Real Time and Embedded Systems

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: hitp://www.ensc.sfu.ca/~lshannon/courses/ensc351

Simon Fraser University Slide Set: 6
Date: October 27, 2011

Slide Set Overview

 (Clocks and Timers
— |ssues with Time
— Types of Timers and Notification Schemes

« Using Timers

ENSC 351: Lecture Set 6

Clocks and Timers

ENSC 351: Lecture Set 6

Clocks and Timers

« Your applications may need to respond:

— Periodically, or

— To external events, or

— After a specific period of time

ENSC 351: Lecture Set 6

Clocks and Timers

 Historically one CPU was dedicated to one user

— Programmers could use a function that loops and then wakes up
after a specific time

— A good example was the sleep() function, or high resolution
nanosleep() function

— You could calculate how fast your CPU was and the create your own
sleep()

ENSC 351: Lecture Set 6 5

Clocks and Timers

 Historically one CPU was dedicated to one user (cont’d)

— Since nothing else was running on that machine, wasting processing
time with an empty loop didn’t matter

— There was no other process trying to use the CPU so the sleep
function could use it all

— Multi-tasking was accomplished using interrupt routines that
triggered off of system hardware or hardware timers

ENSC 351: Lecture Set 6 6

Clocks and Timers

 The kernel reschedules threads due to

— A hardware interrupt
— A kernel call

— A fault (exception)

« For this discussion interrupts and kernel calls are what
matters

ENSC 351: Lecture Set 6

Clocks and Timers

* Nowadays, when a thread calls sleep(x)/nanosleep()

— The kernel puts the thread on hold for “x” seconds
— The thread is removed from the running queue

— The kernel starts a timer

ENSC 351: Lecture Set 6

Clocks and Timers

« The kernel also typically receives regular hardware
interrupts from the computer’s clock hardware

— 10ms/1ms resolution

— Every time one of these interrupts occurs, the kernel’'s clock ISR
increments its time-of-day variable by 10ms (1ms)

ENSC 351: Lecture Set 6 9

Clocks and Timers

« The kernel implements a 15-second timer by

1.

Setting a variable to current time plus 15 seconds

Comparing this variable inside the ISR to the current time-of-day

When the current time-of-day is the same or greater, restoring the
thread to the ready queue

ENSC 351: Lecture Set 6 10

Clocks and Timers

* Where does a clock interrupt come from?

ENSC 351: Lecture Set 6

11

Errors in Time

* The high-speed clock is being divided by an integer divisor

— The highspeed clock rate isn’t a multiple of 10ms

— Therefore, the ISR rate isn’t exactly 10ms (e.g. 9.999ms)
» 8.64s off per day |
» 5.04 minutes off per year

— Depending on the divisor , the error could be greater or smaller

— The kernel knows about this error and corrects for it

ENSC 351: Lecture Set 6 12

Independent of the integer value shown, the
real value is selected to be the next faster
value.

ENSC 351: Lecture Set 6 13

Timer Resolution

 If the clock tick (aka clock hardware ISR) is 10 ms, can a
thread sleep for only 4 ms

— No
— Recall the kernel sets a variable in the ISR to some value, either

« The current time of day (it's expired already and wakes up
immediately)

» The current time of day + 10ms (that’s the next clock tick)

» Therefore, the timing resolution is only as
good as the clock tick

ENSC 351: Lecture Set 6 14

Timing Resolution Error

« Some software people call this “Clock Jitter”

— Bad name for this concept

— In hardware, clock jitter is unwanted variation in phase, frequency or
amplitude (high frequency noise on the wire)

— However, if the clock tick resolution is 10ms, what is the problem
with requesting a 20ms timeout?

« Put another way, will you get exactly 20ms of delay?

ENSC 351: Lecture Set 6 15

Timing Resolution Error

 No!

— Remember, when a thread (TA) is blocked, it is taken off the running
queue

« Another thread (TB) at the same priority may start using the CPU

 After the 20ms expires, thread TA will be placed at the end of the
READY queue for that priority

« Depending on what thread is currently running, TA may not get to
run on the processor

 This also applies to interrupt handlers
— Key point

« Just because a thread is READY doesn’t mean it runs on the
CPU

ENSC 351: Lecture Set 6 16

Timing Resolution Error

 No!

— Reason two has to do with the resolution of the clock tick

— The request is asynchronous to the clock source

» Therefore the delay ranges from just over 20ms to just under
30ms

ENSC 351: Lecture Set 6 17

Timing Resolution Error

* Timing resolution error is unavoidable

— The only way to reduce the error is to reduce clock tick period,
increasing the resolution to within the system’s required tolerance

— This error only happens on the first clock tick and thus the actual
delay is the requested delay + some percentage of the clock tick
period

» For longer delays, this may not matter too much (i.e. a 10 ms
error on a 3-hour delay is probably negligible)

ENSC 351: Lecture Set 6 18

Types of Timers and Notification Schemes

ENSC 351: Lecture Set 6 19

Types of timers

« Relative Timers
— What we’ve been discussing so far

— Delay for a specified time

« Absolute timers
— “Time” started at January 1rst, 1970 00:00:00 GMT

— Delay until a specified time

« When using timers be sure to pay attention to which one
you are using

ENSC 351: Lecture Set 6 20

Types of timers

Periodic timers
— Goes off after a set time period (e.g. the clock tick timer)

— Keeps going until stopped

One-shot timers
— Goes off just once

— Used to indicate a specific event

Either way, the kernel stores the absolute time the timer is
supposed to go off and the clock ISR compares it against
the current time-of-day every time it fires

ENSC 351: Lecture Set 6 21

Notification Schemes

 Instead of being blocked and waiting for the timer to go off,
the thread can do something

— It can keep running on the CPU

— The kernel must somehow notify the thread when the desired

 Possible time out notification schemes are
— Send a Signal

— Notify a specific thread using a signal (Linux only)

— Create a Thread — DON'T DO THIS!

ENSC 351: Lecture Set 6 22

Notification Schemes

 All of the notification schemes require use of the sigevent
structure

* The sigev_notify member determines the notification type
— SIGEV_NONE: Don’t asynchronously notify when the timer expires

— SIGEV_SIGNAL* : Generate the signal sigev_signo when the timer
expires

— SIGEV_THREAD_ID: Like SIGEV_SIGNAL, but sends a signal to a
specific thread

— SIGEV_THREAD: Creates a thread
« Check out:

http://kernel.org/doc/man-pages/online/pages/man2/timer_create.2.html

ENSC 351: Lecture Set 6 23

Notification Schemes

« Thread notification can be dangerous!!

— Every time the timer fires, a new thread is created!!

— If the timer fires too often and this could chew up all the available
system resources

— If there are higher priority threads waiting to run (use this resource),
you could effectively be blocking (starving them)

* Note there are macros designed to fill in the notification
structures

ENSC 351: Lecture Set 6 24

Notification Schemes

 Signal notification
— Working on a task, but don’'t want to do it forever (e.g. calculating pi)

— If you don’t know how long you can wait without slowing up the
system, use a signal/signal handler combination

« Sigwait() is the cheapest solution if there is no channel and
the application can block

ENSC 351: Lecture Set 6 25

Using Timers

ENSC 351: Lecture Set 6

26

Using timers

« To use atimer, you must:
1. Decide how you wish to be notified (signal/signal to specific
thread/thread)
2. Create the notification structure (sig_event)
3. Create the timer object

4. Set the timer to be relative/absolute and one-shot/periodic

5. Start the timer

ENSC 351: Lecture Set 6

27

Using timers

« To create a timer, use:

int timer_create (clockid_t clock id, struct sigevent *event, timer _t
*timerid);

— Set clock id to CLOCK REALTIME

— The timerid acts as the handle to that specific timer object (an index
to the kernel’s timer table)

— The sigevent structure tells the kernel about the type of event that
occurs when it “fires”

ENSC 351: Lecture Set 6 28

Using timers

« To set the type of timer, use:

int timer_settime (timer_t timerid, int flags, struct itimerspec *value
struct itimerspec *oldvalue);

— The timerid is from timer_create()

— The flags specify an absolute versus relative timer
 TIMER_ABSTIME = absolute

 Pass in zero to use a relative timer

ENSC 351: Lecture Set 6 29

Using timers

* Recall the itimerspec structure from the lab:

struct itimerspec

{

struct timespec it_value; //The one-shot value

struct timespec it_interval; //The periodic reload value

— struct timespec has two values tv_sec, and tv_nsec;

ENSC 351: Lecture Set 6 30

Using timers

* An example:

it value.tv_sec = 1;
it_value.tv_nsec = 500000000;
it_interval.tv_sec = 0;

it_interval.tv_nsec = 0;
— Periodic or one-shot?

— Absolute or relative?

ENSC 351: Lecture Set 6

31

Getting and setting the time

« clock _getres() POSIX
» clock _gettime() POSIX
 clock_settime() POSIX

Rule of Thumb: Don’t mess with time!!

ENSC 351: Lecture Set 6

32

Getting and setting the time

clock gettime() and clock settime() are based on kernel
functions

clock settime() is a hard adjustment

— The clock’s current time gets changed immediately to the given value

This can have severe consequences, especially when you
move backwards in time (sometimes good/sometimes bad)

*QNX has a function called ClockAdjust() allows you to
change the time slowly

— QOver N clock ticks, increase/reduce the advancement by M nsec _inc

— Note you never move backwards, but you may slow down

ENSC 351: Lecture Set 6 33

Getting and setting the time

« Some systems let you set the resolution of the clock:

— You can try to set the time resolution to something ridiculously small,
but the kernel will stop you

— Typically the range is 1ms to hundreds of us

* One possible exception is a high-frequency counter built into
SOMe processors

— This high accuracy counter is particularly useful for determining how
long a piece of code takes to execute (aka software profiling)

— No direct support in POSIX; you need an API

ENSC 351: Lecture Set 6 34

Getting and setting the time

If you use an SMP/CMP machine, be careful when profiling

— The “start time” could be on one CPU and the “finish time” could be
on another CPU giving you inconsistent results

— Remember Clocks are often local to a CPU and not synchronized
between CPUs

— The solution is to force the thread to run on only one specific CPU

Soon we’'ll look at Signals, Interrupts and Device Drivers

ENSC 351: Lecture Set 6 35

WARNING: Different “types” of Time

What if you adjust the clock while using a timer?

« CLOCK_REALTIME:

— Fine with relative events: change the “real time”, but the
elapsed time is correct (e.g. sleep(50))

ENSC 351: Lecture Set 6 36

Different “types” of Time

What if you adjust the clock while using a timer?

« TIMER_ABSTIME:

— Absolute time will result in the timer going off at the
absolute time in the new time base (aka the “new” real
time)

— Problem for mutex timeouts:

» pthread_mutex_timedlock() uses an absolute time out value
(therefore, if the time gets adjusted, relative timeouts will be
wrong)

ENSC 351: Lecture Set 6 37

Different “types” of Time

What if you adjust the clock while using a timer?

« CLOCK_MONOTONIC:

— Always increasing count

— Based on real time

— Starts at zero

— Not interchangeable with CLOCK REALTIME

— Will ensure that timer elapses after the required delay
even if CLOCK_REALTIME changes

ENSC 351: Lecture Set 6 38

Questions?

« What function starts the timer?

« What is the difference between
CLOCK REALTIME and CLOCK MONOTONIC?

ENSC 351: Lecture Set 6 39

Questions?

* Why would we use CLOCK_MONOTONIC?

« What is the maximum error in timing resolution for a
clock?

ENSC 351: Lecture Set 6 40

Questions?

* How does QNX'’s ClockAdjust() and POSIX’s
clock settime differ?

« What function would you use to profile software at
runtime in POSIX? What's the problem? What's

the solution?

ENSC 351: Lecture Set 6 41

Questions?

« What are the possible notification schemes when a
timer goes off?

« What type of structure do you use as part of the
notification scheme for a timer?

ENSC 351: Lecture Set 6 492

