
Exploring FPGA Technology Mapping for
Fracturable LUT Minimization

David Dickin, Lesley Shannon

School of Engineering Science, Simon Fraser University
8888 University Drive Burnaby, B.C., Canada

drdickin@sfu.ca
lshannon@sfu.ca

Abstract—Modern commercial Field-Programmable Gate Ar-
ray (FPGA) architectures contain look-up-tables (LUTs) that can
be “fractured” into two smaller LUTs. The potential of packing
two LUTs into a space that could accommodate only one in
traditional architectures complicates technology mapping’s LUT
minimization objective. Previous works introduced edge recovery
techniques and the concept of LUT balancing, both of which
produce mappings that pack into fewer fracturable LUTs. We
combine these two ideas and evaluate their effectiveness for one
commercial and four academic FPGA architectures, all of which
contain fracturable LUTs. When used in conjunction, edge-
recovery and LUT balancing yield a 9.0% to 15.8% reduction in
fracturable LUT use, depending upon architectural constraints.

I. INTRODUCTION

Technology mapping (tech-mapping) transforms a
technology-independent logic network into a functionally
equivalent netlist of primitive elements available for
implementation on a target device. For a Field-Programmable
Gate Array (FPGA), the logic primitive is a look-up table
(LUT). An FPGA is fabricated with a limited number of
LUTs. When performing tech-mapping for FPGAs, one
objective is to minimize the number of LUTs in the mapping.
Each LUT is restricted to a maximum of K inputs (a K-LUT),
where K is defined by the FPGA’s architecture. The size of
a LUT is the number of inputs actually used. Any arbitrary
Boolean function with up to K inputs can be implemented on
a FPGA using a K-LUT.

Modern FPGAs feature structures that can function as
either a single K-LUT or two (K-1)-LUTs with input sharing
constraints. This type of structure is called a fracturable LUT
(FLUT), since the K-LUT of a traditional architecture can be
“fractured” into two smaller LUTs. Currently, tech-mapping
tools produce netlists of LUTs, not FLUTs, and later stages of
the tool flow “pack” the LUTs into FLUTs, either individually
or in pairs. Thus, the number of FLUTs utilized is always
less than or equal to the number of LUTs in the mapping,
and minimizing the number of LUTs in a mapping does
not necessarily minimize FLUT use. Previous works have
shown that tech-mapping with the edge-recovery techniques
of WireMap [1] and the concept of LUT balancing [2] have
a positive effect upon the “packability” of a mapping, i.e.
minimizing FLUT usage. WireMap is a technology mapper
that reduces the number of wires in a mapping [1]. LUT

balancing involves modifying cost functions such that LUTs
with K inputs are undesirable [2]. Both approaches produce
mappings with fewer size-K LUTs, which occupy an entire
FLUT, and more LUTs with sizes less than K. Two LUTs
with sizes less than K can potentially be packed together into
a FLUT, decreasing the number of FLUTs required to pack a
mapping.

In this work, we investigate the relative improvements
obtained from both tech-mapping techniques and demonstrate
that they are complementary. In addition, we examine the
effects of applying LUT balancing to LUTs with K-1 inputs
and demonstrate that this further reduces FLUT usage on
FLUT architectures with tight input sharing constraints. We
evaluate the success of a mapping by the reduction in FLUTs
used after packing, placing, and routing the design. The
previous works presenting WireMap [1] and LUT balanc-
ing [2] each evaluated their tech-mapping results using a single
FLUT enabled commercial FPGA architecture. We consider
four different FLUT enabled academic FPGA architectures
and perform packing, placement, and routing using a version
of VPR that includes AAPack[3]. Two of these academic
architectures emulate the FLUT configurations found in the
commercial FPGA architectures of the previous works. When
these mapping techniques are used together, we observe a
9.0% to 15.8% average percent reduction in FLUTs, depending
on the target architecture, compared to tech-mapping without
WireMap or LUT balancing. In addition to the academic
FPGA architectures, we use QUIP [4] to investigate the effects
of these tech-mapping techniques when targeting an Altera
Statix II device [5] and obtain a 12.4% reduction in FLUTs.

The remainder of the paper is structured as follows. Section
II summarizes previous work on FPGA tech-mapping. Section
III describes the FPGA architectures used in our experiments.
Section IV presents the experimental results. Section V con-
cludes the paper and outlines future work.

II. FPGA TECHNOLOGY MAPPING

Tech-mapping a circuit to a FPGA is the process of con-
verting all logic in the initial network into a functionally
equivalent netlist of LUTs [6][7][8][9][10][11]. Minimizing
first the depth and then the area are typical optimization
goals of FPGA tech-mapping. The depth of a mapping is the



number of LUTs on the longest combinatorial path. Depth-
optimal mapping algorithms exist [6][10][8], where depth is
used to estimate the delay of a circuit. Area is measured
as the number of LUTs in the mapped circuit, but LUT
minimization is a nondeterministic polynomial-time hard (NP-
hard) problem [12][7].

An FPGA mapping can be found by first converting the
input network into an AND-Inverter Graph (AIG), comprised
of only 2-input AND gates and inverters. Next, K-feasible
cuts are generated for all AIG nodes. A cut is a set of nodes
associated with a root node. The nodes in the cut are called
leaves. A cut covers the root and all nodes on the paths
between the root and the leaves, but not the leaves themselves.
A cut is valid if all paths from the network inputs to the root
node pass through one or more leaves. A cut with K or less
leaves is K-feasible and can be implemented using a K-LUT.
Once the K-feasible cuts have been enumerated, a number of
the cuts are selected such that all nodes in the AIG are covered.
The selected cuts become LUTs in the mapping.

A. Area Recovery Techniques

Performing a depth-optimal mapping leads to logic replica-
tion, where AIG nodes end up being covered by more than one
LUT in the mapping. Once a depth-optimal mapping is found,
cuts on non-critical paths can still be changed to minimize
the number of LUTs in the mapping. Two cost functions for
evaluating the area of a cut are Area Flow and Exact Area [8].
Both functions include a Weight() function, which returns the
base cost of a cut depending upon how many leaves the cut
has (i.e. the size of LUT the cut would result in). Weight()
typically returns equal values for all cut sizes. The Exact Area
of a cut, c is calculated by summing the Weight() of all cuts
added to the mapping as a result of including c. The Area
Flow (AF) of c is given by:

AF = Weight(c) +
∑

i

AF (BestCut(Leafi(c)))
nEstFanouts(Leafi(c))

(1)

where BestCut(Leafi(c)) is the best cut of the i-th leaf
of c and nEstFanouts(Leafi(c)) is the estimated number of
fanouts the i-th leaf of c will have in the mapping. If zero
fanouts are estimated then one is used in Equation 1 to avoid
dividing by zero.

B. WireMap and LUT Balancing

WireMap is a technology mapper that uses edge recov-
ery techniques to reduce the number of wires in a mapped
design [1]. Reducing the number of wires has a favourable
effect upon routing complexity. In addition, WireMap produces
mappings that pack into a smaller number of fracturable LUTs.
This is due to the increased number of small-sized LUTs in
the mapping, which are easier to pack. WireMap uses edge
cost functions to decide between cuts with equal area costs.

LUT balancing modifies the cut selection cost functions (i.e.
Weight()) in order to influence the LUT size distribution of a
mapping [2]. Although implementation details are not given,

(K-1)

Regular Mode

Fractured Mode

(K-1)-LUT

(K-1)-LUT

(K-1)

M

K

K-LUT

Fig. 1. The two modes of operation of a (K,M)-FLUT.

it is reported that when LUT balancing is used to discourage
the use of size-K cuts, mappings that pack into fewer FLUTs
are produced [2].

III. FRACTURABLE LUT ARCHITECTURES

A. Fracturable LUT Model

A FLUT has two modes of operation, regular, and fractured.
While in regular mode, the FLUT acts as a K-LUT. In
fractured mode the FLUT has M unique inputs, from which
the inputs to the two (K-1) LUTs are selected. The two modes
of operation of a generic FLUT are shown in Figure 1. The
values of K and M define specific FLUT architectures. For
the remainder of this work, we will refer to a particular FLUT
architecture as a (K,M)-FLUT.

B. Academic Architectures

For our experiments, we created four FPGA architectures
containing fracturable LUTs. The value of M is varied for
each architecture, all other aspects of the architectures are the
same. The four architectures have K = 6 (K6) and M values
of 5, 6, 7, and 8 (M5, M6, M7, and M8). The M5 architecture
is included to mimic the dual-output 6-LUT of a Xilinx Virtex
5 [13]. The M8 FLUT is similar to the Adaptive Logic Module
(ALM) found in an Altera Stratix II [5]. However, our FLUT
models are only meant to approximate, not replicate, these
commercial structures.

A generic version of the Logic Element used in our archi-
tectures is shown in Figure 2. The LE contains one FLUT
and two registers, it has eight inputs and four outputs. The
number of FLUT inputs in Figure 2 is the maximum of K and
M to ensure that both modes of the FLUT will always have
a sufficient number of pins available. The mode of the FLUT
determines how many of the inputs are usable. For example,
with M5 and K6, there will be 6 inputs to each FLUT, but only
5 of them will be available in fracturable mode. The register
inputs are given access to all of the LE inputs and the outputs
of the FLUT. This is so that registers are trivial to pack into
LEs with FLUTs.



Logic Block

(K,M)-FLUT

Reg

Max of 

{K, M}

Reg

2
nd

 Output only in 

fractured mode

8

Fig. 2. Block diagram of the Logic Element used in the VPR architectures.

The architectures are made for use with a version of
VPR [14] containing AAPack [3]. This version of VPR can
target architectures containing fracturable LUTs and other
complex structures. The routing architecture is specified as
length-4, single driver, wire segments with Fs = 3, Fc(in) =
0.15 and Fc(out) = 0.125. The architectures consist of a
square grid of LEs and routing resources, surrounded by I/O
pins. The grid size and channel width of the routing are
allowed to grow as needed to fit the design. The tool is
currently area-driven, as timing-driven functionality has not
yet been implemented; however, this is sufficient for our area-
based investigation.

C. Minimizing the Number of Fracturable LUTs

The number of FLUTs in a design is given by

nFLUT =
⌈

nLutTotal + nLutNoPair

2

⌉
(2)

where nLutTotal is the total number of LUTs in the
mapping and nLutNoPair is the number of LUTs that are
packed into a FLUT operating in regular mode. Examples of
LUTs in nLutNoPair are size-K LUTs, which require the
FLUT to operate in regular mode, and smaller-sized LUTs
that cannot be packed into a fracturable mode FLUT due to
input sharing restrictions. The value of M determines the input
sharing requirements. To pack two size-5 LUTs together in
the M5 architecture requires that both size-5 LUTs have all
5 inputs in common. Conversely, with M8, only 2 common
inputs are required between the two size-5 LUTs. Note that it
is possible to pack two LUTs with no common inputs into a
FLUT, providing the size of both LUTs is sufficiently small.

IV. EXPERIMENTAL RESULTS

In this section, we describe the methodology and experi-
ments used to investigate the effects of using WireMap and
LUT balancing in FPGA tech-mapping to minimize FLUT
utilization.

A. Experimental Setup and Procedure

We used a benchmark suite consisting of the twenty largest
MCNC circuits [15] and ten other benchmark circuits from
sources such as the Opencores organization [16]. Each bench-
mark circuit is run through ABC [17] for synthesis and
technology mapping. The circuits are first synthesized using

the resyn2 script, then tech-mapped for K6 using the priority
cuts [11] mapper with structural choices enabled [18], and
finally the mapping is checked for combinatorial equivalence
with the initial circuit. The version of ABC we used includes
the edge recovery techniques of WireMap [1].

We technology mapped both with and without edge recovery
techniques enabled and refer to these two scenarios as the
WireMap and ClassicMap mappers. We implemented LUT
balancing by modifying the value returned by the Weight()
function used in the Area Flow and Exact Area cost functions.
The use of LUT balancing and/or edge-recovery are the
primary tech-mapping variables we alter in our experiments.
Thus, we perform tech-mapping of the benchmark suite cir-
cuits with the following settings:

• ClassicMap - no LUT balancing (i.e. the baseline)
• WireMap - no LUT balancing
• ClassicMap - with LUT balancing
• WireMap - with LUT balancing
For the two settings that have “with LUT balancing”, we

also sweep a variety of LUT size weights to identify the best
LUT balancing parameters. So while the “no LUT balancing”
options only require one mapping pass of the benchmark suite,
the “with LUT balancing” options map the benchmark suite
multiple times with different weights.

In our first set of experiments, the weight of a size-6
cut, Weight(6), is varied from 1.0 to 2.5 in 0.1 increments.
The weights of the smaller sized cuts are left at 1.0. When
Weight(6) is greater than 1.0, the inclusion of size-6 cuts (and
thus LUTs) is unfavourable for the area recovery cost func-
tions. We ran a second set of experiments that modified both
Weight(6) and Weight(5). In this second set of experiments,
Weight(6) is always set to a larger value than Weight(5). The
values of Weight(6) and Weight(5) chosen for the second set
of experiments were selected after examining the results of
our first set of experiments.

We define our baseline to be the mappings produced by the
ClassicMap mapper without any LUT balancing. This means
that the edge-recovery techniques of WireMap are disabled
and the weight of all LUT sizes is 1.0. All FLUT percent
reduction comparisons in this work are with respect to our
baseline mapping results. Table I lists each benchmark’s name,
the number of Flip-Flops (FFs) it includes, and the depth and
number of LUTs of the baseline mapping.

After mapping, circuits are packed, placed, and routed using
AAPack [3] and VPR [14] for the four architectures described
in Section III-B. Similarly, the mapped circuits are processed
using Altera’s Quartus II software tool flow, via QUIP [4],
targeting the Stratix II [5] device EP2S60F1020C3. Quartus II
will perform synthesis on the mappings it reads in. To preserve
our tech-mapping solutions, the What You See Is What You
Get (WYSIWYG) flag is set, which tells Quartus II to refrain
from any significant synthesis operations (buffers and unused
pins may still be removed). Other flags are set to tell Quartus
II to pack for density, to perform a “Standard Fit”, to pack
registers for minimal area, and to turn off logic and register
duplication during routing.



TABLE I
BENCHMARK SUITE CIRCUITS WITH BASELINE MAPPING STATISTICS.

Name FFs LUTs Depth
s298 14 24 2
glue2 40 316 12

elliptic 194 318 6
ex5p 0 369 4

misex3 0 425 5
alu4 0 519 5

diffeq 305 560 7
apex4 0 571 5
bigkey 224 579 3
tseng 385 640 7
pajf 512 650 3
seq 0 657 5

ex1010 0 660 5
apex2 0 662 6

des 0 812 5
desa 64 865 6
iir1 204 870 18
dsip 224 873 3
rsd1 506 1102 10
pdc 0 1379 7
spla 0 1469 6
frisc 886 1745 13

s38584.1 1260 2387 6
s38417 1462 2499 6

rsd2 609 2531 15
oc54 386 2537 38
clma 33 2988 9
cfc18 2052 3410 8

cfc 2052 3411 8
cft8 2685 7081 10

B. Tech-Mapping Results

Figure 3(a) shows the distributions of LUT sizes produced
by the ClassicMap mapper with varying Weight(6) values,
other weights are held at 1.0. Each bar represents the total
number of x-sized LUTs in the benchmark suite mappings,
normalized against the baseline mapping (ClassicMap mapper,
all LUT size weights = 1.0). Examining the chart shows that
once Weight(6) is greater than 1.0, the number of size-6
LUTs drops off dramatically, validating our LUT balancing
implementation. The frequency of smaller LUTs, in particular
size-5 LUTs, increases to compensate for the missing size-
6 LUTs. Also, the total number of LUTs shows a gradual
increase with higher Weight(6) values.

Figure 3(b) shows the LUT size distributions when
WireMap is used instead of the ClassicMap mapper. As before,
the full range of Weight(6) values are used while other weights
are held at 1.0, and each bar in the graph is normalized
to the baseline mapping. As with ClassicMap, we observe
that when Weight(6) is greater than 1.0: the number of size-
6 LUTs is reduced, there are more small sized LUTs to
compensate, and the total number of LUTs increases. The most
notable difference is that the WireMap distribution favours the
smallest sized LUTs, whereas ClassicMap compensated for
the lack of size-6 LUTs primarily with more size-5 LUTs. In
addition, in the absence of any LUT balancing (i.e. Weight(6)
is 1.0) the WireMap mappings show the same trends as when
LUT balancing is applied, indicating that WireMap and LUT

balancing manipulate the LUT distribution with similar aims.
In our second set of experiments, we varied both Weight(6)

and Weight(5). The LUT size distributions from this second
set of experiments are shown in Figure 3(c) and Figure 3(d)
for the ClassicMap and WireMap mappers respectively. As
expected, the number of size-5 LUTs decreased with rising
Weight(5) values for both tech-mappers.

During earlier runs of our experiments in our study, we
noticed that for some benchmarks, LUT balancing induced a
trade off between logic depth and FLUT minimization. For
example, the depth of the benchmark elliptic increased from 6
to 7 for Weight(6) values of 1.7 and greater (for both WireMap
and ClassicMap). This is undesirable as an increase in depth
is equivalent to an increase in the longest combinatorial path
of the circuit. We determined that this increase was due to the
interaction of our LUT balancing scheme with the priority cuts
mapper, which does not enumerate all possible cuts and thus
cannot guarantee an optimal depth mapping [11]. We remedied
this issue by disabling our LUT balancing scheme during the
depth discovery portion of the mapping process.

C. Packing Results

The mappings are run through VPR for the four academic
FPGA architectures (M5, M6, M7, and M8). Figure 4(a) and
Figure 4(b) graph the number of FLUTs utilized to pack the
mappings for the first and second set of experiments. In each
figure there are eight lines on the graph; each represents a
mapper-architecture combination. The y-axis is the number of
FLUTs; note that it starts at 500 to provide better resolution.
The x-axis of Figure 4(a) corresponds to different Weight(6)
values (other weights are held at 1.0), while the x-axis of
Figure 4(b) has varying Weight(6) and Weight(5) values (again
other weights are held at 1.0). Each data point on the trend
lines is the geometric mean of the benchmark suite’s FLUT
count.

When LUT balancing is not used (i.e. all weights are 1.0),
then WireMap outperforms ClassicMap (our baseline since no
LUT balancing is used) for all architectures. However, when
LUT balancing is enabled, this is no longer true. WireMap
with LUT balancing mappings produced a greater reduction of
FLUTs than the equivalent ClassicMap with LUT balancing
mappings for the M5 and M6 architectures. This FLUT
reduction is greater in our first set of experiments, when we
are only varying Weight(6). In our second set of experiments,
when we vary both Weight(6) and Weight(5), WireMap still
outperforms ClassicMap, but the difference in FLUTs is less.

For the M7 architecture, WireMap and ClassicMap, both
with LUT balancing enabled, produce similar results with
WireMap having a slight edge for all but two weight settings.
For the M8 architecture, ClassicMap with LUT balancing
actually outperforms WireMap with LUT balancing by a
small margin for all but one weight setting (Weight(6) = 2.4,
Weight(5) = 2.0).

When M (i.e. the number of unique inputs a FLUT has
in fractured mode) is small, WireMap does well. When M is



0

0
.51

1
.52

2
.53

3
.54

2
3

4
5

6
A
ll

Number of LUTs (normalized to baseline mapping)

LU
T 

Si
ze

C
la

ss
ic

M
a

p

W
6
=
1
.0

W
6
=
1
.1

W
6
=
1
.2

W
6
=
1
.3

W
6
=
1
.4

W
6
=
1
.5

W
6
=
1
.6

W
6
=
1
.7

W
6
=
1
.8

W
6
=
1
.9

W
6
=
2
.0

W
6
=
2
.1

W
6
=
2
.2

W
6
=
2
.3

W
6
=
2
.4

W
6
=
2
.5

(a
)

C
la

ss
ic

M
ap

L
U

T
si

ze
di

st
ri

bu
tio

ns
fo

r
va

ry
in

g
W

ei
gh

t(
6)

.

0

0
.51

1
.52

2
.53

3
.54

2
3

4
5

6
A
ll

Number of LUTs (normalized to baseline mapping)

LU
T 

Si
ze

W
ir

e
M

a
p

W
6
=
1
.0

W
6
=
1
.1

W
6
=
1
.2

W
6
=
1
.3

W
6
=
1
.4

W
6
=
1
.5

W
6
=
1
.6

W
6
=
1
.7

W
6
=
1
.8

W
6
=
1
.9

W
6
=
2
.0

W
6
=
2
.1

W
6
=
2
.2

W
6
=
2
.3

W
6
=
2
.4

W
6
=
2
.5

(b
)

W
ir

eM
ap

L
U

T
si

ze
di

st
ri

bu
tio

ns
fo

r
va

ry
in

g
W

ei
gh

t(
6)

.

0

0
.51

1
.52

2
.53

3
.54

2
3

4
5

6
A

ll

Number of LUTs (normalized to baseline mapping)

LU
T 

Si
ze

C
la

ss
ic

M
a

p
W

6
=

1
.2

, W
5

=
1

.1

W
6

=
1

.4
, W

5
=

1
.1

W
6

=
1

.4
, W

5
=

1
.2

W
6

=
1

.4
, W

5
=

1
.3

W
6

=
1

.6
, W

5
=

1
.1

W
6

=
1

.6
, W

5
=

1
.2

W
6

=
1

.6
, W

5
=

1
.3

W
6

=
1

.6
, W

5
=

1
.4

W
6

=
1

.8
, W

5
=

1
.1

W
6

=
1

.8
, W

5
=

1
.2

W
6

=
1

.8
, W

5
=

1
.4

W
6

=
1

.8
, W

5
=

1
.6

W
6

=
2

.0
, W

5
=

1
.1

W
6

=
2

.0
, W

5
=

1
.2

W
6

=
2

.0
, W

5
=

1
.6

W
6

=
2

.4
, W

5
=

1
.1

W
6

=
2

.4
, W

5
=

1
.2

W
6

=
2

.4
, W

5
=

1
.6

(c
)

C
la

ss
ic

M
ap

L
U

T
si

ze
di

st
ri

bu
tio

ns
fo

r
va

ry
in

g
W

ei
gh

t(
6)

an
d

W
ei

gh
t(

5)
.

0

0
.51

1
.52

2
.53

3
.54

2
3

4
5

6
A

ll

Number of LUTs (normalized to baseline mapping)

LU
T 

Si
ze

W
ir

e
M

a
p

W
6

=
1

.2
, W

5
=

1
.1

W
6

=
1

.4
, W

5
=

1
.1

W
6

=
1

.4
, W

5
=

1
.2

W
6

=
1

.4
, W

5
=

1
.3

W
6

=
1

.6
, W

5
=

1
.1

W
6

=
1

.6
, W

5
=

1
.2

W
6

=
1

.6
, W

5
=

1
.3

W
6

=
1

.6
, W

5
=

1
.4

W
6

=
1

.8
, W

5
=

1
.1

W
6

=
1

.8
, W

5
=

1
.2

W
6

=
1

.8
, W

5
=

1
.4

W
6

=
1

.8
, W

5
=

1
.6

W
6

=
2

.0
, W

5
=

1
.1

W
6

=
2

.0
, W

5
=

1
.2

W
6

=
2

.0
, W

5
=

1
.6

W
6

=
2

.4
, W

5
=

1
.1

W
6

=
2

.4
, W

5
=

1
.2

W
6

=
2

.4
, W

5
=

1
.6

(d
)

W
ir

eM
ap

L
U

T
si

ze
di

st
ri

bu
tio

ns
fo

r
va

ry
in

g
W

ei
gh

t(
6)

an
d

W
ei

gh
t(

5)
.

Fi
g.

3.
L

U
T

si
ze

di
st

ri
bu

tio
ns

fo
r

di
ff

er
en

t
te

ch
-m

ap
pe

rs
an

d
L

U
T

ba
la

nc
in

g
pa

ra
m

et
er

s.



500.00

550.00

600.00

650.00

700.00

750.00

800.00

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

FL
U
Ts

Weight(6)

Classic_M5

Wire_M5

Classic_M6

Wire_M6

Classic_M7

Wire_M7

Classic_M8

Wire_M8

(a) Only Weight(6) is varied for LUT balancing.

500.00

550.00

600.00

650.00

700.00

750.00

800.00

1
.0

, 1
.0

1
.2

, 1
.1

1
.4

, 1
.1

1
.4

, 1
.2

1
.4

, 1
.3

1
.6

, 1
.1

1
.6

, 1
.2

1
.6

, 1
.3

1
.6

, 1
.4

1
.8

, 1
.1

1
.8

, 1
.2

1
.8

, 1
.4

1
.8

, 1
.6

2
.0

, 1
.1

2
.0

, 1
.2

2
.0

, 1
.6

2
.4

, 1
.1

2
.4

, 1
.2

2
.4

, 1
.6

2
.4

, 2
.0

F

L

U

T

s

Weight(6), Weight(5)

Classic_M5

Wire_M5

Classic_M6

Wire_M6

Classic_M7

Wire_M7

Classic_M8

Wire_M8

(b) Both Weight(6) and Weight(5) are varied for LUT balancing.

Fig. 4. Graphs plotting the geometric mean of the number of FLUTs VPR packs the benchmark suite mappings into for various architectures and mapping
techniques.

large then there is little difference between WireMap and Clas-
sicMap. This can be explained by observing that WireMap’s
LUT size distribution tends to have more size-2 and size-3
LUTs than ClassicMap. The FLUT parameter M determines
the input sharing constraints when two LUTs are being packed
into a fractured mode FLUT. LUTs with fewer inputs are going
to be easier to pack together into fractured mode FLUTs with
tight input sharing constraints. For larger values of M, it seems
that the input sharing constraints are sufficiently relaxed such
that it is no longer difficult to fit the larger size-4 and size-5
LUTs into a fractured mode FLUT.

The Quartus II results are shown in Figure 5(a) and Fig-
ure 5(b), where the geometric means of the ALM count and
maximum operating frequency (Fmax) of the benchmark suite
circuits are graphed. An ALM can be viewed as roughly equiv-
alent to the FLUT of the M8 VPR architecture. However, there
are other significant differences between the two architectures.
Thus, we do not make any direct comparisons between the
FLUT counts for the M8 architecture and the ALM counts of
the Stratix II. No Fmax is reported by Quartus II for designs
that do not contain FFs (recall Table I). Therefore, the Fmax
data points are the geometric mean of only those benchmarks
that contain FFs.

Similar observations on FLUT reduction to those observed
for the VPR M8 architecture can be made for the Quartus
II data. WireMap and ClassicMap produce nearly identical
results whenever LUT balancing is applied. Interestingly, the
Fmax appears to remain essentially the same (all data points
within 5 MHz of each other) irregardless of the packing
density. We expect this would change if the Quartus II tool
settings were changed to perform a more balanced flow instead

of optimizing for area.
A summary of our best FLUT/ALM minimization results

for each of the VPR and Stratix II architectures is given in
Table II. Four entries are provided for each of the FPGA
architectures. These entries correspond to the average bench-
mark suite FLUT usage when packing the mappings produced
by both ClassicMap and WireMap with and without LUT
balancing. The Weight(6) and Weight(5) values used during
the mapping are provided for each entry in our table. These
weights will be 1.0 if the “no LUT balancing” option was
used. If the “with LUT balancing” option is used, then the
weights listed are the best weights for FLUT minimization
from all the LUT balancing runs we performed for the given
architecture and tech-mapper. The “Percent Reduction” col-
umn gives the percent reduction in FLUTs versus the baseline
of the architecture.

Examining the results of Table II yields the following
observations.

• In the absence of LUT balancing, WireMap outperforms
ClassicMap for all FPGA architectures.

• ClassicMap with LUT balancing outperforms WireMap
without LUT balancing for all FPGA architectures.

• Adding LUT balancing decreases FLUTs usage for both
ClassicMap and WireMap on all FPGA architectures.

• WireMap with LUT balancing outperforms ClassicMap
with LUT balancing for the M5, and M6 architectures.

• ClassicMap with LUT balancing and WireMap with LUT
balancing produce similar results for the M7, M8, and
Stratix II architectures.

• The “best” LUT balancing parameters for FLUT mini-
mization vary with the FPGA architecture.



100

110

120

130

140

150

160

170

180

190

200

500

550

600

650

700

750

800

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

M

H

z

A

L

M

s

Weight(6)

Classic_ALMs Wire_ALMs Classic_Fmax Wire_Fmax

(a) Only Weight(6) is varied for LUT balancing.

100

110

120

130

140

150

160

170

180

190

200

500

550

600

650

700

750

800

1
.0

, 1
.0

1
.2

, 1
.1

1
.4

, 1
.1

1
.4

, 1
.2

1
.4

, 1
.3

1
.6

, 1
.1

1
.6

, 1
.2

1
.6

, 1
.3

1
.6

, 1
.4

1
.8

, 1
.1

1
.8

, 1
.2

1
.8

, 1
.4

1
.8

, 1
.6

2
.0

, 1
.1

2
.0

, 1
.2

2
.0

, 1
.6

2
.4

, 1
.1

2
.4

, 1
.2

2
.4

, 1
.6

2
.4

, 2
.0

M

H

z

A

L

M

s

Weight(6), Weight(5)

Classic_ALMs Wire_ALMs Classic_Fmax Wire_Fmax

(b) Both Weight(6) and Weight(5) are varied for LUT balancing.

Fig. 5. Quartus II ALM and Fmax results. Left y-axis is the geometric mean number of ALMs the benchmark suite packed into. Right y-axis is the geometric
mean of the Fmax reported by those circuits in the benchmark suite that had flip-flops.

TABLE II
MAXIMUM PERCENT REDUCTIONS IN FLUT USAGE WITH RESPECT TO THE BASELINE FOR ALL ARCHITECTURES AND TECH-MAPPING TECHNIQUES.

Architecture Tech-Mapper Weight(6) Weight(5) FLUTs (ALMs) Percent Reduction

M5

ClassicMap - no LUT balancing (baseline) 1.0 1.0 756.9 N/A
ClassicMap - with LUT balancing 1.6 1.4 705.0 6.9%
WireMap - no LUT balancing 1.0 1.0 705.7 6.8%
WireMap - with LUT balancing 1.4 1.3 689.1 9.0%

M6

ClassicMap - no LUT balancing (baseline) 1.0 1.0 691.7 N/A
ClassicMap - with LUT balancing 1.6 1.2 620.1 10.3%
WireMap - no LUT balancing 1.0 1.0 627.4 9.3%
WireMap - with LUT balancing 1.6 1.2 606.8 12.3%

M7

ClassicMap - no LUT balancing (baseline) 1.0 1.0 662.0 N/A
ClassicMap - with LUT balancing 2.0 1.1 568.4 14.1%
WireMap - no LUT balancing 1.0 1.0 596.3 9.9%
WireMap - with LUT balancing 1.8 1.0 557.4 15.8%

M8

ClassicMap - no LUT balancing (baseline) 1.0 1.0 656.2 N/A
ClassicMap - with LUT balancing 2.0 1.0 550.4 16.1%
WireMap - no LUT balancing 1.0 1.0 595.3 9.3%
WireMap - with LUT balancing 2.0 1.0 554.7 15.5%

Stratix II

ClassicMap - no LUT balancing (baseline) 1.0 1.0 651.1 N/A
ClassicMap - with LUT balancing 2.0 1.0 570.6 12.4%
WireMap - no LUT balancing 1.0 1.0 602.3 7.5%
WireMap - with LUT balancing 1.6 1.0 571.0 12.3%

Based on our observations, we recommend using LUT bal-
ancing with appropriate values of Weight() for all technology
mapping runs targeting FPGA architectures with FLUTs when
FLUT minimization under depth constraints is desired. The
downside of this approach is that finding good LUT balancing
parameters (i.e. weights) requires some trial and error. Whether
or not the use of WireMap, as opposed to ClassicMap, is
appropriate depends on the architecture. FPGA architectures
that have FLUTs with smaller values of M appear to benefit
from WireMap’s edge-recovery heuristics. However, once M is
sufficiently large, we observed only small differences between

WireMap and ClassicMap in terms of FLUT minimization.

V. CONCLUSION

In this paper, we combine the edge-recovery techniques
of WireMap with our implementation of LUT balancing to
perform technology mapping with the objective of minimizing
the number of fracturable LUTs a mapping will utilize after
packing. Packing is performed for four different academic
FPGA architectures with FLUTs and for the Stratix II architec-
ture. When packing the mappings into FLUTs with smaller M
parameters, the combination of WireMap and LUT balancing
produces mappings that pack into fewer FLUTs than if either



technique is used alone. For larger values of M, LUT balancing
provides good FLUT usage results irregardless of whether or
not edge-recovery techniques are used.

For future work, we plan to experiment with academic
architectures that are more complex and include multipliers,
memory elements, and clusters of Logic Elements. Adding
these elements to our FPGA architectures will allow us to use
a benchmark suite with larger, more complex circuits that are
more representative of modern designs. We also look forward
to AAPack becoming timing driven so that we can obtain
more concrete data on the relationship between a reduced
FLUT count and the critical path of a circuit. We are also
investigating the creation of a model that can be used to predict
which LUT balancing parameters are appropriate for a given
FLUT architecture.

ACKNOWLEDGMENT

REFERENCES

[1] S. Jang, B. Chan, K. Chung, and A. Mishchenko, “Wiremap: FPGA tech-
nology mapping for improved routability and enhanced LUT merging,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 2, no. 2, pp. 1–24, 2009.

[2] M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kaptanoglu,
G. Baeckler, B. Ratchev, K. Padalia, M. Bourgeault et al., “Improving
FPGA performance and area using an adaptive logic module,” Field
Programmable Logic and Application, pp. 135–144, 2004.

[3] J. Luu, J. Anderson, and J. Rose, “Architecture description and packing
for logic blocks with hierarchy, modes and complex interconnect,” in
Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 2011, pp. 227–236.

[4] S. Malhotra, T. Borer, D. Singh, and S. Brown, “The quartus uni-
versity interface program: enabling advanced fpga research,” in Field-
Programmable Technology, 2004. Proceedings. 2004 IEEE International
Conference on. IEEE, 2004, pp. 225–230.

[5] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman,
D. Galloway, M. Hutton, C. Lane, A. Lee et al., “The Stratix II logic
and routing architecture,” in Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays. ACM,
2005, pp. 14–20.

[6] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 13, no. 1, pp. 1–12, 2002.

[7] V. Manohararajah, S. Brown, and Z. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, no. 11, pp. 2331–2340, 2006.

[8] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 2,
pp. 240–253, 2007.

[9] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: enabling a gen-
eral and efficient FPGA mapping solution,” in Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field programmable
gate arrays. ACM, 1999, p. 35.

[10] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design. IEEE
Computer Society, 2004, pp. 752–759.

[11] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Computer-Aided Design,
2007. ICCAD 2007. IEEE/ACM International Conference on. IEEE,
2007, pp. 354–361.

[12] A. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table min-
imization problem for FPGA technology mapping,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 13, no. 11, pp. 1319–1332, 2002.

[13] T. Ahmed, P. Kundarewich, J. Anderson, B. Taylor, and R. Aggarwal,
“Architecture-specific packing for virtex-5 FPGAs,” in Proceedings of
the 16th international ACM/SIGDA symposium on Field programmable
gate arrays. ACM, 2008, pp. 5–13.

[14] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. Fang, and J. Rose,
“VPR 5.0: FPGA cad and architecture exploration tools with single-
driver routing, heterogeneity and process scaling,” in Proceeding of
the ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, 2009, pp. 133–142.

[15] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Citeseer, 1991.

[16] (2011) OpenCores website. [Online]. Available: http://opencores.org/
[17] (2011) ABC: A System for Sequential Synthesis and Verification

website. [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc/
[18] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,

“Reducing structural bias in technology mapping,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 25, no. 12, pp. 2894–2903, 2006.


