
Real Time and Embedded Systems

by

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Slide Set: 6

Date: October 27, 2011

Simon Fraser UniversitySimon Fraser University

Slide Set Overview

• Clocks and Timers

– Issues with Time

– Types of Timers and Notification Schemes

ENSC 351: Lecture Set 6 2

• Using Timers

Clocks and Timers

ENSC 351: Lecture Set 6 3

Clocks and Timers

• Your applications may need to respond:

– Periodically, or

– To external events, or

Clocks and Timers

ENSC 351: Lecture Set 6 4

– After a specific period of time

• Historically one CPU was dedicated to one user

– Programmers could use a function that loops and then wakes up
after a specific time

– A good example was the sleep() function, or high resolution

Clocks and Timers

ENSC 351: Lecture Set 6 5

– A good example was the sleep() function, or high resolution
nanosleep() function

– You could calculate how fast your CPU was and the create your own
sleep()

• Historically one CPU was dedicated to one user (cont’d)

– Since nothing else was running on that machine, wasting processing
time with an empty loop didn’t matter

– There was no other process trying to use the CPU so the sleep

Clocks and Timers

ENSC 351: Lecture Set 6 6

– There was no other process trying to use the CPU so the sleep
function could use it all

– Multi-tasking was accomplished using interrupt routines that
triggered off of system hardware or hardware timers

• The kernel reschedules threads due to

– A hardware interrupt

– A kernel call

Clocks and Timers

ENSC 351: Lecture Set 6 7

– A fault (exception)

• For this discussion interrupts and kernel calls are what

matters

• Nowadays, when a thread calls sleep(x)/nanosleep()

– The kernel puts the thread on hold for “x” seconds

– The thread is removed from the running queue

Clocks and Timers

ENSC 351: Lecture Set 6 8

– The kernel starts a timer

• The kernel also typically receives regular hardware

interrupts from the computer’s clock hardware

– 10ms/1ms resolution

– Every time one of these interrupts occurs, the kernel’s clock ISR

Clocks and Timers

ENSC 351: Lecture Set 6 9

– Every time one of these interrupts occurs, the kernel’s clock ISR
increments its time-of-day variable by 10ms (1ms)

• The kernel implements a 15-second timer by

1. Setting a variable to current time plus 15 seconds

2. Comparing this variable inside the ISR to the current time-of-day

Clocks and Timers

ENSC 351: Lecture Set 6 10

3. When the current time-of-day is the same or greater, restoring the
thread to the ready queue

• Where does a clock interrupt come from?

Clocks and Timers

ENSC 351: Lecture Set 6 11

• The high-speed clock is being divided by an integer divisor

– The highspeed clock rate isn’t a multiple of 10ms

– Therefore, the ISR rate isn’t exactly 10ms (e.g. 9.999ms)

Errors in Time

ENSC 351: Lecture Set 6 12

• 8.64s off per day

• 5.04 minutes off per year

– Depending on the divisor , the error could be greater or smaller

– The kernel knows about this error and corrects for it

Independent of the integer value shown, the

real value is selected to be the next faster

ENSC 351: Lecture Set 6 13

real value is selected to be the next faster

value.

• If the clock tick (aka clock hardware ISR) is 10 ms, can a

thread sleep for only 4 ms

– No

– Recall the kernel sets a variable in the ISR to some value, either

• The current time of day (it’s expired already and wakes up

Timer Resolution

ENSC 351: Lecture Set 6 14

• The current time of day (it’s expired already and wakes up
immediately)

• The current time of day + 10ms (that’s the next clock tick)

• Therefore, the timing resolution is only as
good as the clock tick

• Some software people call this “Clock Jitter”

– Bad name for this concept

– In hardware, clock jitter is unwanted variation in phase, frequency or
amplitude (high frequency noise on the wire)

Timing Resolution Error

ENSC 351: Lecture Set 6 15

amplitude (high frequency noise on the wire)

– However, if the clock tick resolution is 10ms, what is the problem
with requesting a 20ms timeout?

• Put another way, will you get exactly 20ms of delay?

• No!

– Remember, when a thread (TA) is blocked, it is taken off the running
queue

• Another thread (TB) at the same priority may start using the CPU

• After the 20ms expires, thread TA will be placed at the end of the

Timing Resolution Error

ENSC 351: Lecture Set 6 16

• After the 20ms expires, thread TA will be placed at the end of the
READY queue for that priority

• Depending on what thread is currently running, TA may not get to
run on the processor

• This also applies to interrupt handlers

– Key point

• Just because a thread is READY doesn’t mean it runs on the
CPU

• No!

– Reason two has to do with the resolution of the clock tick

Timing Resolution Error

ENSC 351: Lecture Set 6 17

– The request is asynchronous to the clock source

• Therefore the delay ranges from just over 20ms to just under
30ms

• Timing resolution error is unavoidable

– The only way to reduce the error is to reduce clock tick period,
increasing the resolution to within the system’s required tolerance

– This error only happens on the first clock tick and thus the actual

Timing Resolution Error

ENSC 351: Lecture Set 6 18

– This error only happens on the first clock tick and thus the actual
delay is the requested delay + some percentage of the clock tick
period

• For longer delays, this may not matter too much (i.e. a 10 ms
error on a 3-hour delay is probably negligible)

Types of Timers and Notification Schemes

ENSC 351: Lecture Set 6 19

Types of Timers and Notification Schemes

• Relative Timers

– What we’ve been discussing so far

– Delay for a specified time

Types of timers

ENSC 351: Lecture Set 6 20

• Absolute timers

– “Time” started at January 1rst, 1970 00:00:00 GMT

– Delay until a specified time

• When using timers be sure to pay attention to which one

you are using

• Periodic timers

– Goes off after a set time period (e.g. the clock tick timer)

– Keeps going until stopped

• One-shot timers

Types of timers

ENSC 351: Lecture Set 6 21

• One-shot timers

– Goes off just once

– Used to indicate a specific event

• Either way, the kernel stores the absolute time the timer is

supposed to go off and the clock ISR compares it against

the current time-of-day every time it fires

• Instead of being blocked and waiting for the timer to go off,

the thread can do something

– It can keep running on the CPU

– The kernel must somehow notify the thread when the desired

Notification Schemes

ENSC 351: Lecture Set 6 22

• Possible time out notification schemes are

– Send a Signal

– Notify a specific thread using a signal (Linux only)

– Create a Thread – DON’T DO THIS!

• All of the notification schemes require use of the sigevent

structure

• The sigev_notify member determines the notification type

– SIGEV_NONE: Don’t asynchronously notify when the timer expires

Notification Schemes

ENSC 351: Lecture Set 6 23

– SIGEV_SIGNAL* : Generate the signal sigev_signo when the timer
expires

– SIGEV_THREAD_ID: Like SIGEV_SIGNAL, but sends a signal to a
specific thread

– SIGEV_THREAD: Creates a thread

• Check out:

http://kernel.org/doc/man-pages/online/pages/man2/timer_create.2.html

• Thread notification can be dangerous!!

– Every time the timer fires, a new thread is created!!

– If the timer fires too often and this could chew up all the available
system resources

Notification Schemes

ENSC 351: Lecture Set 6 24

system resources

– If there are higher priority threads waiting to run (use this resource),
you could effectively be blocking (starving them)

• Note there are macros designed to fill in the notification

structures

• Signal notification

– Working on a task, but don’t want to do it forever (e.g. calculating pi)

– If you don’t know how long you can wait without slowing up the
system, use a signal/signal handler combination

Notification Schemes

ENSC 351: Lecture Set 6 25

• Sigwait() is the cheapest solution if there is no channel and

the application can block

Using Timers

ENSC 351: Lecture Set 6 26

Using Timers

• To use a timer, you must:

1. Decide how you wish to be notified (signal/signal to specific
thread/thread)

2. Create the notification structure (sig_event)

Using timers

ENSC 351: Lecture Set 6 27

2. Create the notification structure (sig_event)

3. Create the timer object

4. Set the timer to be relative/absolute and one-shot/periodic

5. Start the timer

• To create a timer, use:

int timer_create (clockid_t clock_id, struct sigevent *event, timer_t
*timerid);

Using timers

ENSC 351: Lecture Set 6 28

– Set clock_id to CLOCK_REALTIME

– The timerid acts as the handle to that specific timer object (an index
to the kernel’s timer table)

– The sigevent structure tells the kernel about the type of event that
occurs when it “fires”

• To set the type of timer, use:

int timer_settime (timer_t timerid, int flags, struct itimerspec *value ,
struct itimerspec *oldvalue);

Using timers

ENSC 351: Lecture Set 6 29

– The timerid is from timer_create()

– The flags specify an absolute versus relative timer

• TIMER_ABSTIME = absolute

• Pass in zero to use a relative timer

• Recall the itimerspec structure from the lab:

struct itimerspec

{

struct timespec it_value; //The one-shot value

Using timers

ENSC 351: Lecture Set 6 30

struct timespec it_value; //The one-shot value

struct timespec it_interval; //The periodic reload value

}

– struct timespec has two values tv_sec, and tv_nsec;

• An example:

it_value.tv_sec = 1;

it_value.tv_nsec = 500000000;

it_interval.tv_sec = 0;

Using timers

ENSC 351: Lecture Set 6 31

it_interval.tv_sec = 0;

it_interval.tv_nsec = 0;

– Periodic or one-shot?

– Absolute or relative?

• clock_getres() POSIX

• clock_gettime() POSIX

• clock_settime() POSIX

Getting and setting the time

ENSC 351: Lecture Set 6 32

Rule of Thumb: Don’t mess with time!!

• clock_gettime() and clock_settime() are based on kernel

functions

• clock_settime() is a hard adjustment

– The clock’s current time gets changed immediately to the given value

Getting and setting the time

ENSC 351: Lecture Set 6 33

• This can have severe consequences, especially when you

move backwards in time (sometimes good/sometimes bad)

• *QNX has a function called ClockAdjust() allows you to

change the time slowly

– Over N clock ticks, increase/reduce the advancement by M nsec_inc

– Note you never move backwards, but you may slow down

• Some systems let you set the resolution of the clock:

– You can try to set the time resolution to something ridiculously small,
but the kernel will stop you

– Typically the range is 1ms to hundreds of us

Getting and setting the time

ENSC 351: Lecture Set 6 34

• One possible exception is a high-frequency counter built into

some processors

– This high accuracy counter is particularly useful for determining how
long a piece of code takes to execute (aka software profiling)

– No direct support in POSIX; you need an API

• If you use an SMP/CMP machine, be careful when profiling

– The “start time” could be on one CPU and the “finish time” could be
on another CPU giving you inconsistent results

– Remember Clocks are often local to a CPU and not synchronized
between CPUs

Getting and setting the time

ENSC 351: Lecture Set 6 35

between CPUs

– The solution is to force the thread to run on only one specific CPU

• Soon we’ll look at Signals, Interrupts and Device Drivers

What if you adjust the clock while using a timer?

• CLOCK_REALTIME:

– Fine with relative events: change the “real time”, but the

elapsed time is correct (e.g. sleep(50))

WARNING: Different “types” of Time

ENSC 351: Lecture Set 6 36

elapsed time is correct (e.g. sleep(50))

What if you adjust the clock while using a timer?

• TIMER_ABSTIME:

– Absolute time will result in the timer going off at the

absolute time in the new time base (aka the “new” real

Different “types” of Time

ENSC 351: Lecture Set 6 37

absolute time in the new time base (aka the “new” real

time)

– Problem for mutex timeouts:

• pthread_mutex_timedlock() uses an absolute time out value
(therefore, if the time gets adjusted, relative timeouts will be
wrong)

What if you adjust the clock while using a timer?

• CLOCK_MONOTONIC:

– Always increasing count

Different “types” of Time

ENSC 351: Lecture Set 6 38

– Based on real time

– Starts at zero

– Not interchangeable with CLOCK_REALTIME

– Will ensure that timer elapses after the required delay

even if CLOCK_REALTIME changes

• What function starts the timer?

Questions?

ENSC 351: Lecture Set 6 39

• What is the difference between

CLOCK_REALTIME and CLOCK_MONOTONIC?

• Why would we use CLOCK_MONOTONIC?

Questions?

ENSC 351: Lecture Set 6 40

• What is the maximum error in timing resolution for a

clock?

• How does QNX’s ClockAdjust() and POSIX’s

clock_settime differ?

Questions?

ENSC 351: Lecture Set 6 41

• What function would you use to profile software at

runtime in POSIX? What’s the problem? What’s

the solution?

• What are the possible notification schemes when a

timer goes off?

Questions?

ENSC 351: Lecture Set 6 42

• What type of structure do you use as part of the

notification scheme for a timer?

