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Lab 2 will have you implement a structural design of a Data Encryption Standard (DES) decryption circuit 
on the DE2 board along with an appropriate testbed.  Your success will be measured by having a 
functioning design as well as maximizing your (1/area*Max Throughput) product (to be explained later). 
DES was one of the most popular high-speed encryption algorithms.  Although DES has been, for the most 
part, replaced by newer algorithms, such as Triple-DES and Rijndael (AES), these new algorithms all 
operate using principles similar to DES.  In fact, Triple-DES is simply the application of the DES algorithm 
three times.  Although DES can be performed by software, the fact that it is comprised of mainly shifts, bit 
permutations, and exclusive-or operations makes it far more suitable for a hardware implementation. 
 
This lab will be a lot of work, that’s why you have three weeks.  It is highly recommended that you get 
working on it early, otherwise you may fail to complete the lab.  A suggested schedule of tasks is given at 
the end; we won’t be checking your progress, so it is up to you to make sure you meet the milestones.  If 
you don’t, you’ll have a hard time completing the lab for the due date.   
 
 
The DES Algorithm 
 
The DES algorithm encrypts or decrypts data in 64-bit “chunks” using a 64-bit key (versions using longer 
keys also exist).  The algorithm performs a series of bit-shuffles and exclusive OR’s on the 64-bit data; the 
exact pattern depends on the key.  Once encrypted, the original data can only be recovered using the key 
used during the encryption.  The encryption and decryption algorithms are similar, although not identical.  
In this project, you will create a decryption circuit.  To test the design, we will give you some encrypted 
messages, and the key, and your design will decrypt these messages.  Please note that during your lab 
demo, we will use different messages and keys, so you should thoroughly test your design, which means 
you may want to create more test vectors for yourself.  In this section, the decryption algorithm will be 
described; if you want to know how the encryption works, then you can ask Google.1 
 
a) Top Level 
The top-level schematic is shown in Figure 1.  The 64-bit encrypted data arrives on signals DesDin[1:64] 
and the 64-bit key arrives on signals DesKey[1:64].  The output data appears on the bus DesDout[1:64].  
Note that we are numbering the wires in the bus differently than usual here (usually we would expect a 64 
bit bus to be numbered [63:0]).  We will do this throughout this project to be consistent with much of the 
published encryption/decryption literature that you might find on the web.  The first wire in the DesDin bus 
is wire 1 (MSB), the second wire is wire 2, … and the last wire is wire 64 (LSB).   You should follow this 
convention throughout the design. 
 
Your core will have a single clock (Clk) and a synchronous reset (Rst).  Data processed by your core will 
read by and written to First In First Out (FIFOs) to provide buffering.  The necessary handshaking signals 
for the input FIFO (InFIFO_Empty, InFIFO_Rd) and the output FIFO (OutFIFO_Full, OutFIFO_Wr) 
are used by the controller to ensure that data is not lost or corrupted during decryption. 

                                                           
1 Note: much of this description was modified from http://www.aci.net/kalliste/des.htm, but it is no longer a 
live link.  http://www.thaiall.com/security/des.htm is another link you can try.   



 
 

Figure 1:  Top-Level Schematic 
 
The controller should read in a new value from the input FIFO when it is not empty and no value is 
currently being processed.  When the InFIFO_Rd signal is asserted during a clock cycle, it means that a 
valid key and encrypted data will be available on the DesKey and DesDin ports in the next clock cycle.  To 
reiterate, if InFIFO_Rd is high in clock cycle i, the new data and key are accepted in cycle i+1.   This 
might seem strange, but it actually makes the design of the controller slightly easier.  Please do not change 
this behaviour so that your following lab (lab 3) is easier.  Also, if you change the behaviour and have 
problems, your classmates and your TA probably won’t be able to help you.  Finally, this behaviour will be 
expected for the testbed you are asked to design (we will be providing you with testbenches for your 
testbed assuming that your circuit conforms to the specifications).  Once the new data has been read, the 
decrypted data should be available on DesDout after 16 cycles.  If you choose to increase the number of 
clock cycles required to provide valid output, this will likely decrease the Throughput of your design and 
thus it’s performance as measured by the (1/area*Max Throughput) product. 
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Figure 2: Datapath schematic 



b) Datapath 

Figure 2 shows the structure of the datapath.  As the figure shows, the datapath is divided into two parts, a 
key unit and a data unit.  First consider the data side.  The data arrives on port DesDin[1:64] and is shuffled 
by the permutation block labelled in_permute.  This rearranges the bits according to the following table, 
where the entries in the table show the new arrangement of the bits from their initial order. So, for example, 
the 58th bit of the input data becomes the first bit of input permute block output. The 50th bit of input data 
becomes the second bit of the input permute block output.  The 7th bit of input data becomes the last bit of 
the input permute block output. 
 
           
            58    50   42    34    26   18    10    2 
            60    52   44    36    28   20    12    4 
            62    54   46    38    30   22    14    6 
            64    56   48    40    32   24    16    8 
            57    49   41    33    25   17     9    1 
            59    51   43    35    27   19    11    3 
            61    53   45    37    29   21    13    5 
            63    55   47    39    31   23    15    7 
 

Table 1: Input Permute Block Pattern 
 

 
So, as an example, if the input string of the permute block is: 

input = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

then the output string of the permute block is: 
output = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010  

Note that this permute block is strictly combinational.  In fact, it performs no computation, it only 
rearranges the bits in the input word. 
 
The data is then shuffled for 16 cycles, in a manner to be described below.  After the 16 cycles, the data bits 
are rearranged again, according to the pattern in Table 2.   
 
 
            40     8   48    16    56   24    64   32 
            39     7   47    15    55   23    63   31 
            38     6   46    14    54   22    62   30 
            37     5   45    13    53   21    61   29 
            36     4   44    12    52   20    60   28 
            35     3   43    11    51   19    59   27 
            34     2   42    10    50   18    58   26 
            33     1   41     9    49   17    57   25 
 

Table 2: Output Permute Block Pattern 
 
This table is read the same way as Table 1. As an example, if the output permute block input is 
input = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100 
 
then the output permute block output is: 
output = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101 
 
 
 
 



              57   49    41   33    25    17    9 
               1   58    50   42    34    26   18 
              10    2    59   51    43    35   27 
              19   11     3   60    52    44   36 
              63   55    47   39    31    23   15 
               7   62    54   46    38    30   22 
              14    6    61   53    45    37   29 
              21   13     5   28    20    12    4 
 

Table 3: Key Permute Block Pattern 
 
Now consider the key side.  The 64-bit key is fed to a key_permute block, which shuffles the bits within 
the key.  The key_permute block rearranges the 64 bits of the key, and selects 56 of these bits for use in 
the algorithm (note that this means that 8 of the bits in the key are ignored.  In a 64-bit key, only 56 bits are 
actually used).  The rearrangement is performed according to pattern in Table 3.   
 
This table is read the same as the other tables;   Since the first entry in the table is "57", this means that the 
57th bit of the original key  becomes the first bit of the permuted key (the key permute block output). The 
49th bit of the original key becomes the second bit of the permuted key. The 4th bit of the original key is 
the last bit of the permuted key.   Again, note only 56 bits of the original key appear in the permuted key.  
As an example, if the input pattern key is: 
input = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001  
 
Then the permuted key (the key permute block output) is: 
output = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111  
 
As will be described below, the data is shuffled within the data_unit block for 16 cycles.  This shuffling is 
controlled by the 48 bit signal keysub_s1.  These 48 bits are selected from the 56 bit permuted key 
computed by the Key Unit block, according to a predefined pattern.  The way in which these bits are 
selected, and the manner in which these bits are used to shuffle the data are described next. 
 
c)  Key Unit 
 
The Key Unit receives 56-bit key bits (remember, the Key Permute block selects 56 bits from the original 
64 bit key).    The Key Unit selects 48 bits from these 56 bits according to a predefined pattern.  These 48 
bits are sent to the Data Unit through the 48-bit wide port keysub_s1.  Each cycle, a different set of 48 bits 
is sent to the Data Unit (remember that the entire decryption process takes 16 cycles, so 16 different 
patterns are produced by the Key Unit). 
 
It would be possible to create a large ROM that would indicate which 48 bits of the 56 bit key (and the 
order of these bits) are produced each cycle.  Alternatively, the bits can be created using some very simple 
logic that shuffles bits around.  We will follow this latter approach.  Figure 3 shows the logic that can be 
used to produce the 16 48-bit sequences.   
 



 
 

Figure 3: Key Unit Schematic (Decryption) 
 

 
Figure 3 shows that the operation of the Key Unit is controlled by two control signals, loaddata_s1 and 
shifttwo_s1.  Both of these signals are generated by the controller block (see below).  During the first 
cycle, the 56 bit key input is split into two 28-bit halves.  As will be described below, during the first cycle, 
the loaddata_s1 control signal is high, meaning the input key is selected by the multiplexers (in the 
remaining cycles, loaddata_s1 is low, meaning the feedback signals are selected).  Each of the 28-bit 
halves are then rotated by either 1 or 2 bits (note that, although the block is labeled “shift”, it is actually 
“rotate”; with each shift, the right-most bit is rotated to the left-most position).  The control signal 
shifttwo_s1 indicates whether the data is shifted one bit or two bits (if the signal is high, the data is shifted 
two bits).   Also note that the shift is combinational, not sequential.  The controller asserts shifttwo_s1 
according to a predetermined pattern, as described below.  The two halves are then register into two 28-bit 
registers.  This is repeated for 15 more cycles. 
 
In this way, during each of the 16 cycles, a new pattern of bits appears at the output at the output of each 
multiplexer.  These bits are fed to a permutation block, labeled PC-2, which selects 48 of the 56 signals, 
according to the pattern in Table 4: 
 
                 14    17   11    24     1    5 
                  3    28   15     6    21   10 
                 23    19   12     4    26    8 
                 16     7   27    20    13    2 
                 41    52   31    37    47   55 
                 30    40   51    45    33   48 
                 44    49   39    56    34   53 
                 46    42   50    36    29   32 

 
Table 4: PC-2 Block Pattern 

 



To read this table, imagine that the C is the left 28-bits and D is the right 28-bits.  Then, {C, D} is a 56 bit 
number, which is used to index into Table 4.  So, the first bit of the output keysub_s1 is the 14th bit of {C, 
D}.  The second bit of the output keysub_s1 is the 17th bit of {C, D}.  The third bit of the output 
keysub_s1 is the 11th bit of {C, D}, etc.  The last bit of keysub_s1 is the 32nd bit of {C, D}. 
 
These 48 bits are then passed to the Data Unit.  The Data Unit then uses these 56 bits to control the 
decryption as explained below.   
 
Interestingly, the only difference between the encryption and decryption algorithm is that the keysub_s1 
sequences provided to the Data Unit are provided in the reverse order.  In other words, the 48-bit sequence 
provided during Cycle 1 in the decryption algorithm is provided during Cycle 16 in the encryption 
algorithm.  The 48-bit sequence provided during Cycle 2 in the decryption algorithm is provided during 
Cycle 15 in the encryption algorithm, etc.  Although not required for this lab, it is an interesting exercise to 
figure out how to modify the datapath in Figure 3 to produce keys in the reverse order (Hint: you shift left 
instead of right, but you need some other modifications too). 
 
d) Data Unit 
 
The Data Unit uses the sixteen 48-bit sequences generated by the Key Unit block to decrypt the permuted 
data from the in_permute block.  Again, a very simple logic circuit is used to perform the decryption.  
Figure 4 shows the circuitry. 
 
Like the key in the Key Unit, the data input to the Data Unit is split into two halves during the first cycle.  
The right half is first permuted (and extended) using an E-Box, according to pattern in Table 5.   
 
                 32     1    2     3     4    5 
                  4     5    6     7     8    9 
                  8     9   10    11    12   13 
                 12    13   14    15    16   17 
                 16    17   18    19    20   21 
                 20    21   22    23    24   25 
                 24    25   26    27    28   29 
                 28    29   30    31    32    1 
 

Table 5: Ebox Expansion Block Pattern 



 
Figure 4: Data Unit Schematic 

 
 
This table is read the same way as the previous tables.  The Ebox has 32 inputs and 48 outputs.  The first 
output (bit 1) is taken from input bit 32.  The second output bit is taken from input bit 1.  The third output 
bit is taken from input bit 2, etc.  Note that some input bits (such as bit 4) feed two outputs; this shouldn’t 
be surprising since the block has more outputs than inputs. 
 
The 48 output bits from the Ebox are then exclusive-ored with the 48-bit keysub_s1 signal from the Key 
Unit.  Recall that these 48 keysub_s1 bits are permuted bits of the key, and the keysub_s1 bits change each 
cycle.    
 
The 48 exclusive-or outputs then feed a Substitution Block.  This block is different than the others.  The 
other blocks simply rearrange bits; this block substitutes the input bits with new bits according to a 
predetermined pattern. Each unique pattern of the 48 input bits corresponds to a 32-bit output pattern.  
Think of the Substitution Block as a large ROM with 248 words, each of which is 32 bits.  The 48 input bits 
index into this ROM (the address inputs); the 32 bit word that is addressed is sent as the output of the 
block.   
 
Of course, it is not feasible to implement a 248 word ROM, since 248  is a very large number.  You might 
also imagine this block being implemented using 32 logic functions, each of which has 48 inputs.  
However, in general, a 48-input function is huge, meaning this isn’t really a feasible solution either. 
 



 
Figure 5: Substitution Block Schematic 

  
Instead, because of the nature of the predetermined pattern that would be stored in the ROM, the ROM can 
be replaced with the simpler structure shown in Figure 5.  Rather than one 248x32 ROM, this solution 
requires eight 26 x 4 bit ROMs.  Each ROM, which is called an sbox, has 6 address inputs and 4 data 
outputs.  The address lines of each ROM are driven by 6 of the 48 input bits, and the data lines of each 
ROM drive 4 of the 32 output bits.   
 
Consider the first sbox (sbox1).  This ROM is driven by bits 1 through 6 of the input, and it produces bits 1 
to 4 of the output, as shown in Figure 5.  Each unique 6 bit input pattern produces a 4-bit pattern, according 
to the pattern in Table 6. 
 
 
                               Column Number 
     Row 
     No.       0  1   2  3   4  5   6  7   8  9  10 11  12 13  14 15 
 
       0      14  4  13  1   2 15  11  8   3 10   6 12   5  9   0  7 
       1       0 15   7  4  14  2  13  1  10  6  12 11   9  5   3  8   
       2       4  1  14  8  13  6   2 11  15 12   9  7   3 10   5  0 
       3      15 12   8  2   4  9   1  7   5 11   3 14  10  0   6 13 
  

Table 6:  Sbox1 Pattern 
 
Table 6 is read differently than the other tables presented earlier.  Suppose the number formed by 
combining bits 1 and 6 of the input is i, and the number formed by combining bits 2 to 5 of the inputs is j.  
Then, the output is determined by reading the number in row i and column j of Table 6.  As an example, 
suppose bits 1 through 6 of the input are “111100”.  Then, i is 2 (binary “10” which is bit 1 and bit 6 of the 
input) and j is 14 (binary “1110” which is the combination of bits 2 through 5 of the input).  Thus, by 
reading the entry at row 2 and column 14, we can see that the sbox1 output is 5 (“0101”).  As another 
example, suppose bits 1 through 6 of the input are “001100”.  Then, i is 0 (binary “00” which is bit 1 and 
bit 6 of the input) and j is 6 (binary “0110” which is the combination of bits 2 through 5 of the input).  
Thus, by reading the entry at row 0 and column 6, we can see that the sbox1 output is 11 (“1011”). 
 
The other sboxes operate in the same way.  For each sbox, the subset of input and output bits is different, as 
shown in Figure 5.  The output pattern is also different; Table 7 shows the output pattern for all eight 
sbox’s. 
 
 



                             S1 
 
     14  4  13  1   2 15  11  8   3 10   6 12   5  9   0  7 
      0 15   7  4  14  2  13  1  10  6  12 11   9  5   3  8 
      4  1  14  8  13  6   2 11  15 12   9  7   3 10   5  0 
     15 12   8  2   4  9   1  7   5 11   3 14  10  0   6 13 
 
                             S2 
 
     15  1   8 14   6 11   3  4   9  7   2 13  12  0   5 10 
      3 13   4  7  15  2   8 14  12  0   1 10   6  9  11  5 
      0 14   7 11  10  4  13  1   5  8  12  6   9  3   2 15 
     13  8  10  1   3 15   4  2  11  6   7 12   0  5  14  9 
 
                             S3 
 
     10  0   9 14   6  3  15  5   1 13  12  7  11  4   2  8 
     13  7   0  9   3  4   6 10   2  8   5 14  12 11  15  1 
     13  6   4  9   8 15   3  0  11  1   2 12   5 10  14  7 
      1 10  13  0   6  9   8  7   4 15  14  3  11  5   2 12 
 
                             S4 
 
      7 13  14  3   0  6   9 10   1  2   8  5  11 12   4 15 
     13  8  11  5   6 15   0  3   4  7   2 12   1 10  14  9 
     10  6   9  0  12 11   7 13  15  1   3 14   5  2   8  4 
      3 15   0  6  10  1  13  8   9  4   5 11  12  7   2 14 
 
                             S5 
 
      2 12   4  1   7 10  11  6   8  5   3 15  13  0  14  9 
     14 11   2 12   4  7  13  1   5  0  15 10   3  9   8  6 
      4  2   1 11  10 13   7  8  15  9  12  5   6  3   0 14 
     11  8  12  7   1 14   2 13   6 15   0  9  10  4   5  3 
 
                             S6 
 
     12  1  10 15   9  2   6  8   0 13   3  4  14  7   5 11 
     10 15   4  2   7 12   9  5   6  1  13 14   0 11   3  8 
      9 14  15  5   2  8  12  3   7  0   4 10   1 13  11  6 
      4  3   2 12   9  5  15 10  11 14   1  7   6  0   8 13 
 
                             S7 
 
      4 11   2 14  15  0   8 13   3 12   9  7   5 10   6  1 
     13  0  11  7   4  9   1 10  14  3   5 12   2 15   8  6 
      1  4  11 13  12  3   7 14  10 15   6  8   0  5   9  2 
      6 11  13  8   1  4  10  7   9  5   0 15  14  2   3 12 
 
                             S8 
 
     13  2   8  4   6 15  11  1  10  9   3 14   5  0  12  7 
      1 15  13  8  10  3   7  4  12  5   6 11   0 14   9  2 
      7 11   4  1   9 12  14  2   0  6  10 13  15  3   5  8 
      2  1  14  7   4 10   8 13  15 12   9  0   3  5   6 11 

 
Table 7: All sbox patterns 



 
The 32-bit output from the Substitution Block is then fed through another permutation block, called the 
Pbox Permutation Block.  The permutation pattern for this block is shown in Table 8.  Table 8 is read the 
same way as the other permutation blocks.  Bit 1 of the output comes from bit 16 of the input.  Bit 2 of the 
output comes from bit 7 of the input.  Bit 3 of the output comes from bit 20 of the output, etc.  Finally, the 
P-box output is exclusive-ored with the right-most 32 data bits and registered as shown in Figure 5.   
 
These operations are repeated for 16 cycles.   
 
 
                         16   7  20  21 
                         29  12  28  17 
                          1  15  23  26 
                          5  18  31  10 
                          2   8  24  14 
                         32  27   3   9 
                         19  13  30   6 
                         22  11   4  25 
  

Table 8: P-box Permutation Block Pattern 
 
 
e) Control Block 
 
As shown in Figure 1, the controller is a state machine with one input (in addition to the two clock inputs) 
and two outputs.  The input is InFIFO_Rd and is used by the user to initiate a decryption.  When 
InFIFO_Rd goes high in a cycle, the encryption starts in the next cycle.  Thus, the InFIFO_Rd signal can 
be thought of as a valid signal to start up your state machine.  The first output is the loaddata_s1; this feeds 
the Data Unit and Key Unit, and causes these units to load in new data/key, as described earlier.  (Note: it is 
assumed that the value of DesKey may change, but not during the decryption of a data block.  It is the 
responsibility of the user providing the inputs to ensure that this does not happen.)  The state machine 
asserts loaddata_s1 during the first cycle of each decryption and keeps it low for all other cycles.  The 
second output is shifttwo_s1.  This signal is used to indicate whether the rotate blocks in the Key Unit 
should rotate by 1 bit or 2 bits.  If this signal is 1, each rotate block rotates its input by 2 bits, otherwise it 
rotates the input by 1 bit.  The shifttwo_s1 is asserted according to a predetermined pattern, as shown in 
Table 9. 
 

Cycle loaddata_s1 shifttwo_s1 
1 1 0 
2 0 1 
3 0 1 
4 0 1 
5 0 1 
6 0 1 
7 0 1 
8 0 0 
9 0 1 

10 0 1 
11 0 1 
12 0 1 
13 0 1 
14 0 1 
15 0 0 
16 0 0 

Table 9: Controller State Machine Behaviour (Decryption) 



 
The preceding should give you a good overview of the DES algorithm.  You will be able to find many other 
references and examples, including sample code, on the web.  Testbenches for each component will be 
provided, so you can verify your understanding of each module.  Note, we will be using different 
testbenches to verify your overall design, so you may want to generate more test vectors of your own. 
 
 
The Testbed 
 
You will need to create a testbed to verify and evaluate your design.  This testbed will be used in your 
demo to evaluate your design.  The required testbed files are: 
 

• des_testbed.vhd – top level testbed file, you will have to add to this. 
• des.vhd – dummy DES that writes all inputs directly to outputs to debug the testbed itself (will be 

replaced with your actual circuit after you get the testbed working). 
• expected_ram.vhd – wrapper vhdl file for 1024x64-bit ROM of expected output values 
• expected_ram_inst.vhd – example VHDL for instantiation 
• expected_ram.cmp – netlist file for 1024x64-bit ROM of expected output values 
• expected_ram.mif – initialization file for 1024x64-bit ROM of expected output values.  Same 

values as testvector_rom.mif except for address 0x03 
• result_fifo.vhd – wrapper vhdl file for FIFOs (your DES circuit interacts with this) 
• result_fifo.cmp– netlist file for the FIFOs your DES circuit interacts with 
• testvector_rom.vhd – wrapper vhdl file for 1024x64-bit ROM of input test vectors 
• testvector_rom_inst.vhd – example VHDL for instantiation 
• testvector_rom.cmp – netlist file for 1024x64-bit ROM of expected input test vectors 
• testvector_rom.mif – initialization file for 1024x64-bit ROM of input test vectors.  Same values as 

expected_ram.mif except for address 0x003 
 
Description: 
The testbed will consist of two ROMs, two FIFOs, Comparison logic, LCD logic, and control logic for 
operating all these things.  Below is a high level block diagram of the testbed.   
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ROM Input FIFO DES Output 
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Figure 6: Testbed Block Diagram. 
 

Testvectors are read from the Testvector ROM into the Input FIFO.  The DES block reads from the Input 
FIFO when it is ready to decrypt a new word.  Once the DES circuit is done decryption, it writes the result 
to the Output FIFO.  This result is compared against an expected result from the Expected Output ROM.  A 



green LED is turned on if the result matches the expected value, otherwise a red LED is turned on and the 
comparison logic is stalled to let the user view the offending result on the LCD. 
 
Note that this testbed uses a real 50MHz clock instead of a pushbutton as in lab 1. 
 
FIFOs: 
 
The DES circuit interacts with the testbed via the two FIFOs.  Below is a description of how to read/write.  
Be sure to handle the FIFIO Full and Empty cases in your DES circuit control logic. 
 
The following waveforms show the behavior of scfifo megafunction for the chosen set of parameters in 
design result_fifo.vhd. The design result_fifo.vhd has a depth of 64 words of 64 bits each. The output of the 
FIFO is unregistered. The FIFO is in legacy synchronous mode. The data becomes available after 'rdreq' is 
asserted; 'rdreq' acts as a read request.  
 

 
Figure 7: Wave showing read and write operation.  

The above waveform shows the behavior of the design under normal read and write conditions .  

 



 
Figure 8: Wave showing FIFO full operation.  

The above waveform shows the behavior of the design for FIFO full condition. In the example above, data 
is written into the FIFO till it is full, then data is read back.  

 
ROMs: 
 
The test vectors and expected outputs are stored in the Testvector ROM and the Expected ROM (this is a 
ROM, despite the expected_ram.vhd name).  There should be some control logic to control addressing the 
ROMs and coordinating reading their outputs to the appropriate places (Input FIFO and Comparison 
Logic).  Below is a description of how to interface with the ROMs (they both operate the same way). 
 
The following waveforms show the behavior of altsyncram megafunction for the chosen set of parameters 
in design testvector_rom.vhd. For the purpose of this simulation, the contents of the memory at the start of 
the sample waveforms is assumed to be ( 00000000FFFFFFF0, 00000000FFFFFFF1, 00000000FFFFFFF2, 
00000000FFFFFFF3, ...). The design testvector_rom.vhd has one read port. The read port has 1024 words 
of 64 bits each. The core uses a different clock enable than the input registers. The output of the read port is 
registered by clock.  
 
The waveform on the next page shows the behavior of the design under normal read conditions. The read 
happens at the rising edge of the enabled clock cycle. The output from the RAM is undefined until after the 
first rising edge of the read clock. The clock enable on the read side input registers is disabled. The clock 
enable on the output registers is disabled.  
 
The two ROMs are identical except their names and that each has its own initialization file.  The 
initialization files have a .mif extension and contain an initial value for every memory address of the ROM.  
The provided .mif files are identical except for the data stored at address 0x003.  This is different so that 
your can verify that your testbed can detect errors. 
 
 



 
Fig. 9 : Wave showing read operation.  

 
 
Setup the Testbed Project: 

1. Make a new Quartus project for the testbed.   
2. Include all of the testbed files in a new Quartus project directory.  We will provide you with a 

template that includes some of the testbed components and you will be required to create the rest 
to complete the block diagram shown in Figure 6. 

3. Add the files to your project.   
4. Import the DE2-70 pin assignments to your project using the .cvs file from the course website and 

the “Assignments->Import Assignments…” command in Quartus.   
5. Write the rest of the testbed. 
6. Hit compile and download when finished. 

 
Use the Testbed: 

1. Before downloading set SW(1:0) to desired value to select one of four DES keys hardcoded in 
des_testbed.vhd.  The .mif files you use should have valid inputs and expected outputs for this 
key.  The key should not be changed during circuit operation. 

2. KEY(0) is the circuit reset.  This MUST be pressed after downloading to the board 
3. LEDG(0) will light up as long as the output of your circuit matches that of the expected output 

ROM.  If this stays lit then everything seems to be working fine. 
4. LEDR(0) will light up the DES circuit output does not match the expected output. 
5. If a mismatch is detected, the comparison circuit in the testbed will stall.  No more comparisions 

will be done until after a system reset. 
6. You can view the expected output, circuit output, and ROM address where mismatch occurred on 

the LCD.  To view information on the LCD you must use SW(17:16) to select which value you 
want to display (00=circuit, 01=expected, 10 and 11 = address) and then push KEY(2) to update 
the LCD. 

 
What you are going to do: 
 
Task 1:  Describe Behaviour in VHDL 
 
The first thing to do for the project is to describe each of the subcomponents as separate modules using 
structural/behavioural VHDL as appropriate (remember it must synthesize).  You might be tempted to 
describe the whole DES decryption circuit in one module, however, I strongly recommend that you break it 
up into sub-modules.  The reason for this is that, if you make even a single bit-error in one of the lower-



level blocks (the S-boxes, for example), it will be really hard to trace the cause of the error.  Describing 
each in a separate block will allow you to test each block separately, to help find any errors.  I will give you 
test benches (along with test vectors) for the various permutation and expansion blocks; these will be useful 
only if you define these blocks as separate VHDL modules. 
 
Here are the specifics.  Templates are provided on the course webpage matching the I/O sequence given 
below.  Below is a list of the major subcomponents listing the sequence of their I/O declarations (Note that 
these are not proper VHDL entity declarations). 
 
 
Top Level:   Filename des.vhd 
                I/O:  (in this order): 
   DesDout  [1:64] output 
   InFIFO_Rd  output 
   OutFIFO_Wr  output 
   DesDin  [1:64] input 
   DesKey  [1:64] input 
   InFIFO_Empty  input 
   OutFIFO_Full  input 
   Clk   clock input 
   Rst   reset input 
 
Controller: Filename: control.vhd 
  I/O: (in this order): 
   shifttwo_s1 output 
   loaddata_s1 output 
   InFIFO_Rd output 
   OutFIFO_Wr output 
   InFIFO_Empty input 
   OutFIFO_Full input 
   Clk  clock input 
   Rst  reset input 
 
Datapath: Filename: datapath.vhd 
  I/O: (in this order): 
   DesDout  [1:64] output 
   DesDin  [1:64] input 
   DesKey  [1:64] input 
   loaddata_s1  input 
   shifttwo_s1  input 
   Clk   clock input 
   Rst   reset input 
 
Data Unit: Filename: data_unit.vhd 
  I/O:  (in this order): 
   dataout_s1 [1:64] output 
   datain_s1 [1:64] input 
   keysub_s1 [1:48] input 
   loaddata_s1  input 
   Clk   clock input 
   Rst   reset input 
 
 
 
 
 



Key Unit: Filename key_unit.vhd 
  I/O: (in this order): 
   keysub_s1 [1:48] output 
   permkey_s1 [1:56] input 
   shifttwo_s1  input 
   loaddata_s1  input 
   Clk   clock input 
   Rst   reset input 
 
E-Box  Filename: ebox.vhd 
  I/O:  (in this order) 
   out_s1  [1:48] output 
   in_s1  [1:32] input 
 
S-Sub Blocks Filename: ssub.vhd  (collection of S-boxes) 
  I/O:  (in this order) 
   out_s1  [1:32] output 
   in_s1  [1:48] input 
     
         Note that the ssub.vhd file may contain sub-modules for each of the sboxes as well. 
      
Pbox:  Filename: pbox.vhd 
  I/O: (in this order) 
   out_s1  [1:32] output 
   in_s1  [1:32] input 
 
PC-2 Box: Filename: pc2.vhd 
  I/O: (in this order) 
   out_s1  [1:48] output 
   in_s1  [1:56] input 
 
Shift28:  Filename: shift28.vhd 
  I/O: (in this order) 
   out_s1  [1:28] output 
   in_s1  [1:28] input 
   shifttwo_s1  input 
 
In-Permute Box: Filename: in_permute.vhd 
  I/O: (in this order) 
   out_s1  [1:64] output 
   in_s1  [1:64] input 
 
 
Out-Permute Box:Filename: out_permute.vhd 
  I/O: (in this order) 
   out_s1  [1:64] output 
   in_s1  [1:64] input 
 
Key-Permute Box:Filename: key_permute.vhd 
  I/O: (in this order) 
   out_s1  [1:56] output 
   in_s1  [1:64] input 
 
The data and key units also contain registers, multiplexers, and exclusive or gates.  You can either just 
include these inline within the data and key unit modules, or define separate modules for these components.  
If you decide to define separate modules, include them in the key_unit.vhd and data_unit.vhd files.   



 
To help you test your specification, you can find testbenches/test vectors on the course webpage for the 
submodules like the s-box/e-box.  At this point you will be using simulation so you can better see what’s 
happening.  Please remember that Timing simulation will provide more reliable feedback.  
 
Important note:  Those of you who are good with Google will likely find lots of VHDL descriptions of DES 
on the web.  Feel free to use these as a reference, but remember, your design has to match our 
specifications exactly.  Even if this were not a form of plagiarism, it is probably more work to modify an 
existing DES implementation than to write your own given the information provided here.  Also beware 
that at least a few of the on-line versions have bugs.  Finally, remember any direct copying of on-line 
versions would be plagiarism resulting in the loss of 30% of your final mark (as specified during the first 
class) 
 
 
Task 2:  Integrate all the modules and do Preliminary Testing 
 
Integrate the components from Task 1 to create your DES decryption circuit.  Perform preliminary testing 
of the design using the supplied test vectors and Timing Simulation.  Note, you will be required to submit a 
system block diagram for your circuit.  If your VHDL and system block diagram are significantly different, 
this is a pretty good sign that you have plagiarized one of the two.  Be sure to label the inputs and outputs 
of each module.  Use the datapath techniques discussed in class and your understanding of FPGA 
architecture to maximize the (1/area*Max Throughput) product.  Although your lab will be graded to scale 
based on this product, please note getting something to work is critical.  If it’s slow but working, you will 
get a significantly better mark than fast and small but not working.  
 
 
Task 3:  Create a Testbed 
 
Although you will have *hopefully* ironed out most of the bugs based on your initial testing in Task 3.  
Real verification requires a testbed that can be configured with different *large* testbenches.   You should 
create your testbed to match the structure described above. 
 
 
Task 4:  Thorough Testing of DES circuit with Testbed 
 
The top-level test provided only test a few sample decryptions.  This probably isn’t sufficient.  When we 
test your circuit, we will use a much more extensive set of test vectors (and we won’t give you these test 
vectors).  Thus, it would be a good idea to add enough test vectors until you are sure your specification is 
correct. 
 
Using the Testbed created in Task 3, you will perform a thorough testing of your design.  This means that 
they need to work together properly (you need to follow the controller format described).   Note that you 
need to make sure your DES circuit and Testbed works for our specification and our test files (this is not 
unrealistic; in the real world, you will be given very exact specifications of what your design is supposed to 
do - in the real world, “off by one clock cycle” is just as bad as being completely wrong). 
 
 
Task 5:  Demonstrate your Design and Submit your Report. 
 
During your demonstration, you will be asked to: 

• Show your source code and answer questions about it 
• Show a simulation of your DES circuit or any of the sub-circuits and explain what is going on in 

the waveform 
• Show your circuit working on the DE2-70 board with the testbed and and different sets of input 

and output vectors. 
 



Your written submission should include:  
• A title page with your group number, both students names, student numbers, course number, and 

date. 
• A state diagram (what type of state machine did you use),  
• A system block diagram,  
• A summary of resource usage,  
• The minimum clock period and maximum throughtput of your design,  
• A hierarchy tree for your VHDL files 
• Anything that you think is exceptional about the design of your DES decryption block or testbed. 
• A zipped softcopy of all your source files.  This must be messaged to the TA via WebCT.  Source 

files must have comments, consistent indentation, adequate white spaces, descriptive names for 
signals/variables, one entity/architecture pair per file, and a maximum line length of 80 characters. 

 
Please note that your reports are not marked by weight.  Clearly written, short and succinct reports are 
highly preferable.  There is no maximum or minimum page limit, but your target should be between 3-5 
pages, not including title page.  Also, a picture is worth a 1000 words, so if possible illustrate.  Please do 
not include a background description of the generic DES algorithm, it is not necessary. 
 
Your source files will be run through a comparison program to help identify copied segments of source 
code between groups and from the web.  Copying any portion of another groups source files is considered 
cheating (and will result in an automatic 0/30 for your entire lab component in the course). 
 
Marking Scheme 
 
Demo 
 2 marks for working Simulations and reasonable responses to questions 
 2 marks for working on the DE2-70 and reasonable responses to questions 
Total = 4 
 
Report 
 1 mark for accurate State Diagram (must match VHDL) 
 1 mark for accurate System Block Diagram (must match VHDL) 
 1 mark for resource usage report 
 1 mark for min Clk period report and max throughput calculation 
 1 mark for hierarchy tree and VHDL coding practices 
 1 mark for readability of report 
Total = 6 
 
Suggested Milestones: 
 
The following are some suggested milestones for this project.  We aren’t going to be checking your 
progress, but you can use this list to see if you are falling behind.   
 
Start Project: February 1rst, 2009 
 
Milestone 1: Build all DES components and test them to prove that they are functioning properly, February 
8th, 2009 
 
Milestone 2: Integrate all the components and do preliminary testing:  February 11th, 2009 
 
Milestone 3: Build Testbed: February 15th, 2009 
 
Milestone 4: Finish a thorough testing of the DES module with your Testbed: February 22nd, 2009 
 
Milestone 5: Submit your report on your design: February 26th, 2009 



Bonus ONLY: 
 
The design we’ve outlined here assumes 16 clock cycles are required to decrypt each data word.  For those 
of you that are already comfortable with synthesizable VHDL, you can try to design a pipelined version of 
this circuit to increase throughput.  This will be incredibly challenging and should not be considered by the 
inexperienced or faint of heart.  If successful, you will be awarded a maximum of 2 bonus marks on your 
final mark. 
 
 
What to hand in: 
 
1) A copy of your lab report submitted into the ensc350 drop box by 3:30pm on February 26th, 2009.  
Note the time, as we won’t accept excuses (including jammed printers/no paper in the printers) and we 
won’t be accepting soft copies. 
 
2) A zip file with your VHDL files for both your DES decryption core and your testbed as well as a 
README file with hierarchy, group members and student IDs, group number.  Please note this should be 
emailed to the TA’s WebCT email account. 
 
REMEMBER:  Don’t be late, as late submissions will be severely penalized (minimum of 50%) even if it 
is only by 1 hour. 
 
 
Then you are done!!!          


