Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 4

M Date: September 21, 2015

What we're learning in this Slide Set:

* Arrays and Classes
* Classes, Dynamic memory, and Destructors

» Testing, Debugging and Verification

ENSC 251: Lecture Set 4

Textbook Chapters:

Relevant to this slide set:
« Sections 11.3-11.4
 Sections 5.4-5.5

Coming soon:
 Chapter12 & 13

ENSC 251: Lecture Set 4

Arrays, Classes, and Structures:

You can combine arrays, structures and classes to create more
complex data types:

- An Object that is an array of a class type,

- A structure with one field that is an array.

- A Class with a structure as a data member.
- Etc.

ENSC 251: Lecture Set 4

Arrays of Structures:

The base type of an array can be any type including user-defined types:

WindInfo
{
velocity; //in miles per hour
direction; //'N", 'S', 'E', or W'
| ¥

WindInfo data_point[10];

This creates a variable, data point,thatis an array of 10 type WindInfo
structures (indexed 0 to 9)

Remember that arrays have a statically defined size, so all of the space for
the variable will be allocated when itis declared.

ENSC 251: Lecture Set 4

Arrays of Structures:

To access the data members of of each array member of data point

}

1;
(1 =0; 1 < 10; i++)

cout << "Enter velocity for "
<< 1 << " numbered data point: ";
cin >> data_point[i1].velocity;
cout << "Enter direction for that data point"
<< " (N, S, E, or W: ";
cin >> data_point[i1].direction;

Note that you index the array first and then use the dot operator to indicate
which data member within that data point you wish to access:

data point[i].velocityordata point[i].direction

ENSC 251: Lecture Set 4 6

Arrays of Classess:

Declaring an array of a base class type is basically the same:

Money difference[5];

NOTE: Creating an Object that is an array of a class type calls the Default
Constructor to initialize each of the indexed variables.

Otherwise arrays of class type/structures/defined types can be treated
basically the same.

Let’'s see some example code:

ENSC 251: Lecture Set 4 7

class Money

{

public:
friend Money operator +(const Money& amountl, const Money& amount2);
//Returns the sum of the values of amountl and amountZ.

friend Money operator -(const Money& amountl, const Money& amount2);
//Returns amountl minus amountZ.

friend Money operator -(const Money& amount);
//Returns the negative of the value of amount.

friend bool operator ==(const Money& amountl, const Money& amount2);
//Returns true if amountl and amount2 have the same value; false otherwise.

friend bool operator <(const Money& amountl, const Money& amount2);
//Returns true if amountl is less than amount2; false otherwise.

Money(/ong dollars, 7nt cents);

//Initializes the object so its value represents an amount with
//the dollars and cents given by the arguments. If the amount
//1s negative, then both dollars and cents should be negative.

Money(/ong dollars);
//Initializes the object so its value represents $dollars.00.

Money();

//Initializes the object so its value represents $0.00.
ENOU Z£O01. LeClure set 4 8

Remainder of Money class definition:

double get_value() const;
//Returns the amount of money recorded in the data portion of the calling

//object.

friend istream& operator >>(istream& ins, Money& amount);

//0verloads the >> operator so it can be used to input values of type
//Money. Notation for inputting negative amounts is as in - $100.00.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.

friend ostream& operator <<(ostream& outs, const Money& amount);
//0verloads the << operator so it can be used to output values of type
//Money. Precedes each output value of type Money with a dollar sign.
//Precondition: If outs is a file output stream, then outs has already been
//connected to a file.
private:

long all_cents;

}s

ENSC 251: Lecture Set 4 9

main:

//Reads in 5 amounts of money and shows how much each
//amount differs from the largest amount.

int main()
{
Money amount[5], max;
int 1i;
cout << "Enter 5 amounts of money:\n";
cin >> amount[0];
max = amount[0];
for (i =1; i < 5; i++)
{
cin >> amount[i];
1 (max < amount[i])
max = amount[i];

//max is the largest of amount[0], . . ., amount[i].

}

Money difference[5];
for (1 =0; 1 < 5; 1++)
difference[i] = max - amount[i];

cout << "The highest amount is " << max << endl;
cout << "The amounts and their\n"
<< "differences from the largest are:\n";
for (i =0; 1 < 5; i++)
{
cout << amount[i] << " off by "
<< difference[i] << endl;

}

return 0;

10

How to use arrays as class/structure members:

First, here’s a structure with a field that is an array -

Data

{
time[10];
distance;

}s
Data my_best;

You can then initialize the data fields (member variables)

using. my_best.distance = 20;

and:
cout << "Enter ten times (in seconds):\n";
(1 =0; 1 < 10; 1++4)
cin >> my_best.time[1];

Here you use the dot operator first and then index the field

ENSC 251: Lecture Set 4 11

Here's a class definition with a data member that is an array:
const int MAX_LIST_SIZE = 50;

class TemperaturelList

{
public:
TemperatureList();
//Initializes the object to an empty 1ist.
void add_temperature(double temperature);
//Precondition: The 1ist is not full.
//Postcondition: The temperature has been added to the list.
bool full() const;
//Returns true if the Tlist is full; false otherwise.
friend ostream& operator <<(ostream& outs,
const TemperaturelList& the_object);
//0Overloads the << operator so it can be used to output values of
//type TemperaturelList. Temperatures are output one per line.
//Precondition: If outs is a file output stream, then outs
//has already been connected to a file.
private:
double 1ist[MAX_LIST_SIZE]; //of temperatures in Fahrenheit
int size; //number of array positions filled
}s

ENSC 251: Lecture Set 4 12

The member function implementations:

TemperaturelList: :TemperatureList() : size(0)

{
}

void TemperaturelList::add_temperature(doubl/e temperature)
{//Uses iostream and cstdlib:

//Body intentionally empty.

it C fullC))
{
cout << "Error: adding to a full Tist.\n";
exit(1l);
}
{
Tist[size] = temperature;
size = size + 1;
}
}
bool TemperaturelList::full() const
{
return (size == MAX_LIST_SIZE);
}

ENSC 251: Lecture Set 4

13

The member function implementations cont'd & assignments:

//Uses iostream:

ostream& <<(ostream& outs, TemperaturelList& the_object)
{
(i =0; 1 < the_object.size; i++)
outs << the_object.list[1] << " F\n";
outs;
}

You would declare an object of type TemperatureList class as follows:
TemperaturelList my_data;
You can store an additional temperature to the list by:
my_data.add_temperature(77);
Or output the list:cout << my_data;
You can also check if the list is full.

However, you cannot delete a single temperature; all you can do is initialize
the entire list to empty: my_data = TemperatureList();

ENSC 251: Lecture Set 4 14

Dynamic Arrays, Classes, and Structures:

You can combine dynamic arrays, structures and classes to create
more complex data types (that are more memory efficient:

- An Object that is a dynamic array of a class type,
- A structure with one field that is an dynamic array/pointer.

- Etc.

Remember: if you are going to allocate (“create”) new memory
dynamically in your program, you must “destroy” it (return it to the heap
when you are done:

- This is why we have destructors

Let's see an example

ENSC 251: Lecture Set 4 15

Constructors and the Destructor for the StringVar class

class StringVar

{

public:

StringVar(int size);
//Initializes the object so it can accept string values up to size
//in length. Sets the value of the object equal to the empty string.

StringVar();
//Initializes the object so it can accept string values of length 100
//or less. Sets the value of the object equal to the empty string.

StringVar(const char al]);

//Precondition: The array a contains characters terminated with '"\0'.
//Initializes the object so its value is the string stored in a and
//so that it can later be set to string values up to strlen(a) in length.

StringVar(const StringVar& string_object);
//Copy constructor.

~StringVar();
//Returns all the dynamic memory used by the object to the freestore.

ENSC 251: Lecture Set 4 16

StringVar class definition (cont’d)

int length() const;
//Returns the length of the current string value.

void input_Tine(istream& ins);

//Precondition: If ins is a file input stream, then ins has been
//connected to a file.

//Action: The next text in the input stream ins, up to '\n', is copied
//to the calling object. If there is not sufficient room, then

//only as much as will fit 1s copied.

friend ostream& operator <<(ostream& outs, const StringVar& the_string);
//0verloads the << operator so i1t can be used to output values

//of type StringVar

//Precondition: If outs is a file output stream, then outs

//has already been connected to a file.

private:
char *value; //pointer to dynamic array that holds the string value.
int max_length; //declared max length of any string value.

}s

ENSC 251: Lecture Set 4 17

An example main program using the non-member function
conversation():

void conversation(int max_name_size);
//Carries on a conversation with the user.

int main()

{

}

using namespace std;
conversation(30); «—
cout << "End of demonstration.\n";
return 0;

//This is only a demonstration function:
void conversation(7nt max_name_size)

{

using namespace std; P
o

StringVar your_name(max_name_size), our_name("Borg");

cout << "What is your name?\n";
your_name.input_Tline(cin);

cout << "We are " << our_name << endl;

cout << "We will meet again " << your_name << endl;

ENSC 251: Lecture Set 4

18

Let's look at how to implement the member functions for this
class, starting with the normal member functions.

ENSC 251: Lecture Set 4 19

“Normal” Member functions:

//Uses cstring:
int StringVar::length() const

{

return strilen(value);

}

//Uses iostream:
void StringVar::input_line(istream& ins)

{
}

ins.getline(value, max_length + 1);

//Uses iostream:
ostream& operator <<(ostream& outs, const StringVar& the_string)

{

outs << the_string.value;
return outs,;

ENSC 251: Lecture Set 4

20

StringVar constructors:

//Uses cstddef and cstdlib:
StringVar::StringVar(int size) : max_length(size)

{

value = new char[max_length + 1];//+1 is for '\0'.
value[0] = "\0';
}

//Uses cstddef and cstdlib:
StringVar::StringVar() : max_length(100)

{

value = new char[max_length + 1];//+1 is for '\O0'.
value[0] = "\0';
}

//Uses cstring, cstddef, and cstdlib:
StringVar::StringVar(const char a[]) : max_length(strlen(a))

{

value = new char[max_length + 1];//+1 is for '\0"'.
strcpy(value, a);

}

Recall the constructor call in conversation()

StringVar your_name(max_name_size), our_name("Borg");

21

Let's review what the “new” operator does:

new creates a new dynamic variable of a specified type and returns a
pointer that points to the starting address of the memory allocated to this
variable.

For example, since value is a char pointer, to dynamically create an array
we call:

value = new char[max _length + 1]://+1 is for '\0'.

What is the \O’ character for?

ENSC 251: Lecture Set 4 22

Challenges of Dynamic memory:

When you create dynamic memory, you must almost “destroy” or delete it

Even if the dynamic variable is created for a local pointer in a function call,
when the local pointer goes away at the end of the function, the
dynamically allocated memory will not be destroyed (returned to the free-
store) unless you call delete

-Why do you think this is?

When you do not destroy/delete memory you have dynamically allocated,
you create a memory leak. If this is repeated often enough, the system will
run out of available memory in the free-store and crash/abort to protect the
application from overwriting the O/S and other protected memory

ENSC 251: Lecture Set 4 23

WARNING: Never mix C++’'s “new/delete” with C’s “malloc/free.” They use
different portions of the dynamic memory segment (free-store versus heap).
Although they are conceptually rather similar, they are not the same.

We won’t go into the finer details of the two different abstractions, but can
you think why mixing calls (new & free; malloc & delete) will cause
problems?

ENSC 251: Lecture Set 4 24

All these considerations are particularly dangerous when you create a class
to be used by someone else.

If you allocate memory inside of a class implementation, the programmer
won’t know about it and won'’t delete it.

« Worse, if you create your data members as private members, the
programmer cannot generally access the needed pointer variables so
they cannot call delete with these pointer variables

— This doesn’t mean you should make your variables public; this

means that it is your responsibility to make sure you responsibly
create and destroy member.

ENSC 251: Lecture Set 4 25

To handle this problem, C++ has a specific member function called a
Destructor:

StringVar: :~StringVar()
{

[] value;

¥

First, let’s recall what the delete operator does.

ENSC 251: Lecture Set 4

26

The “delete” operator:

Destroys the dynamic variable and returns the memory that it occupied
back to the free-store.

* The returned memory can then be reused when a new dynamic variable
Is allocated.

delete takes a pointer to an object as a parameter.
If you want to delete an array of objects, you need to include [].

 The [] ensures that the delete function first determines the length of the
array of the objects and then deletes the entire array of objects.

« If you don’tinclude the [], it will compile but the behaviour will likely not
be what you want.

« It will depend on the compiler, but you likely won’t delete the array.

ENSC 251: Lecture Set 4 27

To handle this problem, C++ has a specific member function called a
Destructor:

StringVar: :~StringVar()

{

[] value;

¥

A destructor is a class member function that is called automatically when
an object of the class passes out of scope

For example: This applies to local variables in in a function call. If you have
a local variable in a function that has a destructor, then when the function
terminates, the destructor for that object is automatically called.

As long as the destructor is defined correctly, it should delete all of the
dynamic variables in the object.

« Depending on the structure of the data members in the object, this may
require one or more calls of delete

 You may also use it to perform other operations to “clean up,” but
returning the dynamic memory to the free-store is the key requirement.

ENSC 251: Lecture Set 4 28

StringVar’s Destructor:

StringVar: :~StringVar()
{

[] value;

¥

Like a Constructor:

« Destructors always have the same name as their class but are preceded
by a tilde symbol (‘~')

» Destructors have no type for the returned value (not even void).

ENSC 251: Lecture Set 4 29

StringVar’s Destructor:

StringVar: :~StringVar()
{

[] value;

¥

The main differences from a Constructor are:
« Destructors always have no parameters (like a default Constructor)

* You can only have one Destructor per class (you cannot overload the
destructor for a class).

ENSC 251: Lecture Set 4 30

Recall the function conversation():

//This is only a demonstration function: e
void conversation(int max_name_size) P

{ ~
. /
using namespace std; ~

StringVar your_name(max_name_size), our_name("Borg");

cout << "What 1is your name?\n";
your_name.input_line(cin);

cout << "We are " << our_name << endl;

cout << "We will meet again " << your_name << endl;

Without the destructor, at the end of the function, the your name and
our name oObjects would be destroyed, but the char arrays that are pointed
to the data member *value, would not.

In the case of this example, the program ends soon after, so it won't crash.
But if you repeated this behaviour without a destructor, you would consume
all of the free-store memory eventually and crash your application.

ENSC 251: Lecture Set 4 31

Copy Constructor:

//Uses cstring, cstddef, and cstdlib:
StringVar: :StringVar(StringVar& string_object)
: max_length(string_object.length())
{
value = char[max_length + 1];//+1 is for '\O0'.
strcpy(value, string_object.value);

A copy constructor is a constructor that has one parameter of the same
type as the class itself.

It must be a call by reference parameter

Normally it is the parameter is preceded by the const parameter modifier
(so itis a constant parameter even though it is called by reference).

Otherwise Copy Constructors are the same as other constructors

ENSC 251: Lecture Set 4 32

Recall the Constructors and the Destructor for the StringVar class

class StringVar

{

public:
StringVar(int size);
//Initializes the object so it can accept string values up to size
//in length. Sets the value of the object equal to the empty string.

StringVar();
//Initializes the object so it can accept string values of length 100
//or less. Sets the value of the object equal to the empty string.

StringVar(const char al]);

//Precondition: The array a contains characters terminated with '"\0'.
//Initializes the object so its value is the string stored in a and
//so that it can later be set to string values up to strlen(a) in length.

StringVar(const StringVar& string_object);
//Copy constructor.

~StringVar();
//Returns all the dynamic memory used by the object to the freestore.

ENSC 251: Lecture Set 4 33

Copy Constructor:

//Uses cstring, cstddef, and cstdlib:
StringVar::StringVar(const StringVar& string_object)
: max_length(string_object.length())

{
value = n char[max_length + 1];//+1 is for '\O0'.

strcpy(value, string_object.value);

For example:

StringVar 1ine(20), motto("Constructors can help.");

cout << "Enter a string of length 20 or less:\n",;
Tine.input_Tline(cin);

StringVar temp(line);//Initialized by the copy constructor.

temp is initialized using the copy constructor

We want it to be an independent object with a complete copy of the data
members in 1ine

We do not want temp.value to pointto the same place as 1ine.value

ENSC 251: Lecture Set 4 34

Copy Constructor:

//Uses cstring, cstddef, and cstdlib:
StringVar: :StringVar(StringVar& string_object)
: max_length(string_object.length())

{
value = char[max_length + 1];//+1 is for '\O0'.

strcpy(value, string_object.value);

For example:

StringVar 1ine(20), motto("Constructors can help.");

cout << "Enter a string of length 20 or less:\n",;
Tine.input_Tline(cin);

StringVar temp(line);//Initialized by the copy constructor.

Since we do not want temp.value to pointto the same place as
line.value

« The copy constructor creates a new array for value and then copies the
contents of original array to the new one.

While this “looks” nice, do you understand why we need the copy
constructor? ENSC 251: Lecture Set 4 35

Some reminders about pointers:

int *p; //Declares a pointer to an int
int v; // Declares a variable of type int
p = &v; //Assigns p the address of v

*p = 44; // Dereferences the pointer p to assign 44 to
the variable v

void foo (int *value); //The input parameter is an int
//pointer-> passed as a call by
//value; must be dereferenced to
//manipulate the int value

void bar (int &value); //Call by reference, passes the
//address of the int to the
//function, but you don’t need
//to dereference value to access
//the int stored in the variable.

Look at what happens when you pass a pointer to a function

ENSC 251: Lecture Set 4 36

//Program to demonstrate the way call-by-value parameters
//behave with pointer arguments.
#include <iostream>

using namespace std; leat IS the value of
p (the integer p
typedef int* IntPointer; points to)?

void sneaky(IntPointer temp);

int main() Whyr)
{

IntPointer p;

p new int;

*p = 77;

cout << "Before call to function *p == "
<< *p << endl;

sneaky (p);

cout << "After call to function *p == "
<< *p << endl;

return 0;

}

void sneaky(IntPointer temp)

{
*temp = 99;
cout << "Inside function call *temp == "

<< *temp << endl;
} 37

If a function has an input parameter type that is a class or structure type
with member variables of a pointer type, the same thing can occur even
with call by value arguments of the class type.

This is an example where you might want to use a copy constructor.

For example, what would happen in the following example if we did not
include a copy constructorin the definition of class StringVar but included
the following function (note its input parameter is call by value)?

ENSC 251: Lecture Set 4 38

With this function definition: void show_string(StringVar the_string)
{

cout << "The string 1is:
<< the_string << endl;

}
and this piece of code, what happens:

StringVar greeting("Hello");
show_string(greeting);
cout << "After call: " << greeting << endl;

Line 1: The object greeting is created, with value pointing to “Hello”.

Line 2: When the function show stringis called, a copy of the object
greetingis passedinto show string

WARNING: This means that the value of the string.valueis
setequal to greeting.value

ENSC 251: Lecture Set 4 39

With this function definition: void show_string(StringVar the_string)
{

cout << "The string 1is:
<< the_string << endl;

}
and this piece of code, what happens:

StringVar greeting("Hello");
show_string(greeting);
cout << "After call: " << greeting << endl;

Since the string.valueis setequal to greeting.value, we have the
following:

"Hello"

AN

greeting.value the_string.value
ENSC 251: Lecture Set 4 40

With this function definition: void show_string(StringVar the_string)
{

cout << "The string 1is:
<< the_string << endl;

}
and this piece of code, what happens:

StringVar greeting("Hello");
show_string(greeting);
cout << "After call: " << greeting << endl;

When show string() finishes, the destructor is called to return the
memory dynamically allocatedto the stringto free-store:

"Hello"

s

/ ‘ N\

greeting.value the_string.value
ENSC 251: Lecture Set 4 41

With this function definition: void show_string(StringVar the_string)
{

cout << "The string 1is:
<< the_string << endl;

}
and this piece of code, what happens:

StringVar greeting("Hello");
show_string(greeting);

cout << "After call: " << greeting << endl;

Since delete [] value; is appliedto the object the string, we have
delete [] the string.value;

"Hello"

AN

greeting.value the_string.value
ENSC 251: Lecture Set 4 42

With this function definition: void show_string(StringVar the_string)
{

cout << "The string 1is:
<< the_string << endl;

}
and this piece of code, what happens:

StringVar greeting("Hello");
show_string(greeting);

cout << "After call: " << greeting << endl;

Since the string.valueis equalto greeting.value, we have:

— N\

(ﬂ;def{ﬁéd>

This will cause a problem in - \
Line 3 of our code above.
. . N\
What is the value of greeting |
given to cout? greeting.value the_string.value

ENSC 251: Lecture Set 4 43

There will be additional problems later when we try and destroy the object

greeting. Since greeting.value has already been deleted once, you cannot
delete it again.

* Trying to do so can produce a system error that will crash your program.

By including a copy constructor, none of this happens. Instead, the copy
constructor creates the new “the_string” object, and we have the following:

"Hello"

Hello"

1 \

greeting.value the_string.value

This means any changes made to the stringhave no impact on
greeting and there are no problems with the destructor.
ENSC 251: Lecture Set 4 44

The same thing applies to a function that returns a value of a class type.

« The copy constructoris automatically called to copy the value specified
by the return statement.

— If there is no copy constructor, you can end up with a similar problem
to what we just described for call by value parameters above

ENSC 251: Lecture Set 4 45

General rule:

You must include a Copy Constructor in your class definition if a class
definition utilizes pointers and dynamically allocated memory using the new

operator.

If a class does not involve dynamically allocated memory/pointers, you
don’t need a copy constructor.

ENSC 251: Lecture Set 4 46

Also note:

The copy constructoris not called when you use the assignment operator
(and set one object equal to another).

« Copy Constructors may be used for initialization to create a new object.

« The Assignment operator modifies an existing object so that it has an
identical copy (in its own location) of the RHS argument.

Summary:

« Copy constructors are automatically called when function returns a value
of the class type or when a class type is used as a call-by-parameter
value.

« Copy constructors can also be used like normal constructors for normal
initialization.

* Any class that has dynamic memory allocation (i.e. pointers and the new
operator) should have a copy constructor.

ENSC 251: Lecture Set 4 47

Keep in mind that if you need to create a copy constructor and destructor,

then you likely need to overload the “=" operator.

TR

« The default copy constructors and overloaded “=" operator generated by
the compiler will work fine for predefined types (int, float, etc.).

« These defaults are likely to misbehave with pointers and the new
operator.

TP T]

So the safestway is to create your own copy constructor, overloaded “=
operator, and destructor

ENSC 251: Lecture Set 4 48

Overloading the Assignment Operator:

Suppose we have the following:
StringVar stringl(10), string2(20); and
stringl = string2;

Remember, the default overloaded assignment operator copies the values
of the member variables of string2to stringl.

This is fine when copying the max length fields, but it is a problem when
copying the value fields as now both objects now point to the same string.

This means that any change of the contents pointed to by the value field
of one object effects both objects.

To fix this we need to overload the ‘=' operator.

ENSC 251: Lecture Set 4 49

Overloading the Assignment Operator:

You cannot overload the assignment operator in the same fashion as the
other overloaded operators we looked at (‘+', “<<" etc.).

In this case, the overloaded assignment operator must be a member
of the class and not a friend function of the class as we have done
previously.

For example: c7ass Stringvar

{
public:

void operator =(const StringVar& right_side);

//0verloads the assignment operator = to copy a string

//from one object to another.

<The rest of the definition of the class can be the same as in
Display 11.11.>

Using this declaration, the assignment operator can be used as normal:

stringl = string2; //(string 1 is the calling object and string2 is the
/[argument).
ENSC 251: Lecture Set 4 50

Overloading the Assignment Operator:

The following is an example definition of the overloaded assignment

operator: //The following is acceptable, but
//we will give a better definition:

void StringVar::operator =(const StringVar& right_side)
{
int new_length = strlen(right_side.value);
1 ((new_length) > max_Tlength)
new_length = max_Tlength;

for (int i = 0; 1 < new_length; i++)
value[i] = right_side.value[i];
value[new_length] = '\0';

Unfortunately, if your new string is longer, the extra characters get chopped
off. To solve this problem, you could try...

ENSC 251: Lecture Set 4 51

Overloading the Assignment Operator:

If we try: //This version has a bug:
void StringVar::operator =(const StringVar& right_side)
{

delete [] value;
int new_length = strlen(right_side.value);

max_length = new_length;
value = new char[max_length + 1];

for (int 1 = 0; 1 < new_length; 1++)
value[i] = right_side.valuel[i];
value[new_length] = "\0';
}

What is the problem?

ENSC 251: Lecture Set 4 52

Overloading the Assignment Operator:

If we try: //This version has a bug:
void StringVar::operator =(const StringVar& right_side)

{
delete [] value;
int new_length = strlen(right_side.value);

max_length = new_length;
value = new char[max_length + 1];

for (int 1 = 0; 1 < new_length; i++)
value[i] = right_side.value[i];
value[new_length] = "\0';
}

What happens if you: my_string = my_string;
The first statement is: delete [] value;

... Which is basically: delete [] my_string.value;

meaning that your pointer is undefined.
ENSC 251: Lecture Set 4 53

Overloading the Assignment Operator:

This is better: //This is our final version:
void StringVar::operator =(const StringVar& right_side)

{
int new_length = strlen(right_side.value);
1t (new_length > max_length)
{
delete [] value;
max_length = new_length;
value = new char[max_length + 1];
}
for (int i = 0; 1 < new_length; 1++)
value[i] = right_side.valuel[i];
value[new_length] = "\0';
}

In this case, you only delete and create a new char array if the current one
Is not large enough.

ENSC 251: Lecture Set 4 54

Warning: Assigning an object to itselfis a special case that you should
always consider when overloading the assignment operator.

In many cases the obvious definition for overloading the assignment
operator will not work for this case.

You should always perform a test for this special case and write your
function definition to work in all cases.

ENSC 251: Lecture Set 4

95

And now for some practical talk on Commenting, Testing, Debugging, and
Designing for Testability

ENSC 251: Lecture Set 4 56

Recall: Commenting is to provide the user with more information; to
improve the usability and readability of your code.

In Section 5.3, the concept of Precondition and Post-conditions is
discussed.

This is a useful part of your standard interface when defining a class:

Remember comments are part of the standard interface and should tell the
user how to use your public member functions.

Specifying preconditions (what you expect as input) and post-conditions
(what you will create as an output) are extremely valuable for this.

However, you don’t want to make this description dependent on the types
of the member variables.

ENSC 251: Lecture Set 4 57

For example:

void post_interest(double& balance, double rate);
//Precondition: balance i1s a nonnegative savings
//account balance.rate i1s the interest rate
//expressed as a percent, such as 5 for 5%.
//Postcondition: The value of balance has been
//increased by rate percent.

You don’t need to see the function body to understand how to use the
function.

ENSC 251: Lecture Set 4 58

For example:

void post_interest(double& balance, double rate);
//Precondition: balance is a nonnegative savings
//account balance.rate i1s the interest rate
//expressed as a percent, such as 5 for 5%.
//Postcondition: The value of balance has been
//increased by rate percent.

Creating the standard interface first is a good way to start the design
process.

« |t allows team members to work in parallel

« It also helps you identify all of the test cases that need to be covered.

ENSC 251: Lecture Set 4 59

Agile Software design relies on Unit Testing:

The designer creates a set of test functions for each module (function) in
the design.

These tests are created FIRST.
* You then write only sufficient code to pass the tests and no more.

* The result should be that your tests may be a bit clunky, but your actual
program code should be elegant and clean

When creating your unit tests, you need to cover:
-the “normal” cases,
-the boundary/corner cases

-illegal cases

ENSC 251: Lecture Set 4 60

Every function should be tested independently and then in the context of
the program it is being used in

**Preferably every other function in this program should already have been
tested

ENSC 251: Lecture Set 4 61

Agile Software design relies on Unit Testing:

To test a function outside of the program you want to use it in, you need to
use a Driver Program or Testbed.

These programs are temporary tools that allow you to activate the different
portions of a function to verify their functionality independent of the actual
program.

« If you can,itis good to be able to make them reusable

ENSC 251: Lecture Set 4 62

To test the get_input function with the standard interface:

void get_input(double& cost, 7nt& turnover);
//Precondition: User is ready to enter values correctly.

//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been

//set to the expected number of days until the item is sold.

and the implementation:

//Uses iostream:

void get_input(double& cost, 7nt& turnover)

{
using namespace std;
cout << "Enter the wholesale cost of item: $";
cin >> cost;
cout << "Enter the expected number of days until sold: ";
cin >> turnover;
}

your driver program could be... (see next slide):

ENSC 251: Lecture Set 4

63

Driver program for the function get_input:

j{nt main() However, 99% of the time
using namespace std; you will use file I/O to
double wholesale_cost;
int shelf_time; do really thorough testing.
char ans;

cout.setf(ios::fixed);

cout.setf(ios::showpoint); It allows you to run a batch
cout.precision(2);
do of tests and compare the
{

get_input(wholesale_cost, shelf_time); outputs offline —

cout << "Wholesale cost is now $"
<< wholesale_cost << endl;
cout << "Days until sold is now " You can even have the
<< shelf_time << endl;
output file identify which
cout << "Test again?” _
<< " (Type y for yes or n for no): "; test cases fail.
cin >> ans;
cout << endl;

} while (ans == "y

|| ans == "Y');

return 0;

When you cannot test a function without relying on another function that
has not been written/tested, we use a simplified version of the missing
function.

 These simplified versions of functions are called stubs.

« They normally do not perform the correct calculation, but deliver a value
that suffices for testing.

 They are also meant to be simple enough that you can be confident that
they are correct.

For example:

//This is only a stub: -
double price(double cost, int turnover) “

{

return 9.99; //Not correct, but good enough for some testing.

}

Realistically, the price will not always be $9.99, but this is good enough to
use to test other functions.

ENSC 251: Lecture Set 4 65

Using a top-down design approach:
* You can create stubs for all of your functions.
« Then replace the stubs one at a time with the function and test them.

« Theoretically, if you test each function as you design it and confirm that
it is correct before adding a new function, you can be certain that any
new bugs are part of the current function under test.

— In reality, not necessarily so.

Alternately, you can use a driver program to create your file I/O and then
combine it with the top-down approach described above.

ENSC 251: Lecture Set 4 66

These are all good testing and Design for Testability techniques.
But what happens when you find a bug?

How do you debug your code?

ENSC 251: Lecture Set 4

67

Debugging:

1. Check for Common Errors First:

TR

« Uninitialized variables, automatic type conversion, using “=" instead of
“==" boundary errors, etc.

2. Localize the Error:

« If you can, use test cases/cout* statements to determine where things
start to go wrong. Remember in your testing you already identified at
least one set of testing input that failed; you can use that as your starting
place.

*Note: In some cases you will not be able to use cout/printf, so make sure
that is not the only way you know how to debug.

ENSC 251: Lecture Set 4 68

Debugging:

3. Keep an Open Mind:

« Remember what they say about what happens when you “ASSUME”. If
you cannot find a bug quickly, do not assume you know where itis.

4. Do NOT randomly change sections of code hoping that will fix the error.

« This almost never works and you will never be able to localize the bug.

5. Keep track of what tests pass and fail:

* Does a different part of the code get activated when it fails? Have a log
of what passed and failed so you don’t keep repeating the same tests
over and over again.

ENSC 251: Lecture Set 4 69

Debugging:

6. Assume NOTHING works (the only good assumption).

« Go through your code line by line to figure out where the problem lies.

7. Rubber Duck Debugging/ Rubber Duckie Test:

Comes from a story in the book “The Pragmatic Programmer.” In the story,
the programmer explains their code line by line to the duck.

« If this doesn’t work, have someone else look at your code and explain it
to them. This is the point of talking to the duck, but to learn how. The
upside of talking to a person is that they are less likely to trust you (and
may talk back =). The downside is you are not self-reliant).

8. Use a debugger and watch for errors in behaviour.

9. Use a memory leak checker.

ENSC 251: Lecture Set 4 70

More techniques to Design For Testability (DFT):

1. Use #define DEBUG, combined with #ifdef DEBUG to
activate/deactivate specific regions of code only used for debugging.

* You can use it to create a “verbose” mode for your program’s operation.

2. Use the assert Macro. You need to #include <cassert>to be able
to use assert macros

assert (boolean expression);

ENSC 251: Lecture Set 4 71

More techniques to Design For Testability (DFT):

An example of how you can use an assert statement:

// Approximates the square root of n using Newton's
// Iteration.
// Precondition: n 1is positive, num_iterations is positive
// Postcondition: returns the square root of n
double newton_sqroot(double n, int num_iterations)
{
double answer = 1;
int i = 0;

assert((n > 0) & & (num_iterations> 0));
while (i <num_iterations)
{
answer = 0.5 * (answer + n / answer);
T++;
}

return answer;

ENSC 251: Lecture Set 4 72

More techniques to Design For Testability (DFT):

You can remove your assert statements from the compilation by combining
the following two statements:

#define NDEBUG
#include <cassert>

If you comment out/remove the #define NDEBUG line, then the assert
statements will be included again/turned back on”

ENSC 251: Lecture Set 4 73

Review Questions for Slide Set 4

What constructor is called when you create an object that is
an array of a class type?

When do you need to use malloc/free new/delete and why?
Are the freestore and the heap the same?
What is a Destructor?

What are the main differences between Destructors and
Constructors?

Are there default constructors?
Do you have multiple constructors per class?

What's a copy constructor? What characteristics does it
exhibit?

ENSC 251: Lecture Set 4 74

Review Questions for Slide Set 4

Make sure you understand these characteristics about pointers::

int *p; //Declares a pointer to an int
int v; // Declares a variable of type int
p = &v; //Assigns p the address of v

*p = 44; // Dereferences the pointer p to assign 44 to the
//variable v

void foo (int *value); //The input parameter is an int pointer ->
//passed as a call by value; must be
//dereferenced to manipulate the int value

void bar (int &value); //Call by reference, passes the address of
//the int to the function, but you don’t
//need to dereference value to access the
//int stored in the variable.

ENSC 251: Lecture Set 4 75

Review Questions for Slide Set 4

When do you need to include copy constructors in your class
definition?

Give an example of what might happen if you don’t have a
copy constructor when you need one.

When are copy constructors called?

Why aren’t copy constructors called with the assignment
operator?

Assignment operators are automatically overloaded by the
compiler- why would you manually need to overload one?

Why do you need to check the special case of self
assignment when overloading the assignment operator.

ENSC 251: Lecture Set 4 76

Review Questions for Slide Set 4

What is a unit test?

When should you design your tests- before or after your
code? Why?

Why use file I/O instead of user I/O to test your functions?
What is a stub?

What is a top-down design approach? What is a bottom-up
design approach? How are they different?

What are common bugs?

How do you METHODICALLY debug your code?
What are macros”

Why use the #ifdef command?

ENSC 251: Lecture Set 4 77

