
CMPT 128 REVIEW- Remembering what you’ve already learned. 
Here are some basic concepts that you should remember from CMPT 128. Please note that this handout 
is in no way a complete review of CMPT128 and that you should skim the first 9 chapters of your 
textbook to review what was covered.  This is just to get you thinking about programming structure and 
syntax again. If you don’t know/remember how to do all this, post questions to the bulletin board - you 
are not being evaluated, so don’t worry.  

1. How many bits in a byte? 
2. How many bytes do each of these types have and are they signed or unsigned: short, int, long, 

float, double, uint8, uint16, char, void? 
3. How many bytes do each of these types have and are they signed or unsigned: short*, int*, 

long*, float*, double*, uint8*, uint16*, char*, void*? (Note: We’ll talk more about pointers in 
251.) 

4. How many return values can a function have? 
5. What’s the difference between “call by reference” and “call by value”? 
6. When will the following loops exit? 

a. for( ; ; ) {…} 
b. while(1) {…} 

7. What is the purpose of the statement “break”? 
8. When should you use a case statement versus if-else statements? 
9. What is the purpose of a ‘;’ in a program? 
10. What is a pointer? 
11. What is the difference between a .h and a .cpp file?  What should be found in each? 
12. What is a global variable?  When should you use them? 
13. What is a local variable?   
14. What is the meaning of the word “context”?  For example, you will often hear the phrase, “This 

variable only exists in the context of this function.”? 
15. What function needs to exist in at least one of the .cpp files that is being compiled into an 

executable? 
16. What is the terminating character of a string? 
17. You are writing a program that requires you to store a series of integers. Should you store them 

in an array or in a vector? What is the benefit of each? 
18. Recall these operators which you learned in CMPT 128: (prefix increment) ++, (prefix 

decrement) --, (logical NOT) !, (bitwise NOT) ~, (multiplication) *, (division) /, (modulus) %, 
(addition) +, (subtraction) -, (bitwise right shift) >>, (bitwise left shift) <<, (bitwise AND) &, 
(bitwise XOR) ^, (bitwise OR) |, (logical AND) &&, and (logical OR) ||.  If they are to be used in a 
single assignment- what is the proper order of operations? (Hint: Check out 
en.cppreference.com/w/cpp/language/operator_precedence for help). 

19. What do the operators << and >> do? Why is this more efficient than division/multiplication? 
20. Assume that you have a 32-bit configuration register, write a code snippet that enables you to 

disable the 5th LSB of the register (setting it to zero) while not changing any of the other bits in 
the register. 

21. Assume that you have a 32-bit configuration register, write a code snippet that enables you to 
enable the 9th LSB of the register (setting it to one) while not changing any of the other bits in 
the register. 

22. Why do you have to have #include <iostream> at the beginning of your program? 
23. How do cin and cout function? 



24. What does #define true 1 do? How is it different than a global variable? (We’ll talk more 
about macros later). 

 
Now you should try some programming problems- remember to actually code, compile, and test the 
program as most programs that compile don’t actually work.  

1. Write a program that 1) takes a list of characters from a user, 2) stores them in an array, 3) sorts 
them in ascending order, and 4) then prints the sorted back to the list. (Note: Since you are 
storing your values in an array, you should test your program to ensure that it has a controlled 
method for handling the situation where a user tries to enter more input values than the 
maximum size of the array. Hint: There are multiple ways to do this.)  
 

2. Rewrite the previous program making the following changes: 1) store your input values in a 
vector, 2) change the type of loop you use (i.e. if you used a for loop in part 1, use a while 
loop in this part or vice versa). 
 

3. Review the following reminders about pointers: 
int *p; //Declares a pointer to an int 
int v; // Declares a variable of type int 
p = &v; //Assigns p the address of v 
*p = 44; // Dereferences the pointer p to assign 44 to the variable v 
void foo (int *value); //The input parameter is an int pointer-> passed as a call by  

         //value; it must be dereferenced to manipulate the int value 
void bar (int &value); //Call by reference, passes the address of the int to the   

          //function, but you don’t need to dereference the value to    
          //access the int stored in the variable. 

 
Write simple programs to practice manipulating these different types and make sure you clearly 
understand what happens when you pass pointers by reference versus by value (and what 
happens to the values they point to in both cases) into functions. (Note: If you find this 
confusing, we’ll talk more about this in 251.) 
 

4. Write a program that allows the user to enter a sequence of numbers (in no particular order). 
When the user presses the letter ‘q’, the program should quit.  If the user presses any other 
letter, the largest three values entered to date should be printed to the screen in decreasing 
order. Assume the user will only enter positive numbers. 
 

5. Rewrite the program in part 4. Assume the user can enter both positive and negative numbers 
and that you will store the numbers with the three largest absolute values.  You will quit the 
program when a user presses the letter ‘q’.  If the user presses any other letter, the values of the 
three largest absolute values should be printed to the screen (indicating their proper sign). 
 

For each of these programming problems, first think about what series of tests you need to test that 
your programming solution is complete and works under all conditions.  Be sure you write them/try 
them to actually prove that your program works. 


