
Real Time and Embedded Systems

by by

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Adapted from guest lectures by Chris Simmons and the Extreme
Programming Home Page

Slide Set: 4

Date: October 4, 2011

Simon Fraser UniversitySimon Fraser University

Slide Set Overview

• How to tackle a BIG programming Problem

– Software Engineering Considerations

ENSC 351: Lecture Set 4 2

• Extreme Programming

• How to draw threads/mutexes with CGN

How to tackle a big programming problem?

ENSC 351: Lecture Set 4 3

How to tackle a big programming problem?

• HAVE A PLAN!!!

• Different software design methodologies:

– Waterfall Method (older/traditional)

Software Engineering

ENSC 351: Lecture Set 4 4

– Waterfall Method (older/traditional)

– Agile

• W.W. Royce introduced a phased, linear
software development methodology in 1970

– He didn’t call it the “waterfall” method

– Presented it as a flawed methodology

What is the Waterfall Method?

ENSC 351: Lecture Set 4 5

– Presented it as a flawed methodology

• Emphasizes:

– Detailed project specs (Big “up-front” design)

– Lots of Documentation on deliverables

• Widely used in the “real” world

– 44% of companies according to recent survey
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1318992,00.html

• Phases:

What is the Waterfall Method?

ENSC 351: Lecture Set 4 6

• Phases:
1. Requirements Specification

2. Design

3. Construction

4. Integration

5. Testing and Debugging

6. Installation

7. Maintenance

The Waterfall Method

ENSC 351: Lecture Set 4 7

• More “up front” time is good for some apps:

– e.g. safety critical, protocol specs

• Documentation is good

– particularly for large safety critical apps

Benefits of the Waterfall Method

ENSC 351: Lecture Set 4 8

– particularly for large safety critical apps

• Well defined deliverables

• Good for projects that don’t change

• Easier to understand long term requirements

• Requirements aren’t always known up front:

– Customers don’t know “exactly” yet

– Market Changes

• Integration and testing done very late

Problems with the Waterfall Method

ENSC 351: Lecture Set 4 9

• Integration and testing done very late

– Design Problems can be disastrous

• Customers don’t see it until you are done

– Sounds good but customers “change their mind”

• Remember: described as a flawed method

Now Agile Software Development …

ENSC 351: Lecture Set 4 10

• The Agile software development
methodology “values”:

– Individuals and interactions over process and

tools

Agile “Manifesto”

ENSC 351: Lecture Set 4 11

tools

– Working software over comprehensive

documentation

– Customer collaboration over negotiation

– Responding to change over following a plan

• Emphasis on iterative development

– 1-4 week blocks of time

– Portions of the various Waterfall phases are

combined into each iteration

Agile Software Development

ENSC 351: Lecture Set 4 12

combined into each iteration

• Each iteration should be a stable deliverable

– Think latest software releases/patches

• No big upfront design

– Design spec updated dynamically as needed

• And …

• Close contact with the customer

– Or at least their “representative …

• THIS IS BOTH GOOD AND BAD IDEA

Agile Software Development

ENSC 351: Lecture Set 4 13

• THIS IS BOTH GOOD AND BAD IDEA

• Close contact with the customer

– Or at least their “representative …

THIS IS BOTH GOOD AND BAD!!!

Agile Software Development

ENSC 351: Lecture Set 4 14

THIS IS BOTH GOOD AND BAD!!!

This leads us to Extreme Programming …

Extreme Programming

ENSC 351: Lecture Set 4 15

Extreme Programming

Why do we care about software engineering?

“Programming today is a race between
software engineers striving to build bigger
and better idiot-proof programs, and the
Universe trying to produce bigger and

ENSC 351: Lecture Set 4 16

Universe trying to produce bigger and
better idiots. So far, the Universe is
winning.”

- Author Rick Cook, The Wizardry Compiled

• A weird name for a good set of practices

• Created by Kent Beck (mid-90’s)

– Checkout: Extreme Programming Explained

(1999)

Extreme Programming

ENSC 351: Lecture Set 4 17

(1999)

• An implementation of an Agile software
development methodology

– Takes Agile practices to their logical limit

• Communication (is “good noise”)

– Know what’s going on with the team

• Simplicity

Extreme Programming “Values”

ENSC 351: Lecture Set 4 18

• Simplicity

– Do the simplest (not easiest!) thing that works

• Feedback

– Retrospectives, unit tests, customer interaction

• Courage

– Don’t be afraid to refactor/throw away code

• Respect

Extreme Programming “Values”

ENSC 351: Lecture Set 4 19

• Respect

– Good environment with reasonable hours

• Fall into four main practices:

1. Fine Scale Feedback: are we doing the right

thing

2. Shared Understanding: do we all agree on how

XP (practices)

ENSC 351: Lecture Set 4 20

2. Shared Understanding: do we all agree on how

to work

3. Continuous Process: small improvements are

better than nothing

4. Programmer Welfare: aka work-life balance

• Includes:

1. Pair Programming: Driver/Navigator model

2. Planning “Game”:

1. Release planning and

XP practices: Fine Scale Feedback

ENSC 351: Lecture Set 4 21

1. Release planning and

2. Iteration Planning

3. Test Driven Development

• Includes:

1. Coding Standards : K&R C, Code Conventions

for Java, etc

2. Collective code ownership:

XP practices: Shared Understanding

ENSC 351: Lecture Set 4 22

2. Collective code ownership:

• EVERYBODY is responsible for the code base

• There is no such thing as “your code”

3. Simple Design: Do the simplest thing possible

that works (prevents “Big Upfront Design”)

4. System metaphor: aka naming conventions

• Includes:

1. Continuous integration: much easier with

revision control systems and automatic builds

2. Design improvement: counterbalances

XP practices: Continuous process

ENSC 351: Lecture Set 4 23

2. Design improvement: counterbalances

“simplest first” with “refactor complex code”

3. Small releases: prevent “going dark” encourage

early feedback, not necessarily for customers

• Well rested employees are better employees, so

overtime should be rare and spread out

XP practices: Programmer Welfare

ENSC 351: Lecture Set 4 24

• Covers

1. Planning

2. Designing

3. Coding

Extreme Programming

ENSC 351: Lecture Set 4 25

3. Coding

4. Testing

5. Managing

• For the purpose of the project the first two
steps are done for you

– Only need to worry about coding and testing

1. Simplicity

2. Choose a system metaphor

3. No functionality is added early

– Use customer feedback to focus/tune next

Extreme Programming - Designing

ENSC 351: Lecture Set 4 26

– Use customer feedback to focus/tune next

release

4. Refactor whenever and wherever possible

– Counterbalance to get simple things done first

– Simplify code as you add new features making

operations more complex

1. The customer is always available

– Involved in the whole process

2. Code must be written to agreed standards

– K&R C, Code Conventions for Java, etc.

Extreme Programming - Coding

ENSC 351: Lecture Set 4 27

– K&R C, Code Conventions for Java, etc.

3. Code unit test first

– Test Driven Development

4. All production code is pair programmed

5. Only one pair integrates code at a time

– Driver/Navigator model

6. Integrate often

– Almost requires revision control and automatic

builds (makefiles/etc)

7. Use collective code ownership

Extreme Programming - Coding

ENSC 351: Lecture Set 4 28

7. Use collective code ownership

– Everybody is responsible for the code base

• Not just “your code"

8. Leave optimization till last

– Do the simplest thing that works first and build

on it

9. No overtime

ENSC 351: Lecture Set 4 29

1. All code must have unit tests

2. All code must pass all unit tests before it
can be released

Extreme Programming - Testing

ENSC 351: Lecture Set 4 30

can be released

– This should prevent you from “going dark”

3. When a bug is found tests are created

4. Acceptance tests are run often and the
score is published

• Check out the web page:

– www.extremeprogramming.org

• Planning to have a guest speaker (Chris

Extreme Programming Reference

ENSC 351: Lecture Set 4 31

• Planning to have a guest speaker (Chris
Simmons) from industry (Sophos) come and
talk about actual commercial uses of this
technique

– Attendance to their talk will be mandatory

– You will be responsible for the material he

covers

• It can break down in large groups

• Management needs to buy in to the idea

• Customer can be the single point of failure

• Teams must communicate

Limitations of Extreme Programming

ENSC 351: Lecture Set 4 32

• Teams must communicate

• Lack of documentation can clash with
regulations

• Taken to the “extreme” can cause problems

• Planning game:

– Release and iteration planning is often overkill

• Exceptions: capstone projects/452/etc

• Since the requirements are fixed, don’t

XP for School: Least Useful Parts

ENSC 351: Lecture Set 4 33

• Since the requirements are fixed, don’t
require close contact with the customer (me)

– Remember there’s only one of me

• Design Improvement

– You’ll likely never see coursework code again

• Coding standards

– Good for shared code development and coops

• Pair programming

– Applicable for some courses and often a better

XP for School: Medium Useful Parts

ENSC 351: Lecture Set 4 34

– Applicable for some courses and often a better

learning experience

• Sustainable Pace

– Lots of Classes, keep the work balanced

• Collective Code Ownership

– One person is NOT responsible for the project

• System Metaphor

– Improves Code readability

XP for School: Medium Useful Parts

ENSC 351: Lecture Set 4 35

– Improves Code readability

• Test Driven Development

– Using unit tests (when appropriate)

• Simple Design

– KISS Rule: Do what you need to do to get the job

XP for School: Very Useful Parts

ENSC 351: Lecture Set 4 36

– KISS Rule: Do what you need to do to get the job

done

– Refactor and improve as you go

• System Metaphor

– You’ll be programming with another pair and you

need to be able to read each others code

• Continuous integration

– Revision Control becomes crucial

• You’ll thank me

• Small Releases

XP for School: Very Useful Parts

ENSC 351: Lecture Set 4 37

• Small Releases

– Coding all day without compiling is BAD

– If you can’t get it all done, at least you have

something to show

– Finish the important features first

• Learn an editor

– It will save you time in the long run

• Can be incorporated into IDE/Eclipse environments

• vim: http://www.vim.org

Other Software Engineering Thoughts

ENSC 351: Lecture Set 4 38

• vim: http://www.vim.org

– Extremely powerful and Concise

• But the learning curve can be steep

– Available on almost any unix/linux box

(download for windows)

• Learn an editor (cont’d)

– It will save you time in the long run

• Can be incorporated into IDE/Eclipse environments

• Emacs: http://www.gnu.org/software/emacs/

Other Software Engineering Thoughts

ENSC 351: Lecture Set 4 39

• Emacs: http://www.gnu.org/software/emacs/

– Also powerful, but has a different input style

– Also available on most boxes

• libtap:

– http://jc.ngo.org.uk/trac-bin/trac.cgi/wiki/LibTap

– Check: http://check.sourceforge.net

• Unit testing in almost any language:

Useful links for Unit Testing

ENSC 351: Lecture Set 4 40

• Unit testing in almost any language:

– http://www.testingfaqs.org/t-unit.html

• A list of papers on unit testing:

– http://tinyurl.com/2ncqrf

Drawing threads sharing a semaphore

ENSC 351: Lecture Set 4 41

Drawing threads sharing a semaphore

Drawing Threads Sharing a Semaphore

ENSC 351: Lecture Set 4 42

Drawing Threads Sharing a Semaphore

ENSC 351: Lecture Set 4 43

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 44

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 45

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 46

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 47

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 48

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 49

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 50

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 51

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 52

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 53

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 54

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 55

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 56

Drawing Threads with Message Passing

ENSC 351: Lecture Set 4 57

Questions?

• Why use extreme programming techniques for

commercial projects?

ENSC 351: Lecture Set 4 58

• How would you draw the CGN for the “Sleeping

Barber” problem?

