
Digital System Design

by
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 3
Date: January 19, 2009

Simon Fraser UniversitySimon Fraser University

ENSC 350: Lecture Set 3 2

Slide Set Overview

• Making your VHDL synthesizable

– If you learn VHDL from a book, write your code using the
constructs they describe, and try to compile it to an
hardware, it probably won’t work!

• Why?
• I’ll tell you in this slide set, and also talk about

how to make sure it does work.

– This is probably the most important slide
set of all!

• It will save you tons of debugging time in the
lab if you understand it

ENSC 350: Lecture Set 3 3

From HDL to Gates

ENSC 350: Lecture Set 3 4

If you only learn one thing during this course

When you are describing hardware in VHDL, you are
only describing the behaviour. The actual circuit will be
synthesized (by the tools, e.g. Quartus II) to gates. The
FPGA then implements the gates. The FPGA does
NOT execute the VHDL code directly!!!!

ENSC 350: Lecture Set 3 5

Unsynthesizable HDL

The gates will not implement the
behaviour you specified…

Your circuit won’t implement the
behaviour you specified

ENSC 350: Lecture Set 3 6

“Synthesizable” VHDL

• Not all VHDL Code can be synthesized by current
tools
– This isn’t limited to Altera’s tools

• Synthesizable VHDL is a subset of VHDL that can
be synthesized by current tools

• If you write VHDL that is not synthesizable:
– Tools will not be able to create hardware
– Sometimes it will try, but end up with something that is

“not quite right”
• Sometimes it gives an error message, sometimes not

ENSC 350: Lecture Set 3 7

MORAL: If you are going to synthesize, always write
Synthesizable VHDL!

ENSC 350: Lecture Set 3 8

But what sort of VHDL is Synthesizable?

• In general, it depends a bit on the tools
• RTL-level Synthesis Tools: Fairly small subset it can handle
• Behavioural Synthesis Tools: larger subset

• In the next few slides, I am going to show you the minimum
set that is synthesizable by all tools. If you restrict your
VHDL to this small set, your code will be synthesizable by
all tools

ENSC 350: Lecture Set 3 9

Synthesizable processes

• To make sure your VHDL is synthesizable, every
process must be one of THREE types:

– Type 1: Purely Combinational – All outputs are a function
only of the current inputs (not on the previous inputs)

process(SEL, A, B)
begin

if (SEL = ‘0’) then
Y <= A;

else
Y <= B;

end if;
end process;

ENSC 350: Lecture Set 3 10

For purely combinational processes

Rule 1: Every input (that can affect the output(s)) must be in
the sensitivity list.

Rule 2: Every output must be assigned a value for every
possible combination of the inputs

ENSC 350: Lecture Set 3 11

Examples of not synthesizable code

This would not be synthesizable
(violates Rule 1):

process (A, B)
begin

if (SEL = ‘0’) then
Y <= A;

else
Y <= B;

end if;
end process;

This would not be synthesizable

(violates Rule 2):

process (SEL, A, B)
begin

if (SEL = ‘0’) then
Y <= A;

end if;
end process;

ENSC 350: Lecture Set 3 12

Synthesizable Processes

Type 2: Purely Sequential: Each output changes only on the
rising or falling edge of a single clock

process (CLK)
begin
if (CLK’event and CLK=‘1’) then

Z <= A and B;
end if;

end process; D Q
A
B

CLK

Z

optional

ENSC 350: Lecture Set 3 13

For purely sequential processes

Rule 1: Only the clock should be in the sensitivity list

Rule 2: Only signals that change on the same edge of
the same clock should be part of the
same process

ENSC 350: Lecture Set 3 14

Synthesizable Processes

Type 3: Purely Synchronous with asynchronous set or reset

process (CLK, RESET)
begin
if (RESET=‘1’) then

Z <= ‘0’;
elsif (CLK’event and CLK=‘1’) then

Z <= A and B;
end if;

end process;
D Q

A
B

CLK

Z

RESET

ENSC 350: Lecture Set 3 15

For purely sequential processes with Asynch Rst/St

Rule 1: Sensitivity list includes clock and set/reset signal

Rule 2: Need the clk’event clause (Recall why?)

Rule 3: Inside the first part of the if statement, must assign
either 0 or 1 (not anything else).

ENSC 350: Lecture Set 3 16

Final Rule (the most important rule of all)

• If you want to synthesize your circuit, every
process must fall exactly into one of these
categories. Every process. Every single one. No
execeptions.

– If one of your processes doesn’t, you need to break it
up into blocks, where each block does fit into one of
these categories.

• Note: This is a little bit conservative… Some
synthesizers will handle a few patterns not
described here. But DON’T COUNT ON IT!!

ENSC 350: Lecture Set 3 17

Consider a flipflop with a synchronous reset

CLK

RESET

Q

CLK

RESET

Q

AS
YN

C
H

R
E

S
E

T
S

YN
C

H
 R

E
S

E
T

ENSC 350: Lecture Set 3 18

Consider a flipflop with a synchronous reset

• Can we describe this sort of flipflop using any of
the three types of processes described earlier?

– Recall, the types are:
• Type 1: Purely Combinational

• Type 2: Purely Synchronous

• Type 3: Purely Synchronous with Asynchrounous Set/Reset

ENSC 350: Lecture Set 3 19

Consider a flipflop with a synchronous reset

process (CLK)
begin

if (CLK’event and CLK=‘1’) then
if (RESET = ‘1’) then

Q <= ‘0’;
else

Q <= D;
end if;

end process;

ENSC 350: Lecture Set 3 20

What about a Moore FSM?

• Remember, a Moore machine has outputs that depend only
on the current state.

• Can we define this in one process?

ENSC 350: Lecture Set 3 21

Moore FSM sample code

process(clk)
variable PRESENT_STATE : bit_vector(1 downto 0) := “00”;
begin

if (clk’event and clk=‘1’) then
case PRESENT_STATE is

when “00” => if (in_sig = ‘0’) then
PRESENT_STATE := “01”;

else
PRESENT_STATE := “00”;
end if;

when “01” => PRESENT_STATE := “10”;
when “10” => PRESENT_STATE := “11”;
when “11” => PRESENT_STATE := “00”;

end case;
Z <= PRESENT_STATE(0) and not PRESENT_STATE(1);

end if;
end process;

ENSC 350: Lecture Set 3 22

What about a Mealy FSM?

• Remember, a Mealy machine has outputs that depend on
both the current state and current inputs(s).

• Can we define this in one process?

ENSC 350: Lecture Set 3 23

A Mealy state machine

CLK

D QNext
State Logic

(Combinational
Logic)

Output
Logic

(Combinational
Logic)

INPUTS

OUTPUTS

ENSC 350: Lecture Set 3 24

A Mealy state machine in 2 processes

D Q
Next

State Logic

Output
Logic

PROCESS 1
PROCESS 2

ENSC 350: Lecture Set 3 25

A Mealy State Machine
architecture behavioural of mealy is

signal current_state : bit_vector(1 downto 0) := “00”;
begin

process (clk)
begin

if (clk’event and clk=‘1’) then
case current_state is

when “00” => if (in_sig=‘0’) then current_state <= “01”;
else current_state <= “00”;

when “01” => ….
end case;

end if;
end process;
process (current_state, in_sig)
begin

out_sig <= some function of current state and in_sig
end process;

end behavioural;

ENSC 350: Lecture Set 3 26

For State machines, remember

• Moore Machines
– Can do in one process (some people use two)

• Mealy Machines
– Must break into two processes (some people use three)

• Some people separate next state logic from
flipflops

ENSC 350: Lecture Set 3 27

Key points for synthesizable HDL

• Processes must be:
– Type1: Purely Combinational
– Type2: Purely Synchronous
– Type3: Purely Synchronous with Asynchronous set/reset

This will ensure your code is synthesizable

If not, there is a good chance your circuit won’t work

Remember when debugging for each process to:
– Identify which of the three types of process it is
– For that type, follow the pattern in this slide set exactly

ENSC 350: Lecture Set 3 28

Questions

• Does the FPGA execute HDL code?

• What types of processes are guaranteed to be
synthesizable?

ENSC 350: Lecture Set 3 29

Questions

• What are the rules for combinational processes?

• What are the rules for sequential processes?

ENSC 350: Lecture Set 3 30

Questions

• What are the rules for synchronous processes with
asynchronous set/reset signals?

• How many processes do you need minimally to implement a
Moore FSM?

ENSC 350: Lecture Set 3 31

Questions

• How many processes do you need minimally to implement a
Mealy FSM?

• Why might someone use more than the minimal number of
processes to implement an FSM?

