
Real Time and Embedded Systems

by

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Slide Set: 7

Date: November 10, 2011

Simon Fraser UniversitySimon Fraser University

Slide Set Overview

• Interrupts

– Let’s recall your assembly interrupt “past”

ENSC 351: Lecture Set 7 2

– Now let’s think about interrupts in our Linux

context

Recalling your previous experience with

Interrupts

ENSC 351: Lecture Set 7 3

Interrupts

• What do you recall from your assembly/microprocessor

days?

– PIC – Programmable Interrupt Controller

Hardware Interrupts

ENSC 351: Lecture Set 7 4

– IRQ – Interrupt ReQuest

– IACK – Interrupt ACKnowledge

• What do you recall from your assembly/microprocessor

days?

– ISR – Interrupt Service Routine

Hardware Interrupts

ENSC 351: Lecture Set 7 5

– IVT – Interrupt Vector Table

– NMI – Non-Maskable Interrupts

• What do you recall from your assembly/microprocessor

days?

– Anything else?

Hardware Interrupts

ENSC 351: Lecture Set 7 6

Hardware Interrupts – Basic Hardware setup

ENSC 351: Lecture Set 7 7

Hardware Interrupts – Daisy Chaining

ENSC 351: Lecture Set 7 8

Hardware Interrupts – The Sequence

ENSC 351: Lecture Set 7 9

Types of Interrupts – Level - Sensitive

ENSC 351: Lecture Set 7 10

Types of Interrupts – Edge - Sensitive

ENSC 351: Lecture Set 7 11

Types of Interrupts – Edge - Sensitive

ENSC 351: Lecture Set 7 12

• Interrupt Priority

• Interrupt Latency

Things to worry about

ENSC 351: Lecture Set 7 13

• Responding to the correct interrupt

• Debouncing Hardware

– Done for you?

– Done by you?

• ISR duration – how long does it take to clear the source of

the interrupt?

• Anything Else?

Things to worry about

ENSC 351: Lecture Set 7 14

• The interrupt runs at a priority higher than any software

priority

• We use our “favourite” structure to communicate indicate

that an interrupt has happened to the “normal” threads

Interrupts in Linux

ENSC 351: Lecture Set 7 15

that an interrupt has happened to the “normal” threads

– sigevent

• Variables used in ISRs and threads need to be declared as

volatile so that they are not cached

• Stack space for ISRs is very limited

Interrupts in Linux- Control Flow

ENSC 351: Lecture Set 7 16

Interrupts in Linux- Control Flow

ENSC 351: Lecture Set 7 17

• Protect variables used by both the ISR and normal threads

(remember we have SMT/SMP/CMP machines now)

• You can’t call printf

Interrupts- Things to Remember

ENSC 351: Lecture Set 7 18

• in*/out* functions may be helpful

• May need to make variables volatile

• No everyone can add interrupts in all systems

– May require I/O privity depending on the system (e.g. QNX**)

• Interrupts

– Runs at higher than thread level priority

– Could crash the system if you do it wrong

– Hard to debug

Interrupts- Things to Remember

ENSC 351: Lecture Set 7 19

– Unless interrupts are disabled (locked), will run when it is triggered

• May require root access aka “I/O privity”

– In other words, only users writing/running apps from the root account
(with setuid() to root) can do this

• What is the necessary sequence of steps to guarantee the

proper operation of interrupts in assembly?

Questions?

ENSC 351: Lecture Set 7 20

• What’s the priority level of ISRs?

• Why do interrupt latency and duration matter?

Questions?

ENSC 351: Lecture Set 7 21

• What’s the difference between level and edge triggered

interrupts

