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Abstract 
Post-silicon debug is becoming a major issue for Integrated 
Circuit (IC) designers.  Proposals are emerging to help 
reduce the debug time of ICs.  Modern ICs, however, are 
extremely large and complex, and they present a number of 
critical challenges to an effective debug solution. Multi 
clock and power domain issues, in particular, present 
significant challenges to existing solutions.  In this paper 
we describe how our debug infrastructure uses a system-
level design approach to address these difficult issues.  By 
using our debug insertion tool and special-purpose 
hardware IP, IC designers can create debug solutions that 
are tuned to their specific designs and debug requirements. 
Debug functionality is integrated using a hierarchical, 
scalable, plug-and-play approach.  The infrastructure is 
flexible enough to cleanly support chips with multiple clock 
and power domains, and complex design hierarchies while 
minimizing area, clocking and routing impacts. 
 
1. Introduction 

The growing time and effort required for post-silicon 
debug and validation has become a major concern in the 
semiconductor industry [1,2,3,4]. Moore’s Law scaling 
drives this problem. As each new process node reduces 
transistor cost, and, therefore, drives further functional 
integration [5], the post-silicon validation problem grows 
on three fronts: 1) the increase in overall functionality 
increases the total number of features that must operate 
correctly; 2) the increase in integration necessitates 
heterogeneous, complex, error-prone, feature interaction; 
and 3) limited external I/O significantly reduces the 
external visibility into the operation of the system.  These 
challenges have led to a number of proposals to assist of the 
debug of post-silicon systems [6,7,8,9,10,11].  Although 
these proposals handle specific aspects of the debug 
process, critical challenges remain.  In this paper we focus 
on the integration of our debug infrastructure into complex 
multi clock and power domain ICs.  We describe the 
challenges and explain how our infrastructure addresses 
these challenges.  

 
Most new ICs have at least two or three different clock 

domains, and some have as many as 100 different clock 

domains [12,13].  In addition, to reduce power 
consumption, many ICs adopt complex power saving 
techniques such as fine- and coarse-grained clock gating, 
power gating and dynamic clock and voltage scaling [14].  
To be effective a post-silicon debug infrastructure must not 
only integrate simply and effectively into these ICs, but 
they must also be able to assist in the complex task of 
debugging issues that arises because of these new features. 

 
Figure 1: Instrumented Integrated Circuit 

Our system-level approach has allowed us to create a 
debug infrastructure specifically to address the needs of 
complex, hierarchical, multi clock and power domain ICs.  
Our new infrastructure, shown in Figure 1, makes use of a 
flexible debug router, a robust, handshake-driven debug 
channel, hierarchy-aware debug insertion tools and a 
powerful timestamp synchronization algorithm to provide 
the following key benefits: 

 
1. Power/clock gating tolerant debug fixtures. 
2. Elimination of global debug infrastructure clocking. 
3. Scalable, low-overhead cross-triggering. 
4. Plug-and-play, clock-aware, debug connectivity. 
5. Hierarchical integration of debug fixtures. 
6. Low impact global routing. 
7. Elimination of global debug timing constraints. 

 



 

The remainder of this paper is organized as follows.  In 
Section 2, we elaborate on the challenges of creating an 
effective post-silicon debug solution.  Then, in Section 3, 
we present an overview of the operation and usage model 
for our debug infrastructure.  In Section 4, we describe the 
details debug channel, and in Section 5 we summarize the 
details of two of our debug fixtures. Finally we conclude 
with a summary in Section 6. 
 
2. Challenges 

Creating an effective post-silicon debug solution for 
complex multi clock and power domain ICs presents a 
number of challenges, these are explained in detail in the 
subsections below. 
 
2.1 Hierarchical Design and Third-party IP 

The design of complex ICs requires the efforts of large 
engineering teams.  To manage this complexity ICs are 
normally implemented hierarchically.  Design blocks are 
connected to form subsystems and subsystems are 
connected to create large, complex ICs.  These blocks and 
subsystems are created by different engineers, often in 
different locations, and in the case of third-party IP, even in 
different companies.  To be effective, a debug solution must 
fit this paradigm.  Engineers working on different aspects of 
an IC often have limited understanding of the details of 
other blocks in a design.  These designers must, therefore, 
be able to deliver their blocks with design-specific debug 
capabilities built-in, and these debug capabilities must be 
able to inter-operate, seamlessly, with debug capabilities in 
others parts of the chip.  Furthermore, designers must be 
able to “close-off” their designs, such that they don’t need 
to be modified as they are used (and often, re-used) in 
different subsystems and ICs. 
 
2.2 Clock Domains and Global Synchronization 

The size, complexity and heterogeneous nature of the 
systems implemented in modern ICs has driven the need 
support multiple clocks domains on a single IC.  Often, 
design blocks must operate at a prescribed “line-rate” to 
meet the requirements of an industry-standard interface.  In 
addition, the power and performance requirements of 
different designs often demand different clock rates.  Debug 
solutions must not only be aware of these issues since they 
are the cause of many bugs, but must fit naturally into these 
ICs without imposing onerous clocking and global 
synchronization requirements on the system as a whole.   
 
2.3 Clock and Power Gating 

In order to maintain power dissipation budgets while 
increasing transistor counts, mainstream ICs are now 
making wide use of the advanced power-management 
techniques such as clock and power gating.  In general, 
these techniques allow the systems to “turn-off” parts of the 
IC that are not being used, thereby limiting the power 

dissipation.  Either software or hardware may statically or 
dynamically control this gating.  Like multiple clock 
domains, these features are often the source of complex 
bugs.  An effective debug solution must be tolerant to the 
effects of clock and power gating, and ideally will provide 
an effective means to debug issues relating to clock and 
power gating. 
 
2.4 Scalable Cross-triggering and Synchronization 

Many of the most complex and hard-to-find bugs in ICs 
are the result of interactions between different blocks and 
subsystems, which are often in different clock domains.  To 
be effective a debug solution must support the 
synchronization of debug events within these different 
clock domains; this is called cross-triggering.  As systems 
grow large it is critical that a debug system scales such that 
the resources and design effort required for cross-triggering 
do not become unsupportable. 
 
2.5 Global Routing  

Global routing can be a challenge in modern IC design 
for a number of reasons.  The effects of process scaling 
have increased the proportion of overall circuit delay 
attributable to wire delay, making the timing of global 
routing more unpredictable.  In addition, signal integrity 
issues and on-die process variation make the process of 
managing the timing of large numbers of global wires 
problematic.  For these reasons it is important that a debug 
infrastructure has a minimum impact on global routing of 
an IC.  To do this the infrastructure must minimize the total 
number of wires routed at the top-level of the device and 
not impose difficult timing constraints. 
 

 
Figure 2: Debug Fixtures 

3. Overview  
 
3.1 Basic Theory of Operation 

To address the challenges outlined in Section 2 we have 
created a debug infrastructure that uses a special-purpose 
network to enable communication between any number of 
independent debug stations, as shown in Figure 1. The 
communication between stations is done using a narrow (8-
bit) handshake-driven debug channel.  Each station 
connects to one or more debug fixtures, using an industry 
standard AMBA APB interface as shown in Figure 2. These 



 

debug fixtures implements debug tasks such as data capture, 
event generation, signal selection and hardware assertions.  
Each of the station and fixture combinations may each 
operate at a different clock frequency without the need for a 
global clock.  The topology of the network can be easily 
crafted to meet the specific clocking, power-gating and 
global routing requirements of each target IC.  Each station 
implements an extendable, memory-mapped address space 
that is accessible  (through a JTAG probe) to our off-chip 
software, or to IC-specific on-chip software. The network 
uses an intelligent router and auto-enumeration to ensure 
correct operation through clock and power gating events.  
In addition the network supports in-band, asynchronous 
event generation and to enable scalable, robust cross-
triggering. 
 
3.2 Overall Usage Model 
 
3.2.1 Design phase  

The debug infrastructure itself is both planned, and 
automatically incorporated into the design, using our 
software tools.  The software tools operate hierarchically 
and can be run by different users at the block, subsystem 
and chip-level.  The outputs from one level of hierarchy are 
passed “up” to the next level. 

 
Our Debug Planner Tool helps designers to plan the 

number of debug stations, the network topology, the 
number of debug fixtures and the configuration of these 
debug fixtures by providing detailed area overhead analysis 
along with estimates to the relative debug effectiveness of 
these choices.  In addition, given a Verilog or VHDL 
design, our tool helps determines which signals are likely to 
be of high value during debug.  The user can then use this 

information to guide the selection of the specific 
instantiation of architecture for their specific chip.   

 
Our Debug Instrumentor Tool uses the debug plan 

generated by the Debug Planner to automatically modify 
the user’s design (at the RTL level) by adding the 
appropriate debug circuitry to implement the debug 
infrastructure.  At the same time the Debug Instrumentor 
automatically generates test benches, timing verification 
scripts, and formal analysis scripts to ensure that the 
changes have been made correctly. 
 
3.2.2 Debug phase 

Once the chip has been fabricated, the validation 
engineer can use our Debug Manager Software to access 
the debug fixtures (over the JTAG port), as shown in Figure 
3.  Depending on the debug fixtures implemented in the 
infrastructure and their configuration, the users can perform 
different debug tasks.  These tasks include setting up data 
captures, unloading test information, setting up event 
triggers, cross-triggers, etc.  Note that all debug operations 
occur at the native operating frequency of each station, with 
the debug channel handling inter-clock synchronization 
issues. 
 
4. Debug Channel Details 

Figure 4 shows an instantiation of our debug 
infrastructure on two integrated circuits.  In this section, we 
first describe how our infrastructure can be instantiated in a 
relatively simple chip as in Figure 4(a), and then show how 
the infrastructure is flexible enough to be used in complex 
chips such as that in Figure 4(b). 

 
Figure 3: Software to Debug Fixture Connection



 

4.1  Single Ring Instantiations 
Figure 4(a) represents a relatively simple integrated 

circuit in which the circuit under debug consists of two 
subsystems.  The subsystems can use the same clock or 
different clocks; however, both subsystems must be in the 
same power island.  In all cases, the integrated circuit is 
instrumented with an interface adapter and a debug router.  
In this case there is one station for each subsystem.  In 
general there is no specific requirement for a one-to-one 
mapping between subsystems.  In this section, we focus on 
the router and interconnect between the stations (debug 
channel); the debug fixtures connected to the stations will 
be discussed in Section 5. 

 
The heart of the infrastructure is the debug router.  

During debug, the Manager Software communicates 
directly with the debug fixtures through the chip’s JTAG 
port using the debug router.  The user can configure the 
router in one of several modes, and can use the router as a 
portal to send and receive information from debug fixtures 
within the design subsystems. 

 
The router communicates directly with the debug 

stations.  The debug stations are arranged in a uni-
directional ring (in more complex chips, several rings may 
be used) and are connected using a light-weight packet 
protocol.  Since the subsystems may be operating on 
different clocks (and a different clock than the router), a 
robust hand-shaking protocol is used to ensure that correct 
transfer of data.  This clock-independence solves many of 

the challenges of creating a debug infrastructure for a 
complex IC.  

 
As will be described in Section 5, each station can be 

configured with different debug fixtures to collect data 
under specified conditions, and complex trigger operations 
can be set up.  Once the user has configured each station, 
the chip can be run until the specified trigger condition 
occurs.  At that point, data can be read from the station 
(possibly data that was stored in a trace buffer during the 
run of the integrated circuit) and this data can be passed 
through the JTAG port to advanced analysis software 
running on an attached PC.  The Analysis Software uses this 
information (possibly combined with additional information 
obtained from additional chip runs) to guide the engineer in 
validating the behaviour of the integrated circuit and 
uncovering bugs. 

 
An important aspect of our infrastructure is the nature in 

which the user communicates with the debug stations.  All 
such communication occurs using lightweight packets over 
debug channels controlled by the debug router.  This makes 
the infrastructure flexible, allowing additional or more 
complex debug stations to be inserted without changing the 
overall debug flow or architecture.  

 
 

 
a)  Simple SoC                                       b) Complex SoC with multiple power islands 

Figure 4: Debug Infrastructure Instantiations 

 



 

4.2  Complex Instantiations 
Figure 2(b) shows a more complex integrated circuit 

with multiple power islands.  As before, each subsystem is 
instrumented with a single debug station.  Rather than 
arranging the stations in a single ring, however, here we use 
multiple rings.  This is critical; the use of multiple rings 
means that the debug circuitry will still operate if part of the 
chip is powered down during normal operation (as is 
common in chips targeting the low power domain).  If one 
power island is powered down, the stations in the remaining 
islands can continue to collect data and monitor their trigger 
signals.  The Manager Software and the debug router 
hardware automatically manage these events. 

 
The partitioning of the debug infrastructure into 

multiple debug stations is performed by the integrated 
circuit designer using the Debug Planner.  Designers 
already know how the chip is partitioned into islands, and 
the major subsystem breakdown of their chip, so we allow 
the designer to use this information in creating a 
customized debug solution for their specific chip. 
 
5. Debug Fixtures Details 

Our infrastructure is flexible enough to support a variety 
of debug fixtures and the interface between the stations and 
the fixtures can easily be extended in the future.  Although 
the details of the debug fixtures are not the focus of this 
paper, we will summarize the functionality of two fixtures 
(a trace buffer and a hierarchical debug access network) to 
help build an overall picture of the infrastructure. 
 
5.1 Trace Buffer 

The trace buffer based debug fixture gathers data from 
the subsystem under debug, and then stores this information 
in a local trace buffer.  Our trace buffers employ a number 
of advanced techniques to maximize the amount of data that 
can be stored in given amount of memory.  These 
techniques include lossless compression algorithms, 
arbitrary bit-packing of data, programmable, selective data 
capture capabilities, and advanced clock encoding 
methodologies.  In addition, the fixture monitors selected 
trigger signals, and participates with other fixtures in the 
overall trigger detection using the cross-triggering 
techniques discussed earlier. 
 
5.3 Hierarchical Debug Access Network 

The debug access network connects selected nodes in 
the circuit under debug to the debug logic.  There are 
several ways to implement such a network ranging from a 
wide multiplexer to a concentrator network (as in [9]).  In 
all cases, the goal is to provide access to as many distinct 
signals within the subsystem under test as possible in a way 
that is compatible with the hierarchical design 
methodologies used in modern ICs. 
 

 
Figure 5: Debug Access Network 

 
The hierarchical capabilities of our debug access 

network are as shown in Figure 3.  Subsystems are usually 
designed using by teams, where each member is responsible 
for only a small block.  The designer of the block has 
insight into which nodes within his or her block would be 
useful to have access to during debug, but usually has very 
little insight into which signals in other blocks are useful.  
Even the top-level designer likely does not have as much 
insight into architecturally significant nodes within each 
block as do the individual designers.  Using our 
infrastructure, each block designer would identify a small 
number of nodes within his or her block that is important.  
These signals would then be combined using a higher-order 
network, possibly along with other signals not incorporated 
into the subblocks, or not selected by the individual 
designers.  This essentially decouples the signal selection 
task within each block, but provides a unified framework 
for accessing these signals.   

 
Our debug instrumentor can be employed repeatability 

to insert the access networks at any level of hierarchy.  In 
addition any level of hierarchy can be fully tested as a 
stand-alone entity, allowing design blocks to be “closed-
off” for reuse in other subsystems and ICs and eliminating 
the need to re-open existing blocks to add debug 
capabilities.   
 
6. Conclusions 

In this paper, we have described a debug infrastructure 
for the post-silicon debug of complex integrated circuits.  
Our architecture supports chips with multiple clock 
domains, multiple voltage islands and complex design 
hierarchies.  The infrastructure is supported by software 
tools to plan and insert the debug circuitry.  During the 



 

debug phase, software running on a external PC controls the 
infrastructure and executes off-chip analysis algorithms.  
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