
Real Time and Embedded Systems

by

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Slide Set: 2

Date: September 13, 2011

Simon Fraser UniversitySimon Fraser University

Opening Thoughts

“Programming today is a race between
software engineers striving to build bigger
and better idiot-proof programs, and the
Universe trying to produce bigger and

ENSC 351: Lecture Set 2 2

Universe trying to produce bigger and
better idiots. So far, the Universe is
winning.”

- Author Rick Cook, The Wizardry Compiled

Slide Set Overview

• What is the “Kernel”?

• Microkernels and Monolithic kernels

ENSC 351: Lecture Set 2 3

• Microkernels and Monolithic kernels

• QNX

• Linux/PetaLinux

The KERNEL

ENSC 351: Lecture Set 2 4

The KERNEL

• The kernel is the …

The Kernel

ENSC 351: Lecture Set 2 5

• Abstracts low-level system resources from applications

• Parts of the OS critical to its correct operation

– Operates in supervisor mode

– Everything else is in user mode

The Kernel

ENSC 351: Lecture Set 2 6

– Everything else is in user mode

• Operates as trusted software:

– Intended to implement protection mechanisms that

cannot be changed through actions of untrusted software

• Decides which thread runs

• Starts the execution of the selected thread

– AKA switches context to the selected thread

• Context switching threads involves

The Kernel

ENSC 351: Lecture Set 2 7

– Saving the currently running thread’s registers and

other context information

– Loading the new thread’s registers and context into

the CPU

• What does the context switch remind you of?

Context for Process/Thread Context Switches:
Recall Context Switches for subroutines and interrupts

• “Branch subroutine” (ie bsr)

– Save PC and registers used on stack

ENSC 351: Lecture Set 2 8

• Interrupts (ie traps)

– Save PC, registers used, AND SR on stack

• Keeps track of the state of all threads for thread

scheduling

• Possible thread states:

The Kernel

ENSC 351: Lecture Set 2 9

• Possible thread states:

– Running

• means the thread is actively running on the CPU

– Ready

• means that the thread could run right now

• Possible Thread States (cont’d):

– Blocked

• Thread is waiting for something to happen

• There are multiple reasons a thread can end up in a

The Kernel

ENSC 351: Lecture Set 2 10

• There are multiple reasons a thread can end up in a

blocked state

– The kernel keeps track of why a thread can’t run

Types of Kernels

ENSC 351: Lecture Set 2 11

Types of Kernels

• Monolithic kernels

– Linux, UNIX, MS-DOS

• Microkernels

Types of Kernels

ENSC 351: Lecture Set 2 12

• Microkernels

– QNX, Mach, CHORUS, GNU/Hurd, L4…

• Windows NT was “supposed” to be, but not

• Other kernel types

• The entire kernel is run in the kernel space in

supervisor mode

• Uses a set of primitives or system calls to

Monolithic Kernels

ENSC 351: Lecture Set 2 13

• Uses a set of primitives or system calls to

implement operating system services such as:

– process management,

– concurrency, and

– memory management

– … all in kernel mode

• The code integration is very tight and difficult to do

correctly

• Since all the modules run in the same address

Monolithic Kernels

ENSC 351: Lecture Set 2 14

• Since all the modules run in the same address

space, a bug in one module can crash the whole

system.

• When done well, the tight internal integration of

components makes a good monolithic kernel highly

efficient.

Monolithic Kernel: “The layers in a Linux System”

ENSC 351: Lecture Set 2 15

Monolithic Kernel: The “Structure of the Linux Kernel”

ENSC 351: Lecture Set 2 16

• Provides no operating-system services at all (pure

form)

– only the mechanisms needed to implement such services

including:

• low-level address space management,

Microkernels

ENSC 351: Lecture Set 2 17

• low-level address space management,

• thread management, and

• inter-process communication

• Designed to be Modular and Small

• It is the only part of the system executing in kernel

mode

• The actual operating-system services are provided

Microkernels

ENSC 351: Lecture Set 2 18

• The actual operating-system services are provided

by user mode servers including:

– device drivers,

– protocol stacks,

– file systems, and

– the user interface

– … outside the kernel

Microkernel Structure

ENSC 351: Lecture Set 2 19

Other Kernels

• There are other kernels, but you don’t need to
worry about them

• If you are interested, check out:

ENSC 351: Lecture Set 2 20

• If you are interested, check out:

– Hybrid Kernels

– Nanokernel

– Exokernel

QNX

ENSC 351: Lecture Set 2 21

QNX

QNX

• The higher-level OS functionality is provided
by:

– A tiny kernel that provides minimal services

– A team of optional cooperating processes

ENSC 351: Lecture Set 2 22

– A team of optional cooperating processes

• The QNX kernel does not have many typical
OS services

– These are provided by optional processes

QNX

• Optional system processes could include:

– Filesystem managers

– Character device managers

– Graphical user interface (Photon)

ENSC 351: Lecture Set 2 23

– Graphical user interface (Photon)

– Native network manager

– TCP/IP

• System processes are essentially the same
as user-written applications

QNX

ENSC 351: Lecture Set 2 24

QNX

• The Kernel provides:

– Thread services

• via POSIX primitives

– Signal services

ENSC 351: Lecture Set 2 25

– Signal services

• via POSIX primitives

– Synchronization services

• via POSIX primitives

QNX

• The Kernel provides (cont’d):

– Timer services

• via POSIX

– Scheduling services

ENSC 351: Lecture Set 2 26

– Scheduling services

• via POSIX realtime scheduling algorithms

– Process management services

• Process manager + kernel = procnto

– Manages processes, memory, and pathname space

QNX

• The Kernel provides (cont’d):

– Message-passing services

• The kernel routes all messages between all threads

in the system

ENSC 351: Lecture Set 2 27

• Inter-Process Communication (IPC)
services

– Allows communication between all processes

(application or device drivers)

QNX

• Unlike threads, the kernel is never
scheduled for execution

– The code in the kernel is only executed as the

result of:

ENSC 351: Lecture Set 2 28

result of:

• an explicit kernel call,

• an exception, or

• a response to a hardware interrupt

Linux/PetaLinux

ENSC 351: Lecture Set 2 29

Linux/PetaLinux

PetaLinux

• PetaLinux 2.1 implements a full Linux
Kernel

– Version 2.6.37; updates include a device tree

ENSC 351: Lecture Set 2 30

• Therefore PetaLinux has many typical OS
services

• Recall the “Structure of the Linux Kernel”

Linux

• System processes include:

– Filesystem managers

– Character device managers

– Block device drivers

ENSC 351: Lecture Set 2 31

– Block device drivers

– Network Device Drivers

– TCP/IP protocols

• Can also include Loadable Kernel

Modules (LKMs)

– Think Dynamically Loaded Libraries (DLLs)

Linux/PetaLinux

• The PetaLinux Kernel provides:

– Thread services

• via POSIX primitives

– Signal services

ENSC 351: Lecture Set 2 32

– Signal services

• via POSIX primitives

– Synchronization services

• via POSIX primitives

Linux/PetaLinux

• The PetaLinux Kernel provides (cont’d):

– Timer services

• via POSIX

– Scheduling services

ENSC 351: Lecture Set 2 33

– Scheduling services

• via POSIX “realtime” scheduling algorithms

– Real-time FIFO; Real-time Round Robin; Timesharing

– Process management services & Memory Management

services

QNX

• The Kernel provides (cont’d):

– Inter-Process Communication (IPC) services

• Allows Communication between all processes

(application or device drivers)

ENSC 351: Lecture Set 2 34

• Message-passing services are supported
via libraries

– Check out the Message Passing Interface (MPI)

functions designed for C and Fortran-77

Questions?

• What type of kernel is the QNX kernel? What

about Linux?

ENSC 351: Lecture Set 2 35

• Why would someone today still choose to
use a monolithic kernel?

Questions?

• What type of kernel should be used in

Embedded and Real Time systems? Why?

ENSC 351: Lecture Set 2 36

• Recalling our discussion of processor

architectures, why might a multi-threaded

implementation of an application be slower than

a single-threaded version?

Question

• What additional information has to be saved for

a thread context switch from that of a context

switch between subroutines or a software

interrupt?

ENSC 351: Lecture Set 2 37

Real Time and Embedded Systems

by

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Slide Set: 2

Date: September 13, 2011

Simon Fraser UniversitySimon Fraser University

Monolithic Kernels

ENSC 351: Lecture Set 2 39

Courtesy of Wikipedia

Microkernels

ENSC 351: Lecture Set 2 40

Courtesy of Wikipedia

Kernel-level threads vs User-level Threads

ENSC 351: Lecture Set 2 41

Kernel-level threads vs User-level Threads

• Supported directly by the O/S

• The O/S has a separate thread for each
process**

Kernel-level Threads

ENSC 351: Lecture Set 2 42

process**

– Performs O/S activities on behalf of the O/S

– What is the name of this thread?

• [Hint: Recall the Collaboration graph Notation

discussion]

**At least- depends on the multi-threading model

• Performs thread creation, scheduling and
management in kernel space

• Thread management inside the kernel is

Kernel-level Threads

ENSC 351: Lecture Set 2 43

• Thread management inside the kernel is
generally slower that in user space

– i.e. Takes longer to create and manage kernel

threads than user threads

• Run on top of the kernel

• Only exist within a process

– Cannot access a thread in a different process

User-level Threads

ENSC 351: Lecture Set 2 44

– Cannot access a thread in a different process

• Isolation and modularity provide reliability

• Used by programmers to handle multiple
flows of control within a process

• The kernel is unaware of user-level thread

• Implemented with a thread library

– Example?

User-level Threads

ENSC 351: Lecture Set 2

– Example?

– Supports creation and scheduling management

outside of the kernel

• Done in user space without the kernel

– Generally fast to create and manage

