ENSC 351 Project Overview

October 11th, 2011 Eric Matthews

Outline

Platform Overview Project Outline Project Timeline Project Details Demo **Questions?**

High-level Block Diagram

MicroBlaze

Simple Reduced Instruction Set Computing (RISC) based architecture

Harvard architecture

Direct mapped L1 caches 32kB

Most instructions single cycle

Running PetaLinux

- 1. Program FPGA through JTAG
- 2. FS-BOOT starts running
- 3. Download Linux system image into DDR
- 4. Execution passed to Linux kernel

Linux System Image

- **Contains complete filesystem**
- DDR partitioned into "diskspace" and memory
- Full Linux kernel (2.6.37)
 - Current kernel (3.0 --> 2.6.40)
 - MicroBlaze support in mainline kernel
- System has a trimmed down set of userspace libraries
- Similar to what would run on an ebook reader

Running PetaLinux

- 1. Program FPGA through JTAG
- 2. FS-BOOT starts running
- 3. Download U-BOOT bootloader into DDR
- 4. U-BOOT fetches kernel image through ethernet and places image in DDR
- 4. Execution passed to Linux kernel

System Limitations

Project Challenges

66MHz Processor Frequency

Limited Physical memory

RISC based processor

Limited caches

Design Considerations

Kernel <--> Userspace context switching Cache friendly algorithms Scalability

Snake Game

Create a console based "snake" game Work within constrained resources Learn to write Linux device drivers

Snake Game

Snake Game

Takes place on a torus grid-based playing field Level configuration files loaded at startup Includes obstacles and snake starting points

Division of Work

Work divided into two streams

Each stream will be assigned to one pair

Once chosen, pairs cannot swap streams

Tasks

Group 1 (Pair A) Work	Group 2 (Pair B) Work
Stream 1 Task 1 (demo)	Stream 2 Task 1 (demo)
Integrate	
Stream 1 Task 2 (demo)	Stream 2 Task 2 (demo)
Integrate	
Stream 1 Task 3	Stream 2 Task 3
Integrate (FINAL DEMO)	

Tasks

Stream 1

Joystick Driver & Basic Game

Stream 2

Timer Driver

Loading configuration files, GUI and 2 player mode

Advanced AI: Highest Score per Unit Time Basic AI (a collection of different algorithms)

Advanced Al: Longest Length

Marking

- Given 2 weeks per task
- Marked as a pair

Marks assigned for completion and ability to answer questions

Task 1

Gain experience writing device drivers for the Linux kernel

Write custom drivers for joystick and timer peripherals

Prepare basic framework for snake game

High-level Block Diagram

Task 1 (Basic Game)

- The foundation for the
- Create "empty" playing field
- Move snake through keyboard input
- Design structures and algorithm for snake movement

Stream 1

Finish-up framework for game Load configuration files

Stream 2

Creating basic Al

(Greedy algorithm, avoid obstacles, switchback)

Task 2 (Configuration)

Stream 1

Highest Score Al per Unit Time

Collect food as quickly as possible while surviving for the longest time

Stream 2

Longest Length (Surviving for the longest time)

Demo

Questions?

