Real Time and Embedded Systems

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: hitp://www.ensc.sfu.ca/~lshannon/courses/ensc351

Adapted from guest lectures by Chris Simmons and the Extreme
Programming Home Page

Simon Fraser University Slide Set: 4
Date: October 4, 2011

Slide Set Overview

« How to tackle a BIG programming Problem
— Software Engineering Considerations

« Extreme Programming

« How to draw threads/mutexes with CGN

ENSC 351: Lecture Set 4 2

How to tackle a big programming problem?

ENSC 351: Lecture Set 4 3

Software Engineering

- HAVE A PLAN!!!

 Different software design methodologies:
— Waterfall Method (older/traditional)
— Agile

ENSC 351: Lecture Set 4

What is the Waterfall Method?

« W.W. Royce introduced a phased, linear
software development methodology in 1970

— He didn’t call it the “waterfall” method
— Presented it as a flawed methodology

 Emphasizes:
— Detailed project specs (Big “up-front” design)
— Lots of Documentation on deliverables

ENSC 351: Lecture Set 4 5

What is the Waterfall Method?

» Widely used in the “real” world
— 44% of companies according to recent survey

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92 gci1318992,00.html

 Phases:

1. Requirements Specification
Design

Construction

Integration

Testing and Debugging
Installation

Maintenance

N o gk W

ENSC 351: Lecture Set 4

The Waterfall Method
‘ Implementation I

ENSC 351: Lecture Set 4

Benefits of the Waterfall Method

More “up front” time is good for some apps:
— e.g. safety critical, protocol specs

Documentation is good
— particularly for large safety critical apps

Well defined deliverables
Good for projects that don’t change
Easier to understand long term requirements

ENSC 351: Lecture Set 4 8

Problems with the Waterfall Method

Requirements aren’t always known up front:
— Customers don’t know “exactly” yet
— Market Changes

Integration and testing done very late
— Design Problems can be disastrous

Customers don’t see it until you are done
— Sounds good but customers “change their mind”

Remember: described as a flawed method

ENSC 351: Lecture Set 4 9

Now Agile Software Development ...

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

poatindomoE soll som

wena dilbert.com

THAT MEANS NO MORE
PLANMNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAIMNING.

© Scott Adams, Inc./Dist. by UFS, Inc.

ENSC 351: Lecture Set 4

1607 ©2007 Scotl Adama, Inc.sDist. by UFS, inc.

I'™M GLAD THAT

IT HAS A WAS YOUR

MAME.,

TRAINING.

10

Agile “Manifesto”

* The Agile software development
methodology “values”:

— Individuals and interactions over process and
tools

— Working software over comprehensive
documentation

— Customer collaboration over negotiation
— Responding to change over following a plan

ENSC 351: Lecture Set 4 11

Agile Software Development

Emphasis on iterative development
— 1-4 week blocks of time

— Portions of the various Waterfall phases are
combined into each iteration

Each iteration should be a stable deliverable
— Think latest software releases/patches

No big upfront design
— Design spec updated dynamically as needed

And ...

ENSC 351: Lecture Set 4 12

Agile Software Development

* Close contact with the customer
— Or at least their “representative ...

» THIS IS BOTH GOOD AND BAD IDEA

ENSC 351: Lecture Set 4

13

Agile Software Development

* Close contact with the customer
— Or at least their “representative ...

THIS IS BOTH GOOD AND BAD!!

This leads us to Extreme Programming ...

ENSC 351: Lecture Set 4 14

Extreme Programming

ENSC 351: Lecture Set 4

15

Why do we care about software engineering?

“Programming today is a race between
software engineers striving to build bigger
and better idiot-proof programs, and the
Universe trying to produce bigger and
better idiots. So far, the Universe is
winning.”

- Author Rick Cook, The Wizardry Compiled

ENSC 351: Lecture Set 4 16

Extreme Programming

* A weird name for a good set of practices

» Created by Kent Beck (mid-90’s)

— Checkout: Extreme Programming Explained
(1999)

* An implementation of an Agile software
development methodology

— Takes Agile practices to their logical limit

ENSC 351: Lecture Set 4

17

Extreme Programming “Values”

« Communication (is “good noise”)
— Know what’s going on with the team

« Simplicity
— Do the simplest (not easiest!) thing that works

 Feedback

— Retrospectives, unit tests, customer interaction

ENSC 351: Lecture Set 4 18

Extreme Programming “Values”

» Courage
— Don’t be afraid to refactor/throw away code

* Respect
— Good environment with reasonable hours

ENSC 351: Lecture Set 4 19

XP (practices)

 Fall into four main practices:

1.

Fine Scale Feedback: are we doing the right
thing

Shared Understanding: do we all agree on how
to work

Continuous Process: small improvements are
better than nothing

Programmer Welfare: aka work-life balance

ENSC 351: Lecture Set 4 20

XP practices: Fine Scale Feedback

* Includes:
1. Pair Programming: Driver/Navigator model

2. Planning “Game”’:
1. Release planning and
2. lteration Planning

3. Test Driven Development

ENSC 351: Lecture Set 4

21

XP practices: Shared Understanding

e Includes:

1. Coding Standards : K&R C, Code Conventions
for Java, etc

2. Collective code ownership:
EVERYBODY is responsible for the code base
There is no such thing as “your code”

3. Simple Design: Do the simplest thing possible
that works (prevents “Big Upfront Design”)

4. System metaphor: aka naming conventions

ENSC 351: Lecture Set 4 22

XP practices: Continuous process

e Includes:

1.

Continuous integration: much easier with
revision control systems and automatic builds

Design improvement: counterbalances
“simplest first” with “refactor complex code”

Small releases: prevent “going dark” encourage
early feedback, not necessarily for customers

ENSC 351: Lecture Set 4 23

XP practices: Programmer Welfare

* Well rested employees are better employees, so
overtime should be rare and spread out @

I WORKED AROUND THE
CLOCK AND FINISHED
A PROJECT THAT WOULD
NORMALLY REQUIRE
TEN PROGRAMMERS.

www. dilbert.com scotisdams & acl.com

UM...DID I JUST
ESTABLISH A NEW
BASELINE EXPECTATION
THAT WILL TURN MY
JOB INTO A TRAGIC
DEATH MARCH?

ENSC 351: Lecture Set 4

Fi30d ©0)EScon Adams, Inc./Dist. by UFS, Inc
=

I"[r'ﬁ TIME
0 SET |
S5TUPID!
SOME
STRETCH STUPID!
GOALS. STUPID!

i

24

Extreme Programming

» Covers
Planning
Designing
Coding

. Testing

5. Managing

* For the purpose of the project the first two
steps are done for you
— Only need to worry about coding and testing

ENSC 351: Lecture Set 4 25

B~ =

Extreme Programming - Designing

1. Simplicity
2. Choose a system metaphor
3. No functionality is added early

— Use customer feedback to focus/tune next
release

4. Refactor whenever and wherever possible

— Counterbalance to get simple things done first

— Simplify code as you add new features making
operations more complex

ENSC 351: Lecture Set 4 26

Extreme Programming - Coding

1. The customer is always available
— Involved in the whole process

2. Code must be written to agreed standards
— K&R C, Code Conventions for Java, etc.

3. Code unit test first
— Test Driven Development

4. All production code is pair programmed

5. Only one pair integrates code at a time
— Driver/Navigator model

ENSC 351: Lecture Set 4 27

Extreme Programming - Coding

6. Inteqgrate often

— Almost requires revision control and automatic
builds (makefiles/etc)

/. Use collective code ownership
— Everybody is responsible for the code base
Not just “your code”
8. Leave optimization till last

— Do the simplest thing that works first and build
on it

ENSC 351: Lecture Set 4 28

9. No overtime

I WORKED AROUND THE
CLOCK AND FINISHED
A PROJECT THAT WOULD
NORMALLY REQUIRE
TEN PROGRAMMERS.

soottada s T asl, com

www. dilbert.com

UM...DID I JUST
ESTABLISH A NEW
BASELINE EXPECTATION
THAT WILL TURN MY
JOB INTO A TRAGIC
DEATH MARCH?

i‘r

ENSC 351: Lecture Set 4

F1308 ©2008Scoit Adams, Inc./Dist. by UFS, Inc

ITS TIME
TOSET
SOME
STRETCH
GOALS.

sTUPID!
STUP1D!
STUPID!

i

29

Extreme Programming - Testing

1. All code must have unit tests

2. All code must pass all unit tests before it
can be released

— This should prevent you from “going dark”
3. When a bug is found tests are created

4. Acceptance tests are run often and the
score Is published

ENSC 351: Lecture Set 4 30

Extreme Programming Reference

» Check out the web page:
— www.extremeprogramming.org

* Planning to have a guest speaker (Chris
Simmons) from industry (Sophos) come and
talk about actual commercial uses of this
technique

— Attendance to their talk will be mandatory
— You will be responsible for the material he
covers

ENSC 351: Lecture Set 4 31

Limitations of Extreme Programming

It can break down in large groups
Management needs to buy in to the idea
Customer can be the single point of failure
Teams must communicate

Lack of documentation can clash with
regulations

Taken to the “extreme” can cause problems

ENSC 351: Lecture Set 4 32

XP for School: Least Useful Parts

* Planning game:

— Release and iteration planning is often overkill
« Exceptions: capstone projects/452/etc

 Since the requirements are fixed, don'’t
require close contact with the customer (me)

— Remember there’s only one of me @

» Design Improvement
— You'll likely never see coursework code again

ENSC 351: Lecture Set 4 33

XP for School: Medium Useful Parts

» Coding standards
— Good for shared code development and coops
 Pair programming

— Applicable for some courses and often a better
learning experience

« Sustainable Pace
— Lots of Classes, keep the work balanced

ENSC 351: Lecture Set 4 34

XP for School: Medium Useful Parts

» Collective Code Ownership
— One person is NOT responsible for the project

« System Metaphor
— Improves Code readability

ENSC 351: Lecture Set 4 35

XP for School: Very Useful Parts

* Test Driven Development
— Using unit tests (when appropriate)
« Simple Design

— KISS Rule: Do what you need to do to get the job
done

— Refactor and improve as you go

« System Metaphor

— You'll be programming with another pair and you
need to be able to read each others code

ENSC 351: Lecture Set 4 36

XP for School: Very Useful Parts

» Continuous integration
— Revision Control becomes crucial
* You'll thank me
« Small Releases
— Coding all day without compiling is BAD

— If you can’t get it all done, at least you have
something to show

— Finish the important features first

ENSC 351: Lecture Set 4 37

Other Software Engineering Thoughts

» Learn an editor
— It will save you time in the long run
« Can be incorporated into IDE/Eclipse environments
* vim: http://www.vim.org

— Extremely powerful and Concise
 But the learning curve can be steep

— Available on almost any unix/linux box
(download for windows)

ENSC 351: Lecture Set 4 38

Other Software Engineering Thoughts

« Learn an editor (cont'd)

— It will save you time in the long run
« Can be incorporated into IDE/Eclipse environments

* Emacs: http://www.gnu.org/software/emacs/
— Also powerful, but has a different input style
— Also available on most boxes

ENSC 351: Lecture Set 4 39

Useful links for Unit Testing

* libtap:
— http://|c.ngo.org.uk/trac-bin/trac.cgi/wiki/LibTap
— Check: hitp://check.sourceforge.net

 Unit testing in almost any language:

* A

nttp://www.testingfaqgs.org/t-unit.ntml

Ist of papers on unit testing:

nttp://tinyurl.com/2ncqrf

ENSC 351: Lecture Set 4 40

Drawing threads sharing a semaphore

ENSC 351: Lecture Set 4 41

Drawing Threads Sharing a Semaphore

ENSC 351: Lecture Set 4

42

Drawing Threads Sharing a Semaphore

ENSC 351: Lecture Set 4

43

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

44

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

45

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

46

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

47

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

48

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

49

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

50

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

51

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

52

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

53

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

54

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

55

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

56

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4

57

Questions?

Why use extreme programming techniques for
commercial projects?

How would you draw the CGN for the “Sleeping
Barber” problem?

ENSC 351: Lecture Set 4 58

