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This paper presents a design implementation for accelerating the Fourier Integral Operator
(FIO) kernel of a seismic imaging application. Our design uses an extended version of a previously

proposed model for Systems Integrating Modules with Predefined Physical Links (SIMPPL) that

provides an architectural framework for designs implemented using multiple Field Programmable
Gate Arrays (FPGAs). This extended version of SIMPPL not only reduces design time by acceler-

ating integration, it facilitates multi-FPGA designs by abstracting them as a single reconfigurable

fabric. In this paper, we build upon a previous implementation of the FIO kernel to better leverage
our target platform, the Berkeley Emulation Engine 2 (BEE2), a multi-FPGA board. Dramatic

improvements in performance are attained due to the addition of a more efficient DDR2 SDRAM

memory controller and an expanded datapath width. The new implementation presented in this
paper provides a 357x increase in throughput compared to an optimized software implementa-

tion of the FIO kernel and a 29x increase in throughput relative to our previous FIO kernel
implementation.

Categories and Subject Descriptors: C.3.e [Computing Systems Organization]: Special-

Purpose and Application-Based Systems—Reconfigurable Computing; C.3.d [Computing Sys-
tems Organization]: Special-Purpose and Application-Based Systems—Real-time and embed-

ded Systems; B.9.2 [Hardware]: Performance Analysis and Design Aids; C.1.3.f [Computing

Systems Organization]: Processor Architectures—Heterogeneous (hybrid) systems

General Terms: Design, Performance, Measurement
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1. INTRODUCTION

Originally, the Systems Integrating Modules with Predefined Physical Links (SIMPPL)
model was formulated as an architectural framework for System-on-Chip (SoC) de-
signs [Shannon and Chow 2007]. SIMPPL allows designers to reduce system in-
tegration time and improve the potential of Intellectual Property (IP) reuse for
the component modules in their design. Recently, new elements were added to the
SIMPPL model to extend the framework to support implementation platforms com-
prising multiple Field Programmable Gate Arrays (FPGAs) by abstracting them
as a single reconfigurable fabric [Dickin and Shannon 2008].

In other recent work, we also presented a prototype system to accelerate a single-
precision, floating-point implementation of a Fourier Integral Operator (FIO) kernel
for a seismic imaging application [Lee et al. 2008]. Floating point computational
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cores have traditionally been uncommon for systems implemented on FPGAs due
to their large resource consumption [Ligon III et al. 1998]. However, as the size
of modern FPGAs increases, floating point accelerators [Underwood and Hemmert
2004][Morris and Prasanna 2005] are now being realized as SoC designs more fre-
quently [Greenbaum 2002]. Regrettably, for large and complex systems, such as
those required to accelerate applications like molecular dynamics [Scrofano and
Prasanna 2006], seismic imaging [He et al. 2004], and logic emulation [Varghese
et al. 1993], a single modern FPGA possesses insufficient resources. These types of
systems, including our FIO kernel, require a multi-FPGA platform for implemen-
tation; therefore, our FIO kernel was designed for implementation on the Berkely
Emulation Engine 2 (BEE2), a multi-FPGA board offering five Xilinx Virtex II Pro
70 FPGAs.

In this paper, we apply the extended SIMPPL model to the original prototype
FIO system. The updated FIO kernel design we present here has several improve-
ments, in addition to leveraging the extended SIMPPL model, to increase its per-
formance beyond that of the earlier prototype. Specifically, these enhancements
include:

—The incorporation of the FIO kernel component modules into the extended SIMPPL
framework: The cores in the system are augmented with SIMPPL Controllers to
handle system-level control and communication. The inter-FPGA communica-
tion ports are controlled by the recently introduced SIMPPL Repeaters [Dickin
and Shannon 2008].

—The inclusion of a dedicated memory controller: The original FIO system pro-
totype utilized a soft processor, the MicroBlaze [Xilinx Inc. ], to perform the
off-chip memory accesses via software; this was found to be a performance bot-
tleneck [Lee et al. 2008]. In the new implementation we present here, all off-chip
memory access is done via a custom hardware DDR2 SDRAM Memory Controller
from the BEE2 design repository [Chang et al. 2005].

—An increased bus width for data transfers: The width of the First-In-First-Out
buffers (FIFOs) between all system modules is increased from 64-bit to 256-bit
to improve bandwidth between computation cores and memory.

The new implementation for the multi-FPGA BEE2 platform presented in this
paper provides a 357x increase in throughput compared to an optimized software
implementation of the FIO kernel and a 29x increase in throughput relative to our
previous FIO kernel implementation.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on computing with multi-FPGA Platforms and Section 3 details the ex-
tension of SIMPPL to support multi-chip platforms. The components of the FIO
kernel design and their architecture are discussed in Section 4 and an analysis of the
system’s performance is given in Section 5. Finally, Section 6 concludes the paper
and contemplates future work.

2. MULTI-FPGA PLATFORMS

The reconfigurable nature of FPGAs provides several key advantages that make
Multi-FPGA platforms attractive for High-Performance Computing (HPC). FP-
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GAs provide the opportunity to exploit hardware parallelism to accelerate an ap-
plication beyond the means of a sequential execution model. Computations are
done using the circuitry that is configured to match a specific applications needs.
Also, incremental improvements or bug fixes to a circuit are easily accomplished
when a design is implemented on an FPGA. A custom designed ASIC can provide
greater performance improvments while using a smaller footprint than an FPGA.
However, the nonrecurring engineering (NRE) expenses and greater time to mar-
ket required for an ASIC solution make this approach untenable for low volume
projects.

The BEE2 [Chang et al. 2005] is a multi-FPGA platform designed for use as
a building block for High Performance Computing (HPC) systems and has been
used as the platform for several high-performance applications [Brodersen et al.
][Tkachenko et al. 2006]. The BEE2 features five Virtex 2 Pro FPGAs for appli-
cation implementation. Each of these FPGAs has four independent channels to 1
GB DDR2 memory DIMMs. The FPGAs are connected together using high speed
LVDS buses in a ring topology and also have high-speed connections for linking
multiple boards together. Figure 1 shows a high level block diagram of the BEE2.

Fig. 1. A high level block diagram of the BEE2 multi-FPGA platform.

3. SIMPPL

3.1 The SIMPPL Model

SIMPPL is a modelling approach for SoC’s in order to expedite system integra-
tio [Shannon and Chow 2007]. In this work we define an SoC to be a collection of
functional units that interact to perform a desired operation, implemented in the
form of an IC. The design could be implementation platform can range anywhere
from a fully custom ASIC to an FPGA.

A model of a generic SoC that uses the SIMPPL framework is shown in Fig-
ure 2. Under SIMPPL, the functional units of an SoC are termed Computing
Elements (CEs). Each CE contains the circuitry to perform a specific computing
task. Unidirectional, point-to-point links in the form of FIFOs are used to connect
the various CEs together and enable communication. A CE can contain either
application-specific hardware to implement functionality or a processing node that
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runs software to do the computation. These two options are termed Hardware CE
(HW CE) and Software CE (SW CE). Our work here is focused primarily on HW
CEs.

Fig. 2. An example of a system modelled using SIMPPL.

A HW CE is composed of three components designed to separate a functional
unit’s datapath, system-level control, and communication from each other. The
three components are,

—A Processing Element (PE), which encapsulates the modules datapath (e.g. a
32-bit multiplier).

—A SIMPPL Controller, which executes a local program and provides system-level
control for the PEs operation and inter-CE communication.

—A SIMPPL Control Sequencer (SCS) that contains the local program for the
controller.

A block diagram of a HW CE showing how these three components are connected
can be found in Figure 3. The PE is the portion of the CE that does the computing.
It has connections to the SIMPPL Controller and optionally the I/O pins of the
SoC. The SIMPPL Controller is a lightweight microcontroller. The Instruction Set
Architecture (ISA) of a SIMPPL Controller has multiple configurations, allowing
a SIMPPL Controller to be customized for a specific PE. The SIMPPL Controller
is programmable. It’s program is stored in the third component of a HW CE,
the SIMPPL Control Sequencer (SCS). SIMPPL imposes some constraints on how
the functional units of an SoC are controlled and how they communicate with
each other. By following these constraints the functional units can be integrated
immediately, tested thoroughly, and reused readily.

Each SIMPPL Controller controls two FIFOs, one to transmit (TX) and one to
receive (RX). These FIFOs are used to link CEs together, permitting the exchange
of commands and data. Each CE will require one or more SIMPPL Controllers
depending on how the CE is integrated into a system (e.g. pipelined, shared mem-
ory, connections to multiple other CEs, etc). There are a few common variants
of the SIMPPL Controller’s ISA to handle different forms of communication. For
example, a Full SIMPPL Controller has an ISA supporting both read and write
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Fig. 3. A block diagram showing the components of a hardware CE.

related instructions. In contrast are the Consumer and Producer SIMPPL Con-
trollers. The former’s ISA supporting only data receiving related instructions while
the latter’s only has instructions related to generating data.

Communication between CEs is packet-based. The packets have a specific format
which is illustrated in Figure 4. Each word of a packet is composed of a Control
Bit and a Program Word. The width of a Program Word is not fixed by SIMPPL
(32-bits in the figure), but all connected SIMPPL Controllers must use the same
Program Word width in order to function properly. The Control Bit is always a
single bit, meaning that the width of the FIFOs used must be one greater than the
desired Program Word width.

The first word of a packet is the Instruction Word, which contains the Number of
Data Words (NDW) in the packet and an opcode that tells the receiving SIMPPL
Controller how to handle the packet. The Control Bit is set to indicate that this is
in fact an Instruction Word. The next word is called the Address Word and is only
present for certain opcode values. The rest of the packet words are Data Words.
This is the data payload of the packet. Typically, this data is passed on to the
receiving CE’s PE for processing.

Fig. 4. SIMPPL packet format.
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3.2 The SIMPPL Repeater

SIMPPL was originally developed as an architectural framework for SoCs. Our
recent work introduced the SIMPPL Repeater to extend the SIMPPL model to
support systems implemented on multi-FPGA platform’s as well as SoCs [Dickin
and Shannon 2008]. The SIMPPL Repeater is used to allow communication between
CE’s located on different FPGAs. The SIMPPL Repeater is necessary due to how
the original SIMPPL model handles an IC’s I/O. The I/O ports, and anything
outside the SoC connected to these ports, are modelled as being part of a PE in
SIMPPL. Thus, two CEs implemented on separate FPGAs can communicate if
the communication channel logic is included in both PEs. Figure 5 illustrates this
configuration. However, all inter-CE communication is to be done through SIMPPL
Controllers. Having CEs communicate without using a SIMPPL Controller negates
the reduced integration time and IP reuse benefits of the SIMPPL Model.

Fig. 5. Inter-FPGA communication between CEs without a SIMPPL Repeater. This approach

does not follow the SIMPPL model for inter-CE communication.

To get around the inter-IC communication problem the SIMPPL Repeater was
developed. The SIMPPL Repeater replaces the SIMPPL Controller and SCS of a
special CE whose purpose is to provide inter-FPGA communication. The PE of
this special CE is the I/O ports and associated logic of an inter-FPGA communi-
cation channel. The SIMPPL Repeater is essentially FIFO read/write logic that
is compatible with the SIMPPL communication protocol. The SIMPPL Repeater
can also contain logic to control the inter-FGPA communication PE along with any
logic needed to convert the SIMPPL packet data into a suitable format for I/O.
Figure 6 illustrates inter-FPGA communication using SIMPPL Repeaters. In previ-
ous work, SIMPPL Repeaters were used in tandem with Multi-Gigabit Transceivers
(MGTs) to demonstrate a communication channel between two FPGAs [Dickin and
Shannon 2008].

Fig. 6. Inter-FPGA communication between CEs using SIMPPL Repeaters.

Unlike a SIMPPL Controller, a SIMPPL Repeater will not execute the opcode
contained in the instruction word of a received SIMPPL packet. This behaviour is
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desirable because it allows CEs to be oblivious to whether or not the packets they
send are transmitted off-chip. This would not be the case if a SIMPPL Controller
was used to control the inter-FPGA communication PE instead of the SIMPPL
Repeater. The addition of SIMPPL Repeaters transparently extends the SIMPPL
model to include multi-FPGA platforms.

4. CASE STUDY

The following case study, concerning the acceleration of a seismic imaging appli-
cation, is to demonstrate the use of the extended SIMPPL model with a system
implemented on a multi-FPGA platform. The inter-FPGA communication CE used
here is not as complicated as the MGT CE used in the previous proof-of-concept
system [Dickin and Shannon 2008]. However, this time we are using the SIMPPL
Repeater in a system with a legitimate application and five FPGAs as opposed to
two.

4.1 The Seismic Application

The purpose of seismic imaging is to obtain an extrapolated wavefield along a
planar cross-section of the earth’s surface, taken from the surface, to produce an
image of underground bodies. Data is taken at multiple points along the earth’s
surface, where the depth of a body determines the time it takes for a lected wave
to return to the same point. An underground body is then extrapolated using a
fourier integral operator (FIO) kernel. Figure 7 illustrates an example cross section
used to extrapolate the data.

Fig. 7. Cross Section of Earth’s Surface.

Our prototype employs a depth stepping method as described by Margrave et al
[9]. The mathematical equation of interest is given in equation 1 for the 1-D case.

Ψ(x, z + ∆z, ω) =
1

2π

∫ kend

kstart

Ψ′(k, z, ω)× eif(x,ω,k)∆ze−izkdk (1)

where ωlow < ω < ωhigh.
Ψ(x, z + ∆(z), ω) is the extrapolated wavefield at a depth ∆(z) below the sur-

face, Ψ′(k, z, ω) is the measured wavefield at the surface after Fourier transforming
along both spatial and temporal coordinates. The function, f(x, ω, k), is the phase-
shift function over a subset of the entire input frequency range forming a window
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constrained by ωlow and ωhigh, where outside of this range the frequencies are ig-
nored. These window bounds apply to Equations 2 through 5, but they are omitted
from the notation for clarity. Equation 1 can be written in its discrete form after
rearranging the terms for simplicity as,

Ψ(x, z + ∆z, ω) =
1

2π

kN−1∑
k0

Ψ′(k, z, ω)×W (x, ω, k) (2)

where,
W (x, ω, k) = eif(x,ω,k)∆ze−izk∆k (3)

In addition, the wavenumbers, k(j), are found using

k(j) = 2π
(

j

N − 1

)
ks j ≤ N − 1

2
+ 1 (4)

k(j) = 2π

(
j − N−1

2

N − 1

)
ks −

ks

2
j >

N − 1
2

+ 1 (5)

where j = 0...N
The computational elements of the equation are divided into as many different

blocks as possible in order to exploit pipelining and parallel computation to greatly
speed up the calculation of a 1-D slice. Theore, Equation 2 was divided into the
following blocks for implementation in hardware:

—FFT in spatial domain
—FFT in temporal domain
—Phase matrix generation
—Integration (multiplication and summation)

In our implementation, the algorithm is divided into four major Computing El-
ements (CEs) for the calculation of the single cross section shown in Figure 7
illustrates the data flow of the algorithm, highlighting these CEs.

The function of each CE in the FIO kernel can be summarized as follows:

—1024 Fast Fourier Transform(FFT): Perform FFTs in the spatial domain
—256 FFT: Perform FFTs in the temporal domain
—Complex Matrix Multiply(CMM): Perform a matrix multiplication on the trans-

formed cross section
—1024 Inverse Fast Fourier Transform(IFFT): Perform inverse FFTs back in to the

spatial domain

The phase matrix erred to in the CMM is generated by complex square roots
and exponential operations, which are extremely resource intensive. Since this
matrix is independent of the data, it can be pre-calculated in advance based on the
appropriate velocity model and used repetitively for different sets of data. However,
due to the size of the matrix, the entire matrix cannot be stored on-chip and must
be buffered from external memory in sections. The actual numerical processing of
the transformed data occurs in the complex matrix multiply when the extrapolated
data vectors are multiplied with the buffered segments of the phase matrix.
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Fig. 8. FIO data Flow. Fig. 9. FIO System block diagram.

4.2 The System Level Implementation

The seismic imaging application can be easily divided to increase the throughput
of our overall system. Theore, the algorithm was divided into three separate stages
that can be executed in parallel. Figure 9 illustrates the FIO system block diagram
partitioned into stages.

Using the BEE2 platform, the flow of data is transmitted between CEs in the
multi-FPGA platform. Each stage occupies a separate FPGA on the BEE2 plat-
form. The specific division of stages on FPGAs will be explained in Section 4.3.
The architecture consists of three distinct stages. Stage 1 transforms the input
data in the spatial domain using the 1024 FFT. The 256 FFT and the CMM make
up Stage 2, performing a temporal FFT and processing it by performing a matrix
multiply with the phase matrix. The 256 FFT and CMM are grouped together in
the same stage since both CEs process the same row of data in the matrix, whereas
other stages operate on columns of data. Finally, Stage 3 uses the 1024 IFFT to
perform an inverse spatial FFT to provide the final result.

A sample data set consists of 1024 surface sample points (columns) in the spatial
domain, which represents the earth’s surface. Each column has 256 data samples
(rows), representing varying sample times (depth) at each surface point. Initially,
the data set is loaded from Memory A and transformed in the spatial domain, row
by row, for all time (depth) measurements via the 1024FFT. This FFT must be
performed on all rows of the entire matrix before the Stage 2 can begin processing.
As each row is completed, the resultant is transferred to Stage 2 and stored in
Memory B. When the last 1024-point FFT is completed, the first stage is finished
and the second stage can initiate while Stage 1 begins processing a new data set.
Stage 3, which consists of 1024IFFT, mirrors Stage 1 in operation. It performs an
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inverse FFT along each row in the same fashion once a complete data set has been
processed in Stage 2.

When Stage 2 initiates, the 256FFT transforms the data along each column
of data in the temporal domain. As each column is completed, the resultant is
transferred to the CMM for the matrix multiply in order to allow the 256FFT to
continue processing temporal FFTs in parallel. The CMM takes the 256 points and
multiplies it with the buffered 256x256 phase matrix loaded from Memory C. The
resultant is then transferred to Stage 3 and stored in Memory D. Since the system
is split into three stages, the system can act as a three stage pipeline, processing
three sets of data in parallel.

4.3 Multi-FPGA System Partitioning

The FIO system is partitioned across the four User FPGAs of the BEE2 platform,
as in the our previous work, due to the pipelined nature of the algorithm and the
large resource usage of our CEs [Lee et al. 2008]. Block diagrams of the User
FPGA sub-systems are shown in Figures 10 through 12. All CEs operate using a
100MHz clock, with the exception of the DDR2 Memory Controller, which operates
at 200MHz.

Fig. 10. Block diagram of User FPGA 1.

The FFT 1024 CE is implemented on User FPGA 1, as seen in Figure 10, along
with two DDR2 Memory Controllers and three inter-FPGA communication chan-
nels. Wavefield data is transmitted to User FPGA 1 from the Control FPGA via
the C-U1 channel. The data is written to DIMM 1 until the FFT 1024 is ready to
process it. After the FFT 1024 processing is completed, the data is transmitted to
either User FPGA 2 or 4 using the appropriate channel. The multiplexor block of
Figure 10 alternates sending matrices of data to User FPGA 2 and 4.

Figure 11 shows the CE’s implemented on User FPGA 2 and 4. These FPGAs
have identical subsystems. The FFT 256 and the CMM CEs are implemented in
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Fig. 11. Block diagram of User FPGA 2 and 4.

this subsystem. This subsystem is duplicated to include two CMM CEs in the
system and exploit parallelism to increase throughput. The CMM is the bottleneck
of our system, which is explained in more detail in Section 5.

Data is received from User FPGA 1 and buffered in DIMM 1. The FFT 256 CE
reads and processes the DIMM 1 data and stores the result in DIMM 2. Once an
entire matrix of data has been written to DIMM 2, the CMM CE begins computa-
tion. The CMM also reads in the phase matrix from DIMM 3. This phase matrix is
pre-loaded into DIMM 3 by the Control FPGA via the inter-FPGA communication
channel before the computation begins. All the CMM results are transmitted to
User FPGA 3.

Fig. 12. Block diagram of User FPGA 3.
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The final CE, the IFFT 1024, is implemented on User FPGA 3. Data is received
from both User FPGA 2 and 4 and buffered in DIMM 1 and 2 respectively. The
IFFT 1024 CE alternates reading matrices of data from these two DIMMs. The
output is transmitted to the Control FPGA.

4.4 Individual Component Architecture

Implementing applications utilizing floating point arithmetic on FPGAs presents
difficult design challenges as basic operations require significant resources. Table I
shows some of the resource requirements for performing complex single precision
floating point operations and complex 32-bit fixed point operations obtained from
Xilinx data sheets [17][18][19].

Operation
Floating Point Fixed Point
FFs LUTs FFs LUTs

Add 1182 1160 116 106

Subtract 1182 1160 116 106
Multiply 1732 1630 170 154

Table I. Arithmetic operation resource usage

Based on these results, the parallelism of computing elements is limited by the
resources available on an FPGA. For example, an FPGA with 100,000 Flip-Flops
(FFs) could only implement 57 complex floating point multipliers. In order to
mitigate the effects of resource usage, designs must utilize a minimum number of
operations to complete its operation. The following sections describe the design of
the floating point computing elements.

4.4.1 Fast Fourier Transform. The Cooley-Tukey algorithm [20] is commonly
used to perform a FFT. Many readily available FFT cores already employ this
algorithm including Xilinx’s block floating point FFT. This algorithm partitions
the Fourier transform into smaller operations called butterflies. Each butterfly
consists of a radix-2 decimation-in-time (DIT) operation and is repeated to perform
a complete FFT. Figure 13 illustrates a single butterfly in an FFT.

Fig. 13. FFT butterfly.

Each butterfly takes two points of data, multiplies one by a twiddle factor, and
subsequently adds and subtracts this value from the initial points of data. The
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twiddle factor varies depending on the stage of operation in the FFT and utilizing
these different twiddle factors and butterflies, a complete FFT can be computed.
To achieve the highest throughput for an 8-point FFT, the design is pipelined into
three separate stages of butterflies with each stage consisting of 4 butterflies. The
design is shown in Figure 14.

Fig. 14. FFT Pipeline Stages.

The seismic imaging application requires two separate FFTs of at least 1024 and
256-points. When designing these FFTS, the primary concern was the amount of
resources a fully-pipelined FFT would require. One butterfly utilized a floating
point multiply, subtract, and add, which totaled approximately 4,000 FFs based
on the resource usages shown in Table I. As an FFT grows in size, the number of
butterflies and thus resource requirements scale at a log-linear rate. For example, a
256-point FFT requires 8 stages of 128 butterflies. If this were to be implemented,
the design would require over 4 million FFs, exceeding the total resources available
on all commercial FPGAs.

In order to implement a large FFT on a smaller FPGA, the CE is designed to
use a fixed bank of butterflies. This is beneficial since it allows the FFT CE to
compute large FFTs while minimizing resource utilization. Figure 15 shows the
designed architecture for the FFTs.

Similar to Stage 1 of the 8-point FFT shown in Figure 14, the butterfly bank
contained a fixed number of butterflies. By using a fixed number of butterflies,
resource usage can be minimized, but throughput is decreased when compared to
a fully pipelined FFT. However, utilizing a fixed butterfly bank makes large FFTs
possible. Similar to Stage 1 of the FFT shown in Figure 14, the butterfly bank
contains an array of butterflies. While throughput is decreased in comparison to
the fully pipelined FFT given in Figure 5, a fixed butterfly bank makes large FFTs
possible.

Utilizing a SIMPPL consumer, data is initially transferred into the FFT and
loaded into local memory (BRAM). Once the entire data set is loaded, the FFT
can start its computation. The loader takes the data-set incrementally and per-
forms each stage of operation by looping the data through the butterfly bank. The
unloader takes the result and loops the data back to the memory block. The loader
then repeats the process for a given number of iterations. For example, a 1024-point
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Fig. 15. FFT block diagram.

FFT normally requires 4608 butterflies. If the butterfly bank contains 8 butter-
flies, the data would loop through the bank 576 times. Once the FFT finishes
computation, the SIMPPL producer transmits the result to the next computing
element.

As previously described, the number of butterflies grows as a log-linear rate as
the length of the FFT increases. Since our design uses a fixed number of butterflies,
the latency of our FFT also increases at a log-linear rate as the length of the FFT
increases. This is because the number of iterations through the butterfly bank
is directly proportional to the total number of butterflies required to compute a
fully pipelined FFT. However, simply increasing the number of butterfly banks
does not necessarily result in a decrease in latency. The bottleneck in the design is
the computational stage that requires the longest latency. This could be the shift
registers or the butterfly bank. Increasing the number of butterfly banks would
lead to longer latencies in the shift register as more data is required to compute
one iteration. Thus, adding butterfly banks does not have a direct improvement
on performance. Because of this, to improve throughput in the overall system, it is
better to compute multiple FFTs in parallel by implementing multiple FFT CEs.

For our design, the butterfly bank contains two butterflies. In our previous work,
the butterfly bank included four butterflies. Since our previous goal was to opti-
mize the maximum operating frequency, the floating point multipliers, adders, and
subtractors incurred long latencies (21 cycles) but had a high maximum operating
frequency of 195MHz. In order to balance this, we utilized four butterfly banks as
it took 24 cycles to load 8 points of data plus 4 twiddle factors. However, in our
new implementation, each CE operates at 100MHz. Theore, we are able to lower
the latency of the multipliers, adders, and subtractors to 6 cycles. Furthermore, we
improved the loader and unloader in the FFT to allow 4 data points and 2 twiddle
factors to be loaded in 6 cycles. Thus our current design only uses two butterflies.
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Table II shows the resource utilization of our current FFT in comparison to our
previous design.

New 1024FFT New 256FFT Old 1024FFT Old 256FFT

LUTs 10949 11243 18170 18170
FFs 6061 6128 20387 20387

Table II. FFT Resource Usage

As seen in Table II, the new FFT design utilizes approximately 50% of the old
FFT’s resource utilization. This is due to the reduction in butterfly banks from
four to two. Furthermore, the 1024FFT utilizes approximately the same resource
usage as the 256FFT. Since our design uses an iterative approach in calculating
an FFT, only the control logic needs to be changed to scale the size of our FFT.
A longer FFT will be iterated more times through the same butterfly bank as a
shorter FFT, thus the resource utilization remains constant.

4.4.2 Complex Matrix Multiply. In order to process the transformed data with
the phase matrix, the Complex Matrix Multiply (CMM) is used. Figure 16 illus-
trates the architecture that was designed.

Fig. 16. CMM block diagram.

The CMM contains a SIMPPL producer, SIMPPL consumer, two shift registers,
a stage of multipliers, multiple stages of adders, and an accumulation stage. The
The number of adder stages depends on how many data points are calculated at
a given time. Determining the optimal number of data points used for a CMM is
presented in a later section. The purpose of the CE is to take a column of data
produced by the 256-point FFT and multiply it by a 256x256 phase matrix.

The CMM multiplies a segment of the 256-point temporal FFT vector by a
segment of the phase matrix and accumulates the results. The final accumulation
stage sums the results over the number of temporal data points (e.g. 256). For
example, if a 256x256 multiply needs to be performed, and the core calculates 8x8
points at a time, the core iterates 32 times and the accumulation stage adds the
total from each iteration to output the final result.

Much like the FFT, increasing the number of multipliers does not necessarily
lead to a direct improvement in performance. Increasing the number of multipliers
result in the shift registers incurring additional latencies as more data is required to
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saturate the multipliers. Thus a balance between the multiplier latency and shift
register latency is the best performing design. Theore, the best method to increase
throughput of the entire system is to implement multiple CMMs in parallel to
calculate different rows of data.

For our CMM design, two multipliers are used with two adder stages and one
accumulation stage. Our previous design utilized four multipliers with three adder
stages and one accumulation stage. Much like our FFT design, the reduction in
multipliers is due to a shorter latency for each multiplier. Table III shows the re-
source utilization of our current FFT in comparison to our previous design. Our
current design utilizes approximately 50% less resources in comparison to our pre-
vious design. This is due to the reduction in multipliers from four to two, and the
elimination of one adder stage.

New CMM Old CMM

LUTs 13348 24672
FFs 7812 26643

Table III. FFT Resource Usage

4.5 DDR2 Memory Controller

The Memory CE is composed of two SIMPPL Controllers, a DDR2 memory con-
troller [erence berkeley people], and an asyncronous interface between the SIMPPL
Controllers and the memory controller. Each of the memory CEs controls access to
a 1GB DIMM of memory. Each FPGA on the BEE2 can have up to 4 of these mem-
ory CEs to access the 4 DIMMs of DDR2 SDRAM available. In the memory CE,
one of the SIMPPL Controllers is a Producer, while the other is a Consumer. The
Producer is used exclusively for read operations and the Consumer only supports
write commands. This allows two CEs to connect to a DDR2 memory module,
one to write and the other to read. This setup works well with our system de-
sign as the DDR2 DIMMs are used to buffer our rather large data sets in between
computation-oriented CEs.

The DDR2 memory controller operates in the 200 MHz clock domain, while the
SIMPPL Controllers and the rest of the system operate in the 100 MHz clock
domain. Initially in the design phase we planned to have the whole system oper-
ate at 200 MHz as well. However, the DDR2 memory controller only marginally
passes timing requirements at the best of times, and adding the SIMPPL Con-
trollers resulted in unroutable build errors when building the FPGA bitstreams.
Asyncronous FIFOs were added between the SIMPPL Controllers and the DDR2
memory controller to eliminate the problem.

4.5.1 Inter-FPGA Communication CE. The Inter-FPGA Communication CE
consists of a LVDS inter-FPGA communication channel core provided by Berkeley
and a SIMPPL Repeater. The channels between User FPGAs on the BEE2 are
configured to be 64-bits wide and full duplex. Between the Control FPGA and the
User FPGA, the channel width is only 16-bits. The channels operate at 100 MHz,
the same frequency as the on-chip system, and so introduce a very small latency
when data is transferred between chips. Based on our measurements, it typically
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takes 4 cycles to transfer a 64-bit word between User FPGAs. If data is streamed
between chips, as in the FIO kernel application, then this time becomes negligible.

4.5.2 FIFOs. The FIFO’s used in the system are synchronous, first-word-fall-
through, 256-bits wide, and 16-words deep. In addition to the 256-bit word size,
there is an extra ”control bit”. This bit is used in the SIMPPL communication
protocol and makes the actual size of the FIFO 257-bits.

5. RESULTS

This section explains how the performance of the FIO kernel acceleration system
was measured. Section 0?? describes the performance analysis done for each of the
computation CEs and Section 5.2 presents the results of our system.

5.1 CE Performance

The latency of the individual computation CEs is listed in Table IV. This measure-
ment is the amount of time each CE requires to process an entire matrix (1024x256)
of data, including the DDR2 memory storage and retrival overhead and inter-CE
communication. Interchip communication latencies are not included in this mea-
surement as each core was evaluated with a test setup on a single FPGA. However,
since the inter-FPGA communication channels are operating at the same frequency
as the computation CE’s (100MHz), the latency of transmitting a word of data
between User FPGAs is only a few cycles and has a negligible impact on overall
system latency. For comparision, the latency of the CEs from our previous work is
included [Lee et al. 2008].

Table IV. CE Performance

CE Latency (ms) Previous Latency (ms)

FFT 256 0.0822 7.94
FFT 1024/IFFT 1024 no reorder 0.394 37.9

FFT 1024/IFFT 1024 with reorder 5.59 N/A

CMM 31.5 172

Inspection of Table IV shows that the CMM CE has the largest latency of all CEs
in our system. This was true in our previous version of the system as well. There-
fore, the CMM is the bottleneck restricting performance. To improve performance,
the FFT 256 and CMM CEs are duplicated in our design on User FPGA 2 and 4
to allow two matrices to be processed in parallel. This was done in our previous
work as well. A new feature added in this work to improve performance, is the
data matrices for the CMM are stored in DDR2 memory such that the CMM can
read and write data using sequential addresses. Accesses using sequential addresses
reduces memory access time overhead. The data is stored sequentially for the CMM
by the FFT 1024 and IFFT 1024 “with reorder” CEs. These two CEs access the
memory shared with the CMM with a non-sequential addressing pattern to set the
data up correctly for the CMM. This increases the latency of the FFT 1024 and
IFFT 1024 CEs by an order of magnitude. The “no reorder” entry in Table IV
shows the FFT 1024 and IFFT 1024 CE’s performance with sequential addressing.
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This increase in latency is hidden by the CMM’s latency when examining system
performance.

5.2 System Performance

The total latency of the system is measured1 and compared with the equivalent
vector optimized Matlab algorithm run in single precision floating point. Table V
compares the overall performance of our updated system with a software implemen-
tation of the FIO kernel and our previous work. The software algorithm is run on
a PC with a 2.13GHz Intel Core 2 Duo and 4GB of RAM. Running the FIO kernel
on the BEE2 platform results in 357 times the throughput of the Matlab version.
The updated FIO kernel system has 29 times the throughput of the old system.
This increase is due to the enhancements outlined in this paper, particularly the
use of a dedicated DDR2 memory controller.

Table V. FIO kernel performance comparison

Platform Latency(s) Throughput (matrices/s) Speedup Compared
to Software

New BEE2 SIMPPL System 0.0427 63.6 357

New BEE3 SIMPPL System Doesn’t Exist M’kay

Old BEE2 System (195 MHz) 0.55 2.2 12.3
Old BEE3 System (248 MHz) 0.43 2.8 15.7

Software 5.62 0.178 1.0

6. CONCLUSIONS AND FUTURE WORK

This paper presents the prototype for an application-specific architecture of an
FIO kernel. The system design utilized the SIMPPL architectural framework that
was recently expanded for use with multi-FPGA systems. In addition, a detailed
study on floating point CEs, particularly the FFT CE, was performed. The system
runs on the BEE2 platform and achieves a data throughput 357 times that of an
optimized software implementation.

Future work would include porting the application to a more modern multi-FPGA
platform. The Xilinx Virtex II Pro FPGA that inhabits the BEE2 is becoming
dated, and a new version of the platform, the BEE3 has been developed that uti-
lized Virtex 5 FPGAs. We would expect to see significant performance gains if the
system were able to operate at the higher frequencies that a newer FPGA would
allow. Furthermore, significant resource usage and latency is incurred due to the
normalization and denormalization of floating point numbers. We will also investi-
gate internal representations of floating point input data within the FIO kernel that
reduce or limit these operations, such as block floating point, to further decrease

1The individual CEs have been mapped onto the BEE2 platform and have been verified to run on

the Control FPGA and communicate with the DDR2 DIMMs. However, there have been problems

loading the final design onto the entire BEE2 platform due to a lack of debugging facilities on
the User FPGAs and problems with data integrity on the inter-FPGA communication channels.

System performance results found in Table V.
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latency. However, it will be necessary to verify that the required computational
precision is maintained before these representations can be employed.
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