
Digital System Design

by
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 5
Date: February 2, 2009

Simon Fraser UniversitySimon Fraser University

ENSC 350: Lecture Set 5 2

Slide Set Overview

• Lab 2

– DES decryption circuit

– Testbed

ENSC 350: Lecture Set 5 3

DES

• For lab 2, you will implement a structural design of
a Data Encryption Standard (DES) decryption
circuit and an accompanying testbed

• In this slide set, we’ll talk about:

– the DES standard

– Testbed implementation

ENSC 350: Lecture Set 5 4

DES

• This lab is a lot of work

– That’s why you’ve got 3 weeks

• Don’t procrastinate or you will regret it

ENSC 350: Lecture Set 5 5

DES

• Your DES decryption block is going to decrypt 64-
bit blocks (“chunks”) of data using a 64-bit key

– Larger block/key sizes exist, but it’s all the same idea

• Your design will allow you to change both the input
data sets and the key

ENSC 350: Lecture Set 5 6

DES

• What does this look like?

ENSC 350: Lecture Set 5 7

DES

• What does this look like?

ENSC 350: Lecture Set 5 8

DES

• What does the datapath look like?

ENSC 350: Lecture Set 5 9

DES

• What does the datapath look like?

D
es

K
ey

D
es

D
in

lo
ad

da
ta

_s
1

R
st

sh
ift

tw
o_

s1

C
lk

ENSC 350: Lecture Set 5 10

DES

• The datapath in_permute block swaps bits
according to the table:

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

ENSC 350: Lecture Set 5 11

DES

• The datapath out_permute block swaps bits
according to the table:

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

ENSC 350: Lecture Set 5 12

DES

• The datapath key_permute block swaps bits
according to the table (note only 56 bits are used):

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

ENSC 350: Lecture Set 5 13

DES

• Recall the datapath:

ENSC 350: Lecture Set 5 14

DES

• The key_unit schematic is:

ENSC 350: Lecture Set 5 15

DES

• The datapath PC-2 Selection Box block swaps bits
according to the table (note 56 bits are the
combined datapath):

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

ENSC 350: Lecture Set 5 16

DES

• The data_unit schematic is:

ENSC 350: Lecture Set 5 17

DES

• The E-box and P-box behave the same as the
other tables permuting bits.

• The S-box is different:

– It uses a 48-bit address to generate a 32-bit data word

• A 248 memory is too large to implement though

• 32 logic equations with 48 inputs aren’t feasible either

• Instead, eight 26 4-bit ROMs are used to generate the 32-bit word

ENSC 350: Lecture Set 5 18

DES

• The substitution box schematic is:

bi
t1

ro
w

co
lu

m
n

bi
t2

bi
t3

bi
t4

bi
t5

bi
t6

bi
t1

bi
t2

bi
t3

bi
t4

bi
t7

ro
w

co
lu

m
n

bi
t8

bi
t9

bi
t1

0
bi

t1
1

bi
t1

2
bi

t5
bi

t6
bi

t7
bi

t8

bi
t1

3
ro

w

co
lu

m
n

bi
t1

4
bi

t1
5

bi
t1

6
bi

t1
7

bi
t1

8
bi

t9
bi

t1
0

bi
t1

1
bi

t1
2

bi
t1

9
ro

w

co
lu

m
n

bi
t2

0
bi

t2
1

bi
t2

2
bi

t2
3

bi
t2

4
bi

t1
3

bi
t1

4
bi

t1
5

bi
t1

6

bi
t2

5
ro

w

co
lu

m
n

bi
t2

6
bi

t2
7

bi
t2

8
bi

t2
9

bi
t3

0
bi

t1
7

bi
t1

8
bi

t1
9

bi
t2

0

bi
t3

1
ro

w

co
lu

m
n

bi
t3

2
bi

t3
3

bi
t3

4
bi

t3
5

bi
t3

6
bi

t2
1

bi
t2

2
bi

t2
3

bi
t2

4

bi
t3

7
ro

w

co
lu

m
n

bi
t3

8
bi

t3
9

bi
t4

0
bi

t4
1

bi
t4

2
bi

t2
5

bi
t2

6
bi

t2
7

bi
t2

8

bi
t4

3
ro

w

co
lu

m
n

bi
t4

4
bi

t4
5

bi
t4

6
bi

t4
7

bi
t4

8
bi

t2
9

bi
t3

0
bi

t3
1

bi
t3

2

ENSC 350: Lecture Set 5 19

DES

• The pattern for S-box 1 is shown here (the rest are
in the lab document), with the addressing scheme
Row: Bits {1,6} Column: Bits {2,3,4,5}:

Column Number
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

ENSC 350: Lecture Set 5 20

DES

• The pattern for S-box 1 is shown here (the rest are
in the lab document), with the addressing scheme
Row: Bits {1,6} Column: Bits {2,3,4,5}:

Column Number
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

ENSC 350: Lecture Set 5 21

DES

• The output values for the control path state
machine for loaddata_s1 and shifttwo_s1
are:

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16

loaddata_s1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

shifttwo_s1 0 1 1 1 1 1 1 0 1 1 1 1 1
1 0 0

ENSC 350: Lecture Set 5 22

DES

• Note that there are lots of details in the schematic
and tables

• I’ve checked these slides, but their might be typos

– The lab2 document is correct and should be
followed if there are any differences.

• And now onto your testbed…

ENSC 350: Lecture Set 5 23

DES Testbed

• The schematic for your testbed is as follows:

ENSC 350: Lecture Set 5 24

DES Testbed

• You’ll be given some of these components and you’ll have
to design the rest

• Note we will be evaluating your design with different keys
and input vectors/expected output vectors than you are
given

– So you really need to hammer your design to make sure
it is correct

– Although it is not explicity part of the lab, you might want
to create more test bench vectors using some HLL
implementation (e.g. using Matlab)

ENSC 350: Lecture Set 5 25

DES Testbed

• The FIFOs and ROMs are created using Intellectual
Property (IP) cores provided with the Quartus tools

• The ROMs are used to store test vectors. They get
initialized using .mif files

• The FIFOs are used to buffer the data to be
decrypted and the final results.

– The following slides illustrate the necessary
handshaking for the FIFOs

ENSC 350: Lecture Set 5 26

DES Testbed

• FIFO Read and Write operations:

ENSC 350: Lecture Set 5 27

DES Testbed

• FIFO full behaviour:

ENSC 350: Lecture Set 5 28

DES Lab Task 1

• Task 1: (Complete by February 8th)
– Write the VHDL that descibes each of the

subcomponents.

– The top-level code will be structural

– For each of the components, make the HDL behavioural
or structural as is appropriate

• Remember: All behavioural HDL must be synthesizable

– Follow the templates for each component and test them
well before proceeding with integration

• Otherwise, you’ll never be able to debug your final design

ENSC 350: Lecture Set 5 29

DES Lab Task 2

• Task 2: (Complete by February 11th)
– Integrate all subcomponents

– Maximize the (1/area * Maximum Throughput) product

– Perform preliminary testing using simulation

ENSC 350: Lecture Set 5 30

DES Lab Task 3

• Task 3: (Complete by February 15th)
– Create your Testbed for the DE2 Board

– Although this may sound ironic, the Testbed will need to
be tested independent of your DES circuit

• Otherwise, how will you know where your buts come from (your
DES circuit or the Testbed?

ENSC 350: Lecture Set 5 31

DES Lab Task 4

• Task 4: (Complete by February 22nd)
– Do a thorough testing of your DES design using the DE2

board testbed
• Test for different input vectors and different keys

– Obtain resource usage and Performance statistics
• Use this information to calculate your (1/area*Maximum

Throughput) product

ENSC 350: Lecture Set 5 32

DES Lab Task 5

• Task 5: (Complete by February 26th by 3:30pm)
– Demonstrate your design

• Be prepared to answer questions on your design
• Remember: We’ll be using different test vectors and keys to

verify your design than those with which we provide you

– Write up and submit a report on your design to include:
• A system block diagram and state diagram
• Resource and performance statistics
• HDL hierarchy and anything special about your design
• Submit a soft copy of your source files as a zip file to the TA via

WebCT

– For more details, check out the lab document

ENSC 350: Lecture Set 5 33

DES Lab Marking Scheme

• Demo Marking Scheme (Total 4 marks):

– 2 marks for working Simulations and reasonable responses to
questions

– 2 marks for working on the DE2-70 and reasonable responses to
questions

• Report Marking Scheme (Total 6 marks):

– 1 mark for accurate State Diagram (must match VHDL)
– 1 mark for accurate System Block Diagram (must match VHDL)
– 1 mark for resource usage report
– 1 mark for min Clk period report and max throughput calculation
– 1 mark for hierarchy tree and VHDL coding practices
– 1 mark for readability of report

ENSC 350: Lecture Set 5 34

DES Lab Marking Scheme- Bonus & Reminders

• Bonus (not recommended for anyone without extensive VHDL skills):

– The design we’ve outlined here assumes 16 clock cycles are required to
decrypt each data word. For those of you that are already comfortable with
synthesizable VHDL, you can try to design a pipelined version of this circuit
to increase throughput. This will be incredibly challenging and should not
be considered by the inexperienced or faint of heart. If successful, you will
be awarded a maximum of 2 bonus marks on your final mark.

• Reminders:

– Submit your report to the ensc350 drop box by 3:30pm on February 26th

– Submit your VHDL to the TA via WebCT by 3:30pm on February 26th as well
– No soft copies of the report will be accepted
– The submission deadline is fixed (even being late by 1 hour you will be

severely penalized by at least 50%)
– Even if you miss the demo for medical reasons, you are expected to help

with the report

ENSC 350: Lecture Set 5 35

NOTE: I’m not promising there are no typos
in the document (it is 17 pages, so there

are likely typos), but the datapath tables are
correct. If you have any other questions,

post to WebCT

ENSC 350: Lecture Set 5 36

Now… An Overview Testbeds

ENSC 350: Lecture Set 5 37

Slide Set Overview

• How we test circuits:

– Terminology

– Designing testbeds

• What we are doing

• What the HDL looks like

ENSC 350: Lecture Set 5 38

Terminology

• Error/Fault:

– Incorrect operation of part of the circuit

• Failure:

– Incorrect behaviour exhibited by the season

• Note: multiple errors may prevent system failure

ENSC 350: Lecture Set 5 39

Simulation/Emulation/Verification

• Simulation:

– Typically a software program used to simulate how
hardware would be have (eg a circuit, a processor)

• Emulation:

– One hardware platform is used to emulate (mimic)
another hardware platform

ENSC 350: Lecture Set 5 40

Simulation/Emulation/Verification

• Verification:

– Used to verify (demonstrate) that the circuit you actually
implemented behaves as originally specified

ENSC 350: Lecture Set 5 41

Simulation/Emulation/Verification

• Order of operation:

– Simulation (think waveform generator)

– Emulation

– Verification

ENSC 350: Lecture Set 5 42

Testing vs Verification

• Testing = running the design with a set of inputs to gain
confidence that the design has few errors (design is
“tested”)
– Goal: reduce the frequency of failures
– When done: after the design of a component/system is complete
– Methodology: develop test cases, normally including boundary

conditions; run the design with each test case

• Verification = formally proving that the design has no
errors/faults (design is “correct”)
– Goal: detect errors and eliminate failures
– When done: before, during and after the design is complete
– Methodology: write separate specifications for the design; prove that

the design and the specifications are mathematically equivalent

ENSC 350: Lecture Set 5 43

Testbed

• What does a testbed look like from the architectural
perspective?

• SUT = System Under Test

ENSC 350: Lecture Set 5 44

Testbed – “in the HDL”

LIBRARY ieee;
LIBRARY std;
USE std.textio.all;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_textio.all;
USE ieee.std_logic_signed.all;

ENTITY testbench IS
END testbench;

ENSC 350: Lecture Set 5 45

Testbed – “in the HDL”

ARCHITECTURE testbench_arch OF testbench IS
CONSTANT set_width : NATURAL := 24;
SIGNAL R, D, Q, Qc : STD_LOGIC_VECTOR(set_width-

1 DOWNTO 0);
SIGNAL clk, Done : STD_LOGIC;
SIGNAL Load, Resetn : STD_LOGIC;
FILE vectors : TEXT IS IN "in_vector.vec";
FILE dump : TEXT IS OUT "vhdl_output.vec";

ENSC 350: Lecture Set 5 46

Testbed – “in the HDL”

COMPONENT Divider
GENERIC(width: NATURAL := set_width);
PORT(R, D : IN STD_LOGIC_VECTOR

(width-1 DOWNTO 0);
Load, Resetn : IN STD_LOGIC;
clk : IN STD_LOGIC;
Done : BUFFER STD_LOGIC;
Q : BUFFER STD_LOGIC_VECTOR

(width-1 DOWNTO 0));
END COMPONENT;

BEGIN

ENSC 350: Lecture Set 5 47

Testbed – “in the HDL”

CLKP: PROCESS
CONSTANT clk_off_period: TIME := 10 ns;
CONSTANT clk_on_period: TIME := 10 ns;
BEGIN

clk <= '0';
WAIT FOR clk_off_period;
clk <= '1';
WAIT FOR clk_on_period;

END PROCESS;

ENSC 350: Lecture Set 5 48

Testbed – “in the HDL”

RSTP: PROCESS
CONSTANT reset_period: TIME := 5 ns;
BEGIN

Resetn <= '0';
WAIT FOR reset_period;
Resetn <= '1';
WAIT;

END PROCESS;

ENSC 350: Lecture Set 5 49

Testbed – “in the HDL”

LDP: PROCESS
CONSTANT load_period: TIME := 10 ns;
BEGIN

Load <= '1';
WAIT FOR load_period;
Load <= '0';
WAIT UNTIL Done = '1';

END PROCESS;

ENSC 350: Lecture Set 5 50

Testbed – “in the HDL”

P0: PROCESS
VARIABLE buf_in : LINE;
VARIABLE buf_out : LINE;
VARIABLE x : BIT_VECTOR(set_width-1 DOWNTO 0);
VARIABLE y : BIT_VECTOR(set_width-1 DOWNTO 0);
VARIABLE z : BIT_VECTOR(set_width-1 DOWNTO 0);
VARIABLE Diff : STD_LOGIC_VECTOR(set_width-1

DOWNTO 0);

BEGIN

ENSC 350: Lecture Set 5 51

Testbed – “in the HDL”

WHILE NOT ENDFILE(vectors) LOOP
READLINE(vectors, buf_in); --Read line from file.
READ(buf_in, x);
READ(buf_in, y);
READ(buf_in, z);

R <= TO_STDLOGICVECTOR(x);
D <= TO_STDLOGICVECTOR(y);
Qc <= TO_STDLOGICVECTOR(z);

WRITE(buf_out, string'("R = "));
WRITE(buf_out, x);
WRITE(buf_out, string'(" D = "));
WRITE(buf_out, y);
WRITELINE(dump, buf_out);

ENSC 350: Lecture Set 5 52

Testbed – “in the HDL”

WAIT UNTIL (Done = '1'); --Need to generate results
IF(Q >= Qc) THEN --Compare HDL and C quotients

Diff := Q - Qc;
ELSE

Diff := Qc - Q;
END IF;
WRITE(buf_out, string'(" VHDL output = "));
WRITE(buf_out, TO_BITVECTOR(Q));
WRITE(buf_out, string'(" C output = "));
WRITE(buf_out, TO_BITVECTOR(Qc));
WRITELINE(dump, buf_out); --Write out line
WRITE(buf_out, string'(" Difference = "));
WRITE(buf_out, TO_BITVECTOR(Diff));
WRITELINE(dump, buf_out);
WAIT UNTIL (Done = '0'); --Wait before starting next divide

END LOOP;
WAIT; --Done simulation of test vectors

END PROCESS;

ENSC 350: Lecture Set 5 53

Testbed – “in the HDL”

DIV0: Divider PORT MAP(R, D, Load, Resetn, clk, Done, Q);

END testbench_arch;

CONFIGURATION tb_Divider OF testbench IS
FOR testbench_arch
END FOR;

END tb_Divider;

ENSC 350: Lecture Set 5 54

Summary slide

Terminology matters!! Details matter!!

Pay attention to the details and be methodical
in your design

This will matter for all your written tests:
- “Correct” and “almost correct” are not

the same

ENSC 350: Lecture Set 5 55

Questions

• Does the FIFO in your testbed use first word fall through? If
not, what would be the difference?

• How do the permute blocks in the DES algorithm work (e.g.
P-box, in_permute, etc.)?

ENSC 350: Lecture Set 5 56

Questions

• Since key-permute uses only 56-bits of the 64-bit key, what
does that imply about the remaining 8 bits?

• Why do we use an area-performance product to quantify the
quality of a design?

ENSC 350: Lecture Set 5 57

Questions

• Why not simply use a single 248 address ROM or 32 logic
equations with 48 inputs to implement the Substitution
Block?

• How do we implement the Substitution Block to determine
what bits map where?

ENSC 350: Lecture Set 5 58

Questions

• What is the shifttwo_s1 signal used for?

• Why is the loaddata_s1 only high during the first cycle of the
state machine?

ENSC 350: Lecture Set 5 59

Summary Questions

• Be able to define:
– Error/Fault
– Failure
– Simulation
– Emulation
– Verification
– Testing
– SUT

