

Post-Silicon Debug of Complex Multi Clock
and Power Domain ICs

Bradley R. Quinton, Andrew M. Hughes

Veridae Systems, Inc.
Vancouver, Canada

{bradq,andrewh}@veridae.com

Steven J.E. Wilton
University of British Columbia

Vancouver, Canada
stevew@ece.ubc.ca

Abstract
Post-silicon debug is becoming a major issue for Integrated
Circuit (IC) designers. Proposals are emerging to help
reduce the debug time of ICs. Modern ICs, however, are
extremely large and complex, and they present a number of
critical challenges to an effective debug solution. Multi
clock and power domain issues, in particular, present
significant challenges to existing solutions. In this paper
we describe how our debug infrastructure uses a system-
level design approach to address these difficult issues. By
using our debug insertion tool and special-purpose
hardware IP, IC designers can create debug solutions that
are tuned to their specific designs and debug requirements.
Debug functionality is integrated using a hierarchical,
scalable, plug-and-play approach. The infrastructure is
flexible enough to cleanly support chips with multiple clock
and power domains, and complex design hierarchies while
minimizing area, clocking and routing impacts.

1. Introduction

The growing time and effort required for post-silicon
debug and validation has become a major concern in the
semiconductor industry [1,2,3,4]. Moore’s Law scaling
drives this problem. As each new process node reduces
transistor cost, and, therefore, drives further functional
integration [5], the post-silicon validation problem grows
on three fronts: 1) the increase in overall functionality
increases the total number of features that must operate
correctly; 2) the increase in integration necessitates
heterogeneous, complex, error-prone, feature interaction;
and 3) limited external I/O significantly reduces the
external visibility into the operation of the system. These
challenges have led to a number of proposals to assist of the
debug of post-silicon systems [6,7,8,9,10,11]. Although
these proposals handle specific aspects of the debug
process, critical challenges remain. In this paper we focus
on the integration of our debug infrastructure into complex
multi clock and power domain ICs. We describe the
challenges and explain how our infrastructure addresses
these challenges.

Most new ICs have at least two or three different clock

domains, and some have as many as 100 different clock

domains [12,13]. In addition, to reduce power
consumption, many ICs adopt complex power saving
techniques such as fine- and coarse-grained clock gating,
power gating and dynamic clock and voltage scaling [14].
To be effective a post-silicon debug infrastructure must not
only integrate simply and effectively into these ICs, but
they must also be able to assist in the complex task of
debugging issues that arises because of these new features.

Figure 1: Instrumented Integrated Circuit

Our system-level approach has allowed us to create a
debug infrastructure specifically to address the needs of
complex, hierarchical, multi clock and power domain ICs.
Our new infrastructure, shown in Figure 1, makes use of a
flexible debug router, a robust, handshake-driven debug
channel, hierarchy-aware debug insertion tools and a
powerful timestamp synchronization algorithm to provide
the following key benefits:

1. Power/clock gating tolerant debug fixtures.
2. Elimination of global debug infrastructure clocking.
3. Scalable, low-overhead cross-triggering.
4. Plug-and-play, clock-aware, debug connectivity.
5. Hierarchical integration of debug fixtures.
6. Low impact global routing.
7. Elimination of global debug timing constraints.

The remainder of this paper is organized as follows. In
Section 2, we elaborate on the challenges of creating an
effective post-silicon debug solution. Then, in Section 3,
we present an overview of the operation and usage model
for our debug infrastructure. In Section 4, we describe the
details debug channel, and in Section 5 we summarize the
details of two of our debug fixtures. Finally we conclude
with a summary in Section 6.

2. Challenges

Creating an effective post-silicon debug solution for
complex multi clock and power domain ICs presents a
number of challenges, these are explained in detail in the
subsections below.

2.1 Hierarchical Design and Third-party IP

The design of complex ICs requires the efforts of large
engineering teams. To manage this complexity ICs are
normally implemented hierarchically. Design blocks are
connected to form subsystems and subsystems are
connected to create large, complex ICs. These blocks and
subsystems are created by different engineers, often in
different locations, and in the case of third-party IP, even in
different companies. To be effective, a debug solution must
fit this paradigm. Engineers working on different aspects of
an IC often have limited understanding of the details of
other blocks in a design. These designers must, therefore,
be able to deliver their blocks with design-specific debug
capabilities built-in, and these debug capabilities must be
able to inter-operate, seamlessly, with debug capabilities in
others parts of the chip. Furthermore, designers must be
able to “close-off” their designs, such that they don’t need
to be modified as they are used (and often, re-used) in
different subsystems and ICs.

2.2 Clock Domains and Global Synchronization

The size, complexity and heterogeneous nature of the
systems implemented in modern ICs has driven the need
support multiple clocks domains on a single IC. Often,
design blocks must operate at a prescribed “line-rate” to
meet the requirements of an industry-standard interface. In
addition, the power and performance requirements of
different designs often demand different clock rates. Debug
solutions must not only be aware of these issues since they
are the cause of many bugs, but must fit naturally into these
ICs without imposing onerous clocking and global
synchronization requirements on the system as a whole.

2.3 Clock and Power Gating

In order to maintain power dissipation budgets while
increasing transistor counts, mainstream ICs are now
making wide use of the advanced power-management
techniques such as clock and power gating. In general,
these techniques allow the systems to “turn-off” parts of the
IC that are not being used, thereby limiting the power

dissipation. Either software or hardware may statically or
dynamically control this gating. Like multiple clock
domains, these features are often the source of complex
bugs. An effective debug solution must be tolerant to the
effects of clock and power gating, and ideally will provide
an effective means to debug issues relating to clock and
power gating.

2.4 Scalable Cross-triggering and Synchronization

Many of the most complex and hard-to-find bugs in ICs
are the result of interactions between different blocks and
subsystems, which are often in different clock domains. To
be effective a debug solution must support the
synchronization of debug events within these different
clock domains; this is called cross-triggering. As systems
grow large it is critical that a debug system scales such that
the resources and design effort required for cross-triggering
do not become unsupportable.

2.5 Global Routing

Global routing can be a challenge in modern IC design
for a number of reasons. The effects of process scaling
have increased the proportion of overall circuit delay
attributable to wire delay, making the timing of global
routing more unpredictable. In addition, signal integrity
issues and on-die process variation make the process of
managing the timing of large numbers of global wires
problematic. For these reasons it is important that a debug
infrastructure has a minimum impact on global routing of
an IC. To do this the infrastructure must minimize the total
number of wires routed at the top-level of the device and
not impose difficult timing constraints.

Figure 2: Debug Fixtures

3. Overview

3.1 Basic Theory of Operation

To address the challenges outlined in Section 2 we have
created a debug infrastructure that uses a special-purpose
network to enable communication between any number of
independent debug stations, as shown in Figure 1. The
communication between stations is done using a narrow (8-
bit) handshake-driven debug channel. Each station
connects to one or more debug fixtures, using an industry
standard AMBA APB interface as shown in Figure 2. These

debug fixtures implements debug tasks such as data capture,
event generation, signal selection and hardware assertions.
Each of the station and fixture combinations may each
operate at a different clock frequency without the need for a
global clock. The topology of the network can be easily
crafted to meet the specific clocking, power-gating and
global routing requirements of each target IC. Each station
implements an extendable, memory-mapped address space
that is accessible (through a JTAG probe) to our off-chip
software, or to IC-specific on-chip software. The network
uses an intelligent router and auto-enumeration to ensure
correct operation through clock and power gating events.
In addition the network supports in-band, asynchronous
event generation and to enable scalable, robust cross-
triggering.

3.2 Overall Usage Model

3.2.1 Design phase

The debug infrastructure itself is both planned, and
automatically incorporated into the design, using our
software tools. The software tools operate hierarchically
and can be run by different users at the block, subsystem
and chip-level. The outputs from one level of hierarchy are
passed “up” to the next level.

Our Debug Planner Tool helps designers to plan the

number of debug stations, the network topology, the
number of debug fixtures and the configuration of these
debug fixtures by providing detailed area overhead analysis
along with estimates to the relative debug effectiveness of
these choices. In addition, given a Verilog or VHDL
design, our tool helps determines which signals are likely to
be of high value during debug. The user can then use this

information to guide the selection of the specific
instantiation of architecture for their specific chip.

Our Debug Instrumentor Tool uses the debug plan

generated by the Debug Planner to automatically modify
the user’s design (at the RTL level) by adding the
appropriate debug circuitry to implement the debug
infrastructure. At the same time the Debug Instrumentor
automatically generates test benches, timing verification
scripts, and formal analysis scripts to ensure that the
changes have been made correctly.

3.2.2 Debug phase

Once the chip has been fabricated, the validation
engineer can use our Debug Manager Software to access
the debug fixtures (over the JTAG port), as shown in Figure
3. Depending on the debug fixtures implemented in the
infrastructure and their configuration, the users can perform
different debug tasks. These tasks include setting up data
captures, unloading test information, setting up event
triggers, cross-triggers, etc. Note that all debug operations
occur at the native operating frequency of each station, with
the debug channel handling inter-clock synchronization
issues.

4. Debug Channel Details

Figure 4 shows an instantiation of our debug
infrastructure on two integrated circuits. In this section, we
first describe how our infrastructure can be instantiated in a
relatively simple chip as in Figure 4(a), and then show how
the infrastructure is flexible enough to be used in complex
chips such as that in Figure 4(b).

Figure 3: Software to Debug Fixture Connection

4.1 Single Ring Instantiations
Figure 4(a) represents a relatively simple integrated

circuit in which the circuit under debug consists of two
subsystems. The subsystems can use the same clock or
different clocks; however, both subsystems must be in the
same power island. In all cases, the integrated circuit is
instrumented with an interface adapter and a debug router.
In this case there is one station for each subsystem. In
general there is no specific requirement for a one-to-one
mapping between subsystems. In this section, we focus on
the router and interconnect between the stations (debug
channel); the debug fixtures connected to the stations will
be discussed in Section 5.

The heart of the infrastructure is the debug router.

During debug, the Manager Software communicates
directly with the debug fixtures through the chip’s JTAG
port using the debug router. The user can configure the
router in one of several modes, and can use the router as a
portal to send and receive information from debug fixtures
within the design subsystems.

The router communicates directly with the debug

stations. The debug stations are arranged in a uni-
directional ring (in more complex chips, several rings may
be used) and are connected using a light-weight packet
protocol. Since the subsystems may be operating on
different clocks (and a different clock than the router), a
robust hand-shaking protocol is used to ensure that correct
transfer of data. This clock-independence solves many of

the challenges of creating a debug infrastructure for a
complex IC.

As will be described in Section 5, each station can be

configured with different debug fixtures to collect data
under specified conditions, and complex trigger operations
can be set up. Once the user has configured each station,
the chip can be run until the specified trigger condition
occurs. At that point, data can be read from the station
(possibly data that was stored in a trace buffer during the
run of the integrated circuit) and this data can be passed
through the JTAG port to advanced analysis software
running on an attached PC. The Analysis Software uses this
information (possibly combined with additional information
obtained from additional chip runs) to guide the engineer in
validating the behaviour of the integrated circuit and
uncovering bugs.

An important aspect of our infrastructure is the nature in

which the user communicates with the debug stations. All
such communication occurs using lightweight packets over
debug channels controlled by the debug router. This makes
the infrastructure flexible, allowing additional or more
complex debug stations to be inserted without changing the
overall debug flow or architecture.

a) Simple SoC b) Complex SoC with multiple power islands

Figure 4: Debug Infrastructure Instantiations

4.2 Complex Instantiations
Figure 2(b) shows a more complex integrated circuit

with multiple power islands. As before, each subsystem is
instrumented with a single debug station. Rather than
arranging the stations in a single ring, however, here we use
multiple rings. This is critical; the use of multiple rings
means that the debug circuitry will still operate if part of the
chip is powered down during normal operation (as is
common in chips targeting the low power domain). If one
power island is powered down, the stations in the remaining
islands can continue to collect data and monitor their trigger
signals. The Manager Software and the debug router
hardware automatically manage these events.

The partitioning of the debug infrastructure into

multiple debug stations is performed by the integrated
circuit designer using the Debug Planner. Designers
already know how the chip is partitioned into islands, and
the major subsystem breakdown of their chip, so we allow
the designer to use this information in creating a
customized debug solution for their specific chip.

5. Debug Fixtures Details

Our infrastructure is flexible enough to support a variety
of debug fixtures and the interface between the stations and
the fixtures can easily be extended in the future. Although
the details of the debug fixtures are not the focus of this
paper, we will summarize the functionality of two fixtures
(a trace buffer and a hierarchical debug access network) to
help build an overall picture of the infrastructure.

5.1 Trace Buffer

The trace buffer based debug fixture gathers data from
the subsystem under debug, and then stores this information
in a local trace buffer. Our trace buffers employ a number
of advanced techniques to maximize the amount of data that
can be stored in given amount of memory. These
techniques include lossless compression algorithms,
arbitrary bit-packing of data, programmable, selective data
capture capabilities, and advanced clock encoding
methodologies. In addition, the fixture monitors selected
trigger signals, and participates with other fixtures in the
overall trigger detection using the cross-triggering
techniques discussed earlier.

5.3 Hierarchical Debug Access Network

The debug access network connects selected nodes in
the circuit under debug to the debug logic. There are
several ways to implement such a network ranging from a
wide multiplexer to a concentrator network (as in [9]). In
all cases, the goal is to provide access to as many distinct
signals within the subsystem under test as possible in a way
that is compatible with the hierarchical design
methodologies used in modern ICs.

Figure 5: Debug Access Network

The hierarchical capabilities of our debug access

network are as shown in Figure 3. Subsystems are usually
designed using by teams, where each member is responsible
for only a small block. The designer of the block has
insight into which nodes within his or her block would be
useful to have access to during debug, but usually has very
little insight into which signals in other blocks are useful.
Even the top-level designer likely does not have as much
insight into architecturally significant nodes within each
block as do the individual designers. Using our
infrastructure, each block designer would identify a small
number of nodes within his or her block that is important.
These signals would then be combined using a higher-order
network, possibly along with other signals not incorporated
into the subblocks, or not selected by the individual
designers. This essentially decouples the signal selection
task within each block, but provides a unified framework
for accessing these signals.

Our debug instrumentor can be employed repeatability

to insert the access networks at any level of hierarchy. In
addition any level of hierarchy can be fully tested as a
stand-alone entity, allowing design blocks to be “closed-
off” for reuse in other subsystems and ICs and eliminating
the need to re-open existing blocks to add debug
capabilities.

6. Conclusions

In this paper, we have described a debug infrastructure
for the post-silicon debug of complex integrated circuits.
Our architecture supports chips with multiple clock
domains, multiple voltage islands and complex design
hierarchies. The infrastructure is supported by software
tools to plan and insert the debug circuitry. During the

debug phase, software running on a external PC controls the
infrastructure and executes off-chip analysis algorithms.

References:
[1] S. Sandler, “Need for debug doesn’t stop at first

silicon”, E.E. Times, February 21, 2005.
[2] R. Goering, “Post-silicon debugging worth a second

look”, E.E. Times, May 2, 2007.
[3] A.B.T. Hopkins, K.D. McDonald-Maier, “Debug

support for complex systems on-chip: a review”, IEE
Proceedings - Computer and Digital Technology, vol.
153, no. 4, July 2006.

[4] P. Patra, “On the Cusp of a Validation Wall”, IEEE
Design & Test of Computers, Vol. 24, No. 2, pp. 193-
196, Mar./Apr. 2007.

[5] International Technology Roadmap for
Semiconductors (ITRS), 2007 Report,
http://www.itrs.net, 2008.

[6] M. Riley, M. Genden, “Cell Broadband Engine
Debugging for Unknown Events”, IEEE Design and
Test of Computers, vol. 24, no. 5, pp. 486-493,
September/October 2007.

[7] T. J. Foster, et al., “First Silicon Functional Validation
and Debug of Multicore Microprocessors”, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 5, pp. 495-504, May 2007.

[8] S.J.E. Wilton, C.H. Ho, B.R. Quinton, P.H.W. Leong,
W. Luk, “A Synthesizable Datapath-Oriented
Embedded FPGA Fabric for Silicon Debug
Applications”, ACM Transactions on Reconfigurable
Technology and Systems, vol. 1, no. 1, pp 7.1-7.25,
March 2008.

[9] B.R. Quinton, S.J.E. Wilton, “Post-Silicon Debug
Using Programmable Logic Cores”, Proceedings of the
IEEE International Conference on Field-
Programmable Technology, pp. 241-247, December
2005.

[10] M. Abramovici, “A Reconfigurable Design-for-Debug
Infrastructure for SoCs”, Proceedings of the Design
Automation Conference, pp. 7-12, July 2006.

[11] B. Vermeulen, T. Waayers, S. Goel, “Core-Based Scan
Architecture for Silicon Debug”, Proc. International
Test Conference, Oct. 2002.

[12] R. Saleh, et. al. “System-on-Chip: Reuse and
Integration”, Proceedings of the IEEE, pp.1050-1069,
June 2006.

[13] L. Benini, G. De Micheli, “Network-on-Chip: A New
SoC Paradigm”, IEEE Computer, pp. 70-77, Jan. 2002.

[14] G.Magklis, et. al. “Dynamic Frequency and Voltage
Scaling for a Multiple-Clock-Domain Microprocessor”,
IEEE Micro, pp.62-68, Nov/Dec 2003.

