
School of Engineering Science
Simon Fraser University

EECE 350 – Digital Systems Design
Spring 2009

Lab 1: State Machines and the LCD

Lab Demos in the Week of February 2nd-6th

In this lab, you will create a simple driver for the LCD on the Altera board. The driver will be a simple
state machine that you will describe using VHDL.

The system you will build will cycle through and display the first five characters of your name. Each cycle,
the LCD will display one character. The clock comes from pushbutton switch key3. Every time you
depress the switch, another character appears. So if your name is “Abcde”, the LCD would display an “A”
in the first cycle, add a “b” in the second cycle (so the display is "Ab"), add a “c” in the third cycle (so the
display is "Abc"), etc. On the six cycle, it would cycle back to “A” and start again. Each character is
displayed to the right of the previous characters, so after 12 cycles (for example), the LCD would display
“AbcdeAbcdeAb”.

To make things more interesting, the user can change the direction using the slider switch SW0. If this
switch is “up” (1), the system operates as described above. If this switch is “down” (0), the system counts
backwards (but still starts with the first character). So, in the above example, after 12 cycles, the LCD
would display “AedcbAedcbAe”. In this example, it started with A, but then counted backwards (e, d, c,
etc).

To make things even more interesting, the user can change the slider switch during any cycle. So, for
example, you might count “forwards” for 4 cycles, “backwards” for 2 cycles, and “forwards” for 4 cycles,
giving an LCD display of “AbcdcbcdeA”.

There is also a reset input; this will be controlled by the pushbutton switch key0. When this pushbutton
switch is lowered, the system resets immediately. After a reset (and at the start), the state machine takes 6
cycles before starting with the first cycle of your name (this is due to the need to reset the LCD display; this
will become clear later).

The following diagram shows the overall system you will build:

How to use the LCD:

To do this assignment, you have to know a bit about how the LCD works and how to interface with it. The
LCD has five single-bit control inputs, and one 8-bit wide input bus. The five control inputs are as follows:

 lcd_on : '1' turns the LCD on. In this lab, this should always be '1'
 lcd_blon : '1' turns the backlight on. In this lab, this should always be '1'
 lcd_rw : whether you want to read or write to the internal registers. In this lab, we will
 only be writing, meaning this should always be '0'
 lcd_en : this is an enable signal. It is also used to latch in data and instructions (see below)
 lcd_rs : this allows you to indicate whether the lcd_data bus is being used to send characters
 or instructions (see below).

The 8-bit bus is called lcd_data and is used to send instructions or characters to the LCD display.

You can communicate with the LCD using either instructions (to set the LCD in a certain mode or tell it to
do something like clear the display) or using characters (in which case the character is displayed on the
screen). Each cycle, you can send either one instruction or one character on the 8-bit bus. If you are
sending an instruction, the lcd_rs signal should be set to 0, and if you are sending a character, the lcd_rs
signal should be set to 1.

The data bus is sampled on the falling edge of the lcd_en signal. In this lab, we will drive lcd_en with the
system clock (which comes from one of the pushbuttons). It is important to remember that the LCD
instruction or character is accepted on the falling edge of this clock (this is different than the state machine,
which changes states on the rising edge of the clock).

So, to be clear, to send an instruction or character, you would do the following. First, lcd_on, lcd_blon,
lcd_rw should be fixed as described above. lcd_en would initially be 1. You would then drive lcd_rs with
a 0 (if you want to send an instruction) or 1 (if you want to send a character). At the same time, you would
drive either the instruction code or character code (either of which is 8 bits) on lcd_data. Then, lcd_en
would drop to 0, and the LCD would either accept and execute the instruction, or accept and display the
character.

There are several instructions that the LCD accepts. This handout will not describe them in detail. Instead,
this handout will indicate a sequence of instructions which will set up the LCD properly. To set up the
LCD, you should send the following instructions, in this order, once per cycle:

 00111000 (hex "38")
 00001100 (hex "0C")
 00000001 (hex "01")
 00000110 (hex "06")
 10000000 (hex "80")

In fact, the first instruction (00111000) should be sent twice, since depending on how you implement the
reset, you might miss the first one. Therefore, reseting the LCD will require 6 cycles. If you want to
understand what these instructions mean, you can consult the LCD datasheet, which is on the course web
site.

Once you have set up the LCD as described above, you can send characters, one character per cycle. The
following diagram shows the character encoding.

Code Code Code Character Binary Hex Character Binary Hex Character Binary Hex

Space 00100000 20 @ 01000000 40 ` 01100000 60
! 00100001 21 A 01000001 41 a 01100001 61
" 00100010 22 B 01000010 42 b 01100010 62
00100011 23 C 01000011 43 c 01100011 63
$ 00100100 24 D 01000100 44 d 01100100 64
% 00100101 25 E 01000101 45 e 01100101 65
& 00100110 26 F 01000110 46 f 01100110 66
' 00100111 27 G 01000111 47 g 01100111 67
(00101000 28 H 01001000 48 h 01101000 68
) 00101001 29 I 01001001 49 i 01101001 69
* 00101010 2A J 01001010 4A j 01101010 6A
+ 00101011 2B K 01001011 4B k 01101011 6B
, 00101100 2C L 01001100 4C l 01101100 6C
- 00101101 2D M 01001101 4D m 01101101 6D
. 00101110 2E N 01001110 4E n 01101110 6E
/ 00101111 2F O 01001111 4F o 01101111 6F
0 00110000 30 P 01010000 50 p 01110000 70
1 00110001 31 Q 01010001 51 q 01110001 71
2 00110010 32 R 01010010 52 r 01110010 72
3 00110011 33 S 01010011 53 s 01110011 73
4 00110100 34 T 01010100 54 t 01110100 74
5 00110101 35 U 01010101 55 u 01110101 75
6 00110110 36 V 01010110 56 v 01110110 76
7 00110111 37 W 01010111 57 w 01110111 77
8 00111000 38 X 01011000 58 x 01111000 78
9 00111001 39 Y 01011001 59 y 01111001 79
: 00111010 3A Z 01011010 5A z 01111010 7A
; 00111011 3B [01011011 5B (01111011 7B
< 00111100 3C ¥ 01011100 5C | 01111100 7C
= 00111101 3D] 01011101 5D) 01111101 7D
> 00111110 3E ^ 01011110 5E → 01111110 7E
? 00111111 3F

_ 01011111 5F

← 01111111 7F

So, for example, if you wanted to display an "a", you would send 01100001 on the lcd_data bus. Note that
the table above includes both binary and hexadecimal (base-16) for each code; computer engineers like to
talk in hexadecimal, since it is more convenient than binary. Other characters are available, and you can
even design your own characters. See the datasheet on the course web site if you want more information.

There are stringent timing requirements that must be met using the LCD. However, in this lab, we are
using the pushbutton switch as a clock, and it is not possible for you to push the button so fast that you are
in danger of violating any of these minimum times. All that matters for this lab is that you need to make
sure that the control lines are steady when the clock (led_en) switches from high to low.

If you want more information on the LCD, check out the DE2-70 User’s guide and the LCD datasheet on
the course web site.

Part 1 (2 marks):

Design a Moore state machine to implement the circuit as described on the first page of this handout. Your
design must include a complete state table and a state diagram. Note both lab partners are required to
complete the necessary state table and diagram for their own names.

Your state table should show the value of lcd_data, lcd_rs, and the next state for all permutations of the
current state, sw(0), and resetb. All states should be named and given a binary value. You must show all
of the following encodings in your state table: sequential, gray, and one-hot state encodings. See Table 8.1
of your textbook for an example state table. When writing the VHDL you can use either an enumerated
type for states (i.e. type StateType is…) or explicitly use a sequential state encoding (i.e. constant S0: …).

Your state diagram will be something like the picture below. Each state is represented by a circle, arrows
indicate state transitions. Include a name for each state, the value of the outputs for each state, and the
value of the inputs for each transition (if your name is “Steve”).

Upon reset, the state machine cycles through the first six states regardless of the input. The reset is
asynchronous; this means that when the resetb signal is asserted, the state machine is reset immediately,
without waiting for a clock edge. The reset is also active low, meaning that a "0" means reset, and a "1"
means normal operation (this makes it easier to use the pushbutton switch). The state machine is positive-
edge triggered; this means that the transition from one state to the next occurs on the rising edge of the
clock. The outputs of the state machine are the signals lcd_rs and lcd_data; given the discussion on the
previous pages, you should be able to figure out what should be driven on these signals during each cycle.
Note that this is a Moore state machine, meaning the output depends only on the state.

You can use the VHDL template file, lab1.vhd, from the course website to get started.

Simulate your design, and make sure that it works as expected. Be ready to show your design (including
your state tables) and your simulation to the TA during your lab demo. Your Part 1 mark will be:

 0/2: if you haven’t done anything
 1/2: if you have done something, but it doesn’t work
 2/2: you have entered and simulated your design, and it works

Hint: Earlier I mentioned that the LCD accepts data on the falling edge of the clock. Don't be confused. In
the state machine you design here, the state changes (and hence output changes) all happen on the rising
clock edge. This is a normal state machine, just like we discuss in class.

Part 2: (3 marks)

1. Before downloading your circuit to the board, it is a good idea to play with the LCD to make sure you

understand how it works. To help you do this, we have created a VHDL design that does nothing more
than make the following connections:

lcd_rs is connected to slider switch SW8
lcd_data is connected to slider switches SW7 to SW0
lcd_en is connected to pushbutton switch KEY0
lcd_rw is tied to 0
lcd_on and lcd_blon are tied to 1

You can download this VHDL file, test_lcd.vhd, from the course website. Download this design and
use the switches to first initialize the LCD and then send characters to the LCD. Remember to use the
pin assignments file from the tutorials. If you have any questions at this stage, please talk to your TA
before moving on. You should be able to successfully send characters and see them on the LCD screen.
Don't skip this step, because if you are not sure you understand how the LCD works, you will have
problems debugging later.

2. Download the circuit you designed in your preparation. Again, remember to use the pin assignments

file from the tutorials. Cycle through the states and show that it operates as expected. Test the reset
button to make sure that works too. You will probably find it easier to see what is going on by wiring
the state bits (probably called something like "present_state" or "current_state" in your VHDL code) to
the green LEDs so you can easily see what state you are in.

 Demo your working circuit to your TA before you leave the lab. Your mark will be one of:

 0/3: if you don't even show up, or show up and don't even try to complete the lab.
 1/3: if you do some work, but really can't demonstrate your state machine sequencing through
 states at all, or if you can’t answer questions about your work satisfactorily.
 2/3: if you can sequence through states, but the LCD isn't displaying characters properly, or if
 some of your state transitions are incorrect.
 3/3: it works correctly, and you can explain your code to the TA

Note that the TA will ask to see your code, and will ask questions about it. The TA may also ask questions
related to state machine design. You should be able to answer these questions to get full marks.

Bonus Marks (0.5 marks)
If you finish early, you can earn an extra 0.5 bonus marks by doing one (or both) of the following. It may
not seem that 0.5 marks is a lot, but the performance part of the lab is only out of 3, so 0.5 marks is
significant. Please do not feel you must do either of these; they are challenging and only for those who are
really keen. No part-marks for bonus, and you only get 0.5, even if you do both. Note that, just like the
regular performance marks, you can only get bonus marks if you finish your design and have it ready for
your lab demo time.

To earn bonus marks, you can do one or both of the following:

1. From the datasheet, figure out how to create your own characters. Create at least four new
characters, and modify your state machine so it displays your name (or some other message) using
this new character set.

2. At the end of 18 characters, the screen is full, and no more characters are displayed. Include a

counter that keeps track of how many characters have been displayed and clears the screen after 18
characters have been displayed (and then continues normally). The instruction code to clear the
screen is 00000001. The challenge here is that you don't know which characters will be displayed
(since the user can change the sequence using the SW0 switch).

