Digital System Design

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~Ilshannon/courses/ensc350

Simon Fraser University Slide Set: 12
ENSC350: Lecture Set 12 Date: March 16, 2009

Slide Set Overview

e Lab 3

ENSC350: Lecture Set 12 Page 2

Your Slave Interface Port Requirements

Input signals use the prefix ‘i_slave’ while output signals are denoted by ‘0_slave'.

Port

Clk

Reset

|_slave read
|_slave_write

|_slave address
|_slave_ byteenable
|_slave_ writedata
o_slave readdatavalid
o_slave_ waitrequest
o_slave readdata

Avalon-MM signal

Clk

Reset

Read

Write

Address
Byteenable
Writedata
Readdatavalid
Waitrequest
Readdata

ENSC350: Lecture Set 12

Size (bits)

o T T e e e

64

64
Page 3

Your Avalon Slave

* Must support peripheral-controlled waitrequest
reads and writes

— Note that the begintransfer signal is not used
for the DES slave

e Must support pipelined reads with variable
latency

ENSC350: Lecture Set 12 Page 4

Slave Read and Write Transfers with Peripheral-Controlled Waitrequest

2 3 4 5 6

ok J) S S 1\ S O S

address '\"Q address - \\ .

byteenable \\ byteenable -) .
read J' 'S \ \ \ ‘\

write “ / “ _

waitrequest | _f “ \ J' “ L_
begintransfer ___ _!7 -\5'\ !7 -B\

o i I
writedata \\ writedata -

1. Address, read, and begintransfer are asserted after the rising clock
edge of clk

1. The slave asserts waitrequest to stall the transfer

ENSC350: Lecture Set 12 Page 5

Slave Read and Write Transfers with Peripheral-Controlled Waitrequest

2 3 4 5 6

ok J) S S 1\ S O S

address '\"Q address - \\ .

byteenable \\ byteenable -) .
read J' 'S '°q \ \ ‘\

write “ / “ _

waitrequest | _f “ \ J' “ L_
begintransfer ___ _!7 -\5'\ !7 -B\

o i I
writedata \\ writedata -

2. Waitrequest is sampled.

2. If Waitrequest is asserted (as shown here), the cycle becomes a
wait-state, and address, read, write and byteenable remain constant.

2.Begintransfer is not held constant.
ENSC350: Lecture Set 12

Page 6

Slave Read and Write Transfers with Peripheral-Controlled Waitrequest

2 3 4 5 6

ok J) S S 1\ S O S

address '\"Q address - \\ .

byteenable \\ byteenable -) .
read J' 'S \ \ \ ‘\

write “ / “ _

waitrequest | _f “ \ J' “ L_
begintransfer ___ _!7 -\5'\ !7 -B\

o i I
writedata \\ writedata

3. The slave presents valid readdata and deasserts waitrequest

ENSC350: Lecture Set 12 Page 7

Slave Read and Write Transfers with Peripheral-Controlled Waitrequest

2 3 4 5 6

ok J) S S 1\ S O S

address '\"Q address - \\ .

byteenable \\ byteenable -) .
read J' 'S \ \ \ ‘\

write “ / “ _

waitrequest | _f “ \ J' “ L_
begintransfer ___ _!7 -\5'\ !7 -B\

o i I
writedata \\ writedata -

4. Readdata and deasserted waitrequest are sampled, completing the
transfer.

ENSC350: Lecture Set 12 Page 8

Slave Read and Write Transfers with Peripheral-Controlled Waitrequest

2 3 4 5 6

ok J) S S 1\ S O S

address '\"Q address - \\ .

byteenable \\ byteenable -) .
read J' 'S '°q \ \ ‘\

write “ / “ _

waitrequest | _f “ \ J' “ L_
begintransfer ___ _!7 -\5'\ !7 -B\

o i I
writedata \\ writedata -

5. address, writedata, byteenable, begintransfer and write signals are
asserted.

5. The slave responds by asserting waitrequest, thereby stalling the
transfer

ENSC350: Lecture Set 12 Page 9

Slave Read and Write Transfers with Peripheral-Controlled Waitrequest

2 3 4 5 6

ok J) S S 1\ S O S

address '\"Q address - \\ .

byteenable \\ byteenable -) .
read J' 'S \ \ \ ‘\

write “ / “ _

waitrequest | _f “ \ J' “ L_
begintransfer ___ _!7 -\5'\ !7 -B\

o i I
writedata \\ writedata -

6. The slave captures the data being written and deasserts waitrequest,
thereby ending the transfer.

ENSC350: Lecture Set 12 Page 10

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

1. Address and read are asserted to initiate a read transfer.

ENSC350: Lecture Set 12 Page 11

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

2. The slave captures addrl.
2.This generates the response datal and asserts readdatavalid.

ENSC350: Lecture Set 12 Page 12

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

3. The slave captures addr2.
3. This generates the response data2 and asserts readdatavalid.

ENSC350: Lecture Set 12 Page 13

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

4. The slave asserts waitrequest.
4. This causes the third transfer to be stalled for 2 cycles.

ENSC350: Lecture Set 12 Page 14

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

5. The peripheral drives readdatavalid and valid readdata in response
to the third read transfer.

ENSC350: Lecture Set 12 Page 15

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

6. The data from transfer 3 is captured by the interconnect to the
Master.

6. Simultaneously, addr4 is captured by the slave.

ENSC350: Lecture Set 12 Page 16

Slave Pipelined Read Transfers with Variable Latency

c|kL__I_II_I_I_I_I_II_I_II_

address

read

waitrequest

readdata

readdatavalid A

7. data5 is presented with readdatavalid to complete the data phase for
the final pending read transfer.

ENSC350: Lecture Set 12 Page 17

Block Diagram of Avalon-MM DES Slave

i_zlave_witedata

o_save_readdata

DES Slave
Adddress
D ecoder
Slave
DezStatus Cartral
S—"
4 Deskey
Ottt F
ot Mg]
] DES irtput
— 1w [DesDatain - FIF O o
DES
DEZ output
DesDataot |y FIEC |

Slave Regigters

ENSC350: Lecture Set 12

Page 18

DES Input FIFO

—— 1 save_data_1
—— slave_write_1

‘3

4——0_=lave_almost_full_1
——0 dave_full_1

44— _dave_almost_empty 1
o—0_zlave_empty_1

0_des datalbs 32—

—0 zlave_empty 0
4——0_dave_almost_emply 0

4—0 _save_full_0
H——0_zlave_almost full_0

—— dawve data 0

———— =awve write 0

i_ces read

—0_cles empty-T——

0_des datals!:0)——»

DES INPUT FIF O

ENSC350: Lecture Set 12

Page 19

DES Output FIFO

——i zlave_read 1
4—0 zlave data_1

—— _ces datalB3. 32—

4—— =lave_almost_empty 1
44— zlave_empty 1

#4—0_zlave_almost_full_1
—0_ Have full 1 i_des wite

:Di——n_des_full—f"—h

4— 0 FHave_ 0

4+——0_zlave_almost_full_10 "
—0_zlave_empty 0
#4—0_slave_almost_empty_0 i des datar3:0)

—_zlave_read 0
44— zlave data 0

DES OUTPUT FIFD

ENSC350: Lecture Set 12 Page 20

Byte enable values for DES Slave

|_slave byteenable(7 downto 0) Access Size (bits) Valid bytes
“11111111” 64 0,1,2,3,4,5,6,7
“11110000” 32 (MSW) 4,5,6,7
“00001111” 32 (LSW) 0,1,2,3
“00000000” 0 None

ENSC350: Lecture Set 12 Page 21

Slave Byte Enable Encoding

|_slave byteenable(7 downto 0)

“11111117"
“11110000"
“00001111”
“00000000"

ENSC350:

Slave Word Enable (1 downto 0)
“11”
“10”
“01”
“00"

Lecture Set 12 Page 22

Slave Address Decoding

|_slave address(1 downto 0) Slave Select Signals (3 downto 0)

“00” “0001”
“01” “0010”
“10” “0100”
“117 “1000”

ENSC350: Lecture Set 12 Page 23

DES Slave Address Map

Address |i_slave address(l downto O) Access Type
0 “00” Read-Only*
1 “01” Read-Write
2 “10” Write-Only**
3 “11” Read-Only*

*Writes to Read-Only registers are ignored
**Reads from Write-Only registers should be all zeroes

ENSC350: Lecture Set 12

Description
DES Status
DesKey
DesDatain
DesDataout

Page 24

More detalls ...

 DES Slave Status Register:

— See Table 6, page 6 of the lab manual for the
slave register details

e Output Multiplexer

— Uses the decoded slave address and the
encoded slave byte enables to select what drives
the o_slave readdata port

ENSC350: Lecture Set 12 Page 25

Avalon Slave Test System

Sy Key Clack 50

Cind R Oh

Daa ROM

Avalon Master

Expeded
Cutput
RO

'

F 3
.‘_

Avalon
Interconnect

Read Data
FIF

Comparizon Logic

DE= Slawe

FPGA

Cutput=to LEDs and LCD

Page 26

Tasks

Step 1. Draw State Diagrams forn =1 & 2

— March 10th, 2009

Step 2: Implement VHDL for all subcomponents

— March 15t, 2009

Step 3: Integrate subcomponents for final design
— March 20th, 2009

Step 4: Implement design on DE2 board and test
— March 25, 2009

Step 5: Demo your design and submit your report
— Submit your report at 3:30pm, March 27th, 2009

ENSC350: Lecture Set 12 Page 27

