route reflection [6]. We implemented
most of these validation tests in ns-2 and tested the same
network topologies as employed in the SSFNet validation
tests [9]. We also introduced a new validation test for route
reflection [16].

4.1 Network topology
 Figure 3 shows the network topology used for
simulation of route reflection. The network consists of three
AS’s: AS 0 containing eight nodes (0 through 7), AS 1
containing two nodes (8 and 10), and AS 2 with a single
node (9). The addresses space associated with each node is
shown in Table 1.

Table 1. IP address space associated with network nodes.
Nodes: 0 through 7 10.0.0.0/24 though 10.0.7.0/24
Nodes: 8 and 10 10.1.8.0/24 and 10.1.10.0/24
Node: 9 10.2.9.0/24

Figure 3. Network topology used in the route reflection

validation test.

4.2 BGP configuration
 The goal of the simulation test was to validate the
behavior of multiple reflectors inside a BGP cluster [14]. AS
0 contains two clusters. The first cluster contains two
reflectors: nodes 0 and 1. Reflection clients of nodes 0 and 1
are nodes 2, 3, and 4. The second cluster has one reflector
node (5), with nodes 6 and 7 as its clients. The three
reflectors (nodes 0, 1, and 5) are fully connected via iBGP
sessions. External BGP (eBGP) peer sessions exist between
nodes 2 and 8, as well as between nodes 7 and 9.

4.3 Traffic source and event scheduling
 A constant bit rate (CBR) traffic source, attached to
node 4, employs UDP as its transport protocol. It sends

segments of 10 bytes every millisecond to the IP address of
node 10 (10.1.10.1).
 The traffic source begins sending UDP segments at 0.23
s and stops sending them at 20.0 s. At 0.25 s, the BGP agent
in node 8 sends a route advertisement for a network
10.1.10.0/24 that is within its AS (AS 1). At 0.35 s, the BGP
agent in node 9 sends a route advertisement for network
10.2.9.0/24 (AS 2). At 39.0 s, ns-2 displays all routing tables
for BGP agents. The simulation terminates at 40.0 s.

4.4 Simulation results.
 The simulation sequence of events is shown in Table 2.
Simulation results displayed by nam are shown in Figures
4(a)–(g).

Table 2. Sequence of simulation events.
0.05 s

Figure 4(a): TCP SYN segments are
exchanged between BGP peers, establishing
the underlying TCP connections.

0.2505 s Figure 4(b): node 8 originates an update
message advertising the route for network
10.1.10.0/24.

0.2525 s Figure 4(c): node 2 propagates the route
advertisement to nodes 0 and 1.

0.2561 s Figure 4(d): route reflectors (nodes 0 and 1)
reflect the route advertisement to their clients
(nodes 3 and 4) and to their iBGP peers.

0.2568 s Figure 4(e): node 5 reflects the route
advertisement to its clients (nodes 6 and 7).
Because node 4 now knows the route to
network 10.1.10.0/24, the UDP segment will
be forwarded to node 10.

0.2578 s Figure 4(f): the second UDP segment is sent
to the destination (node 10). Node 7
propagates the route advertisement to node 9.

0.2580 s Figure 4(g): UDP segments are delivered to
node 10.

(a) Establishing TCP connections (0.05 s).

(b) Node 8 originates a route (0.2505 s).

(c) Node 2 propagates the route to nodes 0 and 1 (0.2525 s).

(d) Nodes 0 and 1 reflect the routes to nodes 3 and 4

(0.2561 s).

(e) Node 4 sends a UDP segment to node 10. Node 5

reflects the route to nodes 6 and 7 (0.2568 s).

(f) Node 4 sends the second UDP segment. Node 7

propagates the route to node 9 (0.2578 s).

(g) Four UDP segments are being delivered to node 10

(0.2580 s).

Figure 4. Snapshots of simulation results.

 By the end of the simulation run, every BGP node
knows routes to 10.1.10.0/24 and 10.2.9.0/24. We printed
routing tables for BGP agents at 39.0 s. Status codes are: *
valid, > best, i – internal.

LocRIB dump of node 0, router ID: 10.0.0.1
 Network Next Hop Metric LP Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i
LocRIB dump of node 1, router ID: 10.0.1.1
 Network Next Hop Metric LP Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

.

.

.
LocRIB dump of node 8, router ID: 10.1.8.1
 Network Next Hop Metric LP Weight Path
*> 10.1.10.0/24 self
*> 10.2.9.0/24 10.0.2.1 - - - 0 2
LocRIB dump of node 9, router ID: 10.0.9.1
 Network Next Hop Metric LP Weight Path
*> 10.1.10.0/24 10.0.7.1 - - - 0 1
*> 10.2.9.0/24 self

5. MODEL SCALABILITY
 As the size and complexity of simulated networks grow,
it is important to address the scalability properties of
simulation models. Such properties include execution speed
and memory requirements of a simulation experiment [17].
The ns-BGP model should scale both with respect to the
number of peer sessions and the size of routing tables. Our
simulation experiments were performed on a 1.6 GHz Intel
Xeon host with 2 GBytes of memory and the RedHat Linux
9.0 operating system.

5.1 Scalability: number of peer sessions
 We used completely connected network topologies to
analyze the scalability of the ns-BGP model with respect to
the number of peer sessions. Each node is an individual AS
containing one BGP instance and it is connected to every
other node by eBGP sessions. Figure 5 shows the execution
times of the ns-2 simulations as function of the number of
peer sessions.

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

Number of peer sessions

Ex
ec

ut
io

n
tim

e
(s

)

Total
BGP simulation time
Scheduling time
ns-BGP model
Node and link creation

Figure 5. Execution times for completely connected
networks. Simulated time is 100 s. BGP timer intervals are

the default values suggested in RFC 1771 [7].

 The total ns-BGP execution time increases nonlinearly
with the number of peer sessions. The nonlinear increase is
due to the execution time spent by the scheduler that is
responsible for scheduling simulation events. The
contribution to execution time due to ns-BGP model
increases linearly in the number of peer sessions. This
contribution is no larger than the difference between the
total execution time and the execution time spent by the
scheduler.
 The malloc C library call was employed to calculate the
dynamic memory utilization per peer session using a
modification of the approach given in [17]. Each peer
session required 50.6 Kbytes of memory.

5.2 Scalability: size of routing tables
 We use the network topology shown in Figure 3 to
analyze the scalability of the ns-BGP model with respect to
the size of routing tables. In the simulation experiment,
nodes 8 and 9 send to their peers a number of routes (half
the number of routes contained in their respective routing
tables). The execution times and their linear dependence on
the size of routing tables are shown in Figure 6.

0 1 2 3 4 5 6 7
x 104

0

100

200

300

400

500

600

Size of routing tables

Ex
ec

ut
io

n
tim

e
(s

)

Total
BGP simulation time
Node and link creation

Figure 6. Execution time for various sizes of routing tables.
Simulated time is 100,000 s. BGP timer intervals are default

values as suggested in RFC 1771 [7].

 We also measured the memory utilization of the ns-
BGP model. We found that the total memory utilization
grows linearly and calculated a memory usage of 23.1
Kbytes per route.

6. CONCLUSIONS
 In this paper, we presented the architecture and
implementation of ns-BGP, a BGP-4 model for the ns-2
network simulator. ns-BGP enables simulation and
evaluation of BGP protocol and its variants. The described
ns-BGP implementation includes several optional BGP
features. Other features, such as confederation and policy-
based filtering, could be added in the future. The validation

test illustrated the validity of the ns-BGP implementation.
Our scalability analysis shows that the internal data
structures and employed algorithms are scalable in terms of
the number of peer sessions and the size of routing tables.

7. ACKNOWLEDGEMENT
 We thank Zheng Wang from SFU for developing the
socket layer of the ns-BGP. We also thank anonymous
reviewers for valuable comments that helped improve the
manuscript.

8. REFERENCES
 [1] C. Labovitz, G. Malan, and F. Jahanian “Origins of

Internet routing instability,” in Proc. INFOCOM, New
York, NY, March 1999, pp. 218-226.

 [2] T. Griffin, F. Shepherd, and G. Wilfong, “The stable
paths problem and interdomain routing,” IEEE
Transactions on Networking, vol. 10, no. 2, April
2002, pp. 232-243.

 [3] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A.
Ahuja, “The impact of Internet policy and topology on
delayed routing convergence,” in Proc. INFOCOM,
Anchorage, AK, April 2001, pp. 537-546.

 [4] Z. Mao, R. Govindan, G. Varghese, and R. Katz.
“Route flap damping exacerbates Internet routing
convergence,” in Proc. SIGCOM, Pittsburgh, PA,
August 2002, pp. 221-233.

 [5] T. Bu, L. Gao, and D. Towsley, “On routing table
growth,” in Proc. of Global Internet Symposium,
Taipei, Taiwan, November 2002.

 [6] T. Griffin and B. Premore, “An experimental analysis
of BGP convergence time,” in Proc ICNP, Riverside,
CA, November 2001, pp. 53-61,.

 [7] Y. Rekhter and T. Li, “A border gateway protocol 4
(BGP-4),” RFC 1771, March 1995.

 [8] ns manual:
http://www.isi.edu/nsnam/ns/doc/index.html.

 [9] SSFNet: http://www.ssfnet.org/homePage.html.
[10] OPNET BGP:

http://www.opnet.com/products/bgp.html.
[11] GNU Zebra: http://www.zebra.org.
[12] GNU Zebra BGP daemon:

http://www.zebra.org/zebra/BGP.html#BGP.
[13] BGP++: http://www.ece.gatech.edu/research/labs/

MANIACS/BGP++.
[14] C. Huitema, Routing in the Internet. Upper Saddle

River, NJ: Prentice Hall, 2000.
[15] T. Bates, Y. Richter, R. Chandra, and D. Katz,

“Multiprotocol extensions for BGP-4,” RFC 2858,
June 2000.

[16] T. Bates, R. Chandra, and E. Chen, “BGP route
reflection – an alternative to full mesh IBGP,” RFC
2796, April 2000.

[17] D. M. Nicol, “Scalability of network simulators
revisited,” in Proc of CNDS, Orlando, FL, February
2003.

