
Real Time and Embedded Systems

by

Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc351

Slide Set: 8

Date: November 15, 2011

Simon Fraser UniversitySimon Fraser University

Slide Set Overview

• More on Interrupts in Linux

ENSC 351: Lecture Set 8 2

Check out chapter 10 of the Linux Device

Driver book for even more details

ENSC 351: Lecture Set 8 3

Driver book for even more details

• Linux handles hardware interrupts similar to signals in user

space.

• Generally, a driver just registers a handler for its device’s

interrupts that will handle them properly when they occur.

Linux Interrupts

ENSC 351: Lecture Set 8 4

interrupts that will handle them properly when they occur.

• However, interrupt handlers are rather limited in the actions

they can perform – this effects how they run.

• I’ll be going through the discussion of the parallel port

example from the book

– Also commonly called a printer port

Parallel Port

ENSC 351: Lecture Set 8 5

• IBM PC systems used to allocate their first three parallel ports according
to the following table (from Wikipedia):

PORT

NAME
Interrupt # Starting I/O Ending I/O

LPT1 IRQ 7 0x378 0x37f

LPT2 IRQ 5 0x278 0x27f

LPT3 IRQ 2 0x3bc 0x3bf

• The traditional commandline for unix/linux to print is: lpr (you can
cheque the print queue with lpq)

– By default, you print to LPT1

• If an LPTx slot is unused, the port addresses of the other LPT ports may
be moved up.

Parallel Port

ENSC 351: Lecture Set 8 6

• However, the IRQ lines remain fixed (they are fabbed into the PCB
board)

PORT

NAME
Interrupt # Starting I/O Ending I/O

LPT1 IRQ 7 0x378 0x37f

LPT2 IRQ 5 0x278 0x27f

LPT3 IRQ 2 0x3bc 0x3bf

• The printer driver is known as the “lp” driver (lpr, lpq, …)

• The parallel port uses an interrupt to inform the lp driver that it is ready
to accept the next character in the buffer to print

Linux Interrupts

ENSC 351: Lecture Set 8 7

• Remember, the hardware system has to be configured to generate
interrupts before it will happen

• The parallel standard states that setting bit 4 of port 2
(0x37a/0x27a/Base Address+2…) enables interrupt reporting.

– You can use outb to set the bit

• With interrupts enabled on the device, the parallel port will

generate an interrupt on Pin 10 (called its ACK bit)

• It is rising edge activated

Linux Interrupts

ENSC 351: Lecture Set 8 8

• However, just because the device generates interrupts,

doesn’t mean they are handled the way you want.

• By default, linux will simply acknowledge the interrupt and

ignore it.

• With interrupts enabled on the device, the parallel port will

generate an interrupt on Pin 10 (called its ACK bit)

• It is rising edge activated

Linux Interrupts

ENSC 351: Lecture Set 8 9

• However, just because the device generates interrupts,

doesn’t mean they are handled the way you want.

• By default, linux will simply acknowledge the interrupt and

ignore it.

• Therefore, you also need to configure a software “handler”

to service the interrupt

• Remember, there are only so many interrupt pins on the

Linux Interrupts

ENSC 351: Lecture Set 8 10

CPU :

– If a device doesn’t need interrupts, don’t waste them

• The kernel keeps a registry of interrupt lines

– It’s like the I/O registry

– Remember your Interrupt Vector Table

• The device has to request an interrupt channel (i.e. IRQ)

before using it and is expected to release it when done.

• In many cases, a driver may have to share an interrupt line

Linux Interrupts

ENSC 351: Lecture Set 8 11

with other drivers

– recall daisy chaining

• Checkout the functions in <linux/interrupt.h>

• Checkout the functions in <linux/interrupt.h>:

int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void

*, struct pt_regs *), unsigned long flags, const char

Linux Interrupts

ENSC 351: Lecture Set 8 12

*dev_name, void *dev_id);

void free_irq(unsigned int irq, void *dev_id);

• Checkout the functions in <linux/interrupt.h>:

void free_irq(unsigned int irq, void *dev_id);

Linux Interrupts

ENSC 351: Lecture Set 8 13

• This is the easy function with simple parameters, so we’re

going to focus on request_irq

• Checkout the functions in <linux/interrupt.h>:

int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void

*, struct pt_regs *), unsigned long flags, const char

Linux Interrupts

ENSC 351: Lecture Set 8 14

*dev_name, void *dev_id);

• request_irq returns 0 to indicate success or a negative error

code, as usual.

– For example, it may return -EBUSY to indicate that another device
driver is currently using the requested interrupt lline

• request_irq’s arguments are:

– unsigned int irq,

– irqreturn_t (*handler)(int, void *, struct pt_regs *),

Linux Interrupts

ENSC 351: Lecture Set 8 15

– unsigned long flags,

– const char *dev_name,

– void *dev_id);

• The flag bits that can be set are:

– SA_INTERRUPT

– SA_SHIRQ

Linux Interrupts

ENSC 351: Lecture Set 8 16

– SA_SAMPLE_RANDOM

• How do you request an interrupt channel in linux?

Questions?

ENSC 351: Lecture Set 8 17

• What function frees an interrupt channel?

• Why may you need to free an interrupt channel?

Questions?

ENSC 351: Lecture Set 8 18

• Be ready for “fast and slow handlers” and “interrupt

sharing”…

