
Real Time and Embedded Systems

by 

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Slide Set: 3

Date: September 20, 2011

Simon Fraser UniversitySimon Fraser University



Slide Set Overview

• Synchronization

• Mutexes

ENSC 351: Lecture Set 3 2

• Mutexes

• Semaphores

• Classic IPC and Synchronization Problems



Synchronization

ENSC 351: Lecture Set 3 3

Synchronization



• Five philosophers sit around a circular table. 

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 4



• Each philosopher spends his life alternatively:

thinking and… 

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 5

eating. 



• In the centre of the table is a large plate of 

noodles. 

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 6



• A philosopher needs two chopsticks to eat a 

helping of noodles. 

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 7



• Unfortunately, philosophy is not as well paid as 

computing

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 8



• The philosophers can only afford five chopsticks. 

One chopstick is placed between each pair of 

philosophers.

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 9



• The philosophers agree that each will only use 

the chopstick to his immediate right and left

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 10



• Philosophers are depicted in yellow when they 

are thinking, red when hungry and green when 

eating.

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 11



Why do we need synchronization?

ENSC 351: Lecture Set 3 12

Why do we need synchronization?



• What if all of the philosophers decide to eat at 

the same time?

• And what if they are prepared to wait to eat?

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 13



• What if all of the philosophers decide to eat at 

the same time?

• And what if they are prepared to wait to eat?

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 14

• This could lead to                                                  

deadlock!!!



• What if all of the philosophers decide to eat at 

the same time and what if they are only allowed 

to wait for a fixed time?

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 15

• This would lead to                                                  

livelock!!!



Either way the poor philosophers suffer 

from starvation!!

ENSC 351: Lecture Set 3 16

from starvation!!



• How do we solve this problem?

The Dining Philosopher’s Problem

ENSC 351: Lecture Set 3 17



Now let’s think about this in terms of 

programming

ENSC 351: Lecture Set 3 18

programming



proc_0 () proc_1()

{ {

while (TRUE) while(TRUE)

{ {

<compute_section>; <compute_section>;

What if we have these Cooperating Processes?

ENSC 351: Lecture Set 3 19

<compute_section>; <compute_section>;

sum += ….; sum += ….;

<critical_section>; <criticial_section>;

} }

} }

<shared global declarations and initial processing>

fork(proc_0, 0);    //fork(process_call, args);

fork(proc_1, 0);



• Writing and reading a memory cell common to 

the two processes is an indivisible operation

– Any attempt by the two processes to simultaneously 
execute read or write operations will result in some 
unknown serial ordering of the two operation

Assumptions about this code

ENSC 351: Lecture Set 3 20

unknown serial ordering of the two operation

– The operations will not happen at the same time

• The processes are not assumed to have any priority, 

– Neither one or the other would take precedence in the 
case of simultaneous attempts to enter a critical section



• The relative speeds of the processes are unknown

– One cannot rely on speed differentials (or equivalence) in 
arriving at the solution (i.e. predict what will happen)

Assumptions about this code

ENSC 351: Lecture Set 3 21

• These processes are assumed to be sequential 

and cyclic



We need protection for the critical regions of 

code 

ENSC 351: Lecture Set 3 22

code 



• Only one process at a time should be allowed to 

be in its critical section (mutual exclusion)

– i.e. mutex

Acceptable solutions to the critical section problem 

are required to meet the following constraints

ENSC 351: Lecture Set 3 23

• Given a critical section is free

– If a set of processes indicates a need to enter into the 
critical section, then only those processes competing for 
the critical section participate in the selection of the 
process to enter the critical section



• Once a process attempts to enter its critical 

section, it cannot be postponed indefinitely 

– Even if no other process is in its critical section

Acceptable solutions to the critical section problem 

are required to meet the following constraints

ENSC 351: Lecture Set 3 24

• After a process requests entry into its critical 

section, only a bounded number of other 

processes may be allowed to enter their related 

critical sections before the original process 

enters its critical section



Now a little history…

ENSC 351: Lecture Set 3 25

Now a little history…



Edsger Dijkstra invented the semaphore

– A primitive to accomplish process synchronization 

[Dijkstra, 1968]

– Introduced the idea of “cooperating sequential 

processes”

Dijkstra’s Semaphore Primitives

ENSC 351: Lecture Set 3 26

processes”

– Illustrated why synchronization is difficult with 

conventional machine instructions



In the original paper:

• the “P” operation was short for the Dutch 

proberen “to test” 

– int sem_wait (sem_t *sem) in Linux

Dijkstra’s Semaphore Primitives

ENSC 351: Lecture Set 3 27

– int sem_wait (sem_t *sem) in Linux

• the “V” operation was short for verhogen “to 

increment”

– int sem_post (sem_t *sem) in Linux

• Let’s look at this in more detail



• A semaphore, s, is a non-negative integer variable 

(i.e a Whole Number) tested or changed by only 

one of two indivisible (atomic) routines:

– P(s)/ sem_wait(s)

Using Semaphores

ENSC 351: Lecture Set 3 28

• [while(s==0) {wait};   s= s-1;]

– V(s)/sem_post(s)

• [s = s+1;]

• The square braces surrounding the statements 

indicate that the operations are indivisible/atomic



• Easy case:

– V(s)/sem_post(s)

• [s = s+1;]

Using Semaphores

ENSC 351: Lecture Set 3 29

• The operation [s = s+1;] cannot be interrupted until 

it has completed



• Harder case:

– P(s)/sem_wait(s)

• [while (s==0) {wait}; s = s-1;]

• If s >0:

Using Semaphores

ENSC 351: Lecture Set 3 30

• If s >0:

– s is tested and decremented as an indivisible operation

• If s =0:

– the process executing the sem_wait() command can be 

interrupted when it executes the wait in the while loop

– The indivisible operation only applies to the test and 

resulting control flow



proc_0 () { proc_1() {

while (TRUE) { while(TRUE) {

<compute_section>; <compute_section>;

<critical_section>; <criticial_section>;

} }

How do we use a semaphore as a “mutex” to protect 
the critical section?

ENSC 351: Lecture Set 3 31

} }

} }

semaphore mutex =1;

fork(proc_0, 0); // Or now a days pthread_create(proc_0,…)

fork(proc_1, 0); //  Ditto

//Note sem_init’s pshared value changes depending on whether it is 

to be shared between processos or threads



• Recall, a semaphore, s, is a non-negative integer variable 

tested or changed by only one of two indivisible (atomic) 

routines:

– P(s)/ sem_wait(s)

• [while(s==0) {wait};   s= s-1;]

Using Mutexes

ENSC 351: Lecture Set 3 32

• [while(s==0) {wait};   s= s-1;]

– V(s)/sem_post(s)

• [s = s+1;]

• Conceptually, a mutex is a semaphore with a count of one, 

however, it may have different properties

– e.g. Priority inheritance



thread_0 () { thread_1() {

while (TRUE) { while(TRUE) {

<compute_section>; <compute_section>;

access(CS_resource); access(CS_resource);

} }

How do we use “mutex” to protect the critical section?

ENSC 351: Lecture Set 3 33

} }

//Initialization:

ResourceType *CS_resource; //Critical Section resource

mutex mutex =1; //In Linux pthread_mutex_init(pthread_mutex_t *mutex)

Create_thread(thread_0, 0);

Create_thread(thread_1, 0);

//Check out pthread_mutex_lock; pthread_mutex_unlock



Xilinx’s MicroBlaze

ENSC 452/894: Lecture Set 1 34

Xilinx’s MicroBlaze



Xilinx’s MicroBlaze

• Harvard Architecture

– Separate Instruction and Datapath

– Used in: 

• DSP processor architectures

– E.g. Blackfin from Analog Devices

ENSC 452/894: Lecture Set 1 35

• Microcontrollers

– E.g. PIC from Microchip Technology

• Resource Usage (Assuming lightweight)

– ~1000 LUTs 

– ~800 Flipflops

• Max Frequency: ~250 MHz 

• Xilinx also has PicoBlaze (look it up)



MicroBlaze Processor

ENSC 452/894: Lecture Set 1 36



• Has No “atomic” instructions

– Uses “Load Word Exclusive” and “Store Word 

Exclusive”

MicroBlaze and Mutual Exclusion

ENSC 351: Lecture Set 3 37

– Check out the “MicroBlaze Processor Reference Guide” 

available online for free:

http://www.xilinx.com/support/documentation/sw_manuals/xili

nx13_2/mb_ref_guide.pdf



Synchronizing IPC

ENSC 452/894: Lecture Set 1 38

Synchronizing IPC



• The Producer-Consumer Problem

• The Readers-Writers Problem

Classic IPC and Synchronization Problems

ENSC 351: Lecture Set 3 39

• The Sleeping Barber Problem



• Picture a system with a Producer process and a Consumer 

process with N buffer resources
– Bounds the memory resources
– Keeps the processes synchronized

• The two processes communicate by:

Producer-Consumer Problem [Dijkstra, 1968]

ENSC 351: Lecture Set 3 40

• The two processes communicate by:

– Having the producer 
• Obtain an empty buffer from a pool of empty buffers,
• Fill the buffer with information
• Place the full buffer in a pool of full buffers

– Having the consumer
• Obtain a full buffer from the pool of full buffers
• Copy the information out of the buffer
• Place them empty buffer back in the empty buffer pool



Producer Code

ENSC 351: Lecture Set 3 41



Consumer Code

ENSC 351: Lecture Set 3 42



• Suppose a resource is to be shared among a 

community of processes of two distinct types:

– Reader

• A reader process can share the resource with any other reader 
process but not with a writer process

Readers-Writers Problem [Courtois, et al, 1971]

ENSC 351: Lecture Set 3 43

process but not with a writer process

– Writer

• A writer process requires exclusive access to the resource 
whenever it acquires access to any resource

• Similar to sharing a file among processes

– Anyone can read the file, but when writing to the file, 

only one (writing) process has accesss



Writer Code

ENSC 351: Lecture Set 3 44



Reader Code

ENSC 351: Lecture Set 3 45



• Based upon a “barber shop” with: 

– one barber, 

– one barber chair, and a 

– number of chairs for waiting customers. 

• When:

The Sleeping Barber Problem [Dijkstra, 1968?]

ENSC 351: Lecture Set 3 46

• When:

– There are no customers, 

• The barber takes a nap in his chair. 

– A customer arrives, 

• If all chairs are occupied, the new customer leaves

• Else If the barber is busy cutting hair, the customer sits down

• Else this is the first customer, so the barber wakes up



• Readers-Writers or Producer-Consumer problem?

• Queueing Theory

The Sleeping Barber Problem [Dijkstra, 1968?]

ENSC 351: Lecture Set 3 47

• The Rendezvous Problem

• Possible Problems



The Barber

ENSC 351: Lecture Set 3 48



The Customers

ENSC 351: Lecture Set 3 49



Questions?

• Our discussion about semaphores has been in 

terms of separate processes.  What about 

threads?  Could semaphores still be used?

ENSC 351: Lecture Set 3 50

• What state is a thread in when it is waiting for 

access to a critical section (ie waiting on a 

semaphore)?



Questions?

• What does the term “atomic operation” mean?

• Semaphores provide controlled access to 

ENSC 351: Lecture Set 3 51

• Semaphores provide controlled access to 

critical sections, but not necessarily mutual 

exclusion.  Can a semaphore be used to 

provide mutual exclusion (ie act like a mutex)?



Questions?

• Does Linux provide any mutex functions (not 

just semaphores)?

ENSC 351: Lecture Set 3 52

• Other than mutual exclusion (as opposed to 

just controlled access), are mutexes and 

semaphores the same?



Questions?

• Dijkstra posed potential software solutions to 

the critical section problem and then explained 

why they failed [Dijkstra, 1968].  One of these 

examples will be on your midterm and/or final.

ENSC 351: Lecture Set 3 53


