

Facilitating Processor-Based DPR Systems for non-DPR Experts

Edward Chen1, William Gruver1, Dorian Sabaz2 and Lesley Shannon1
 School of Engineering Science, Simon Fraser University1 Intelligent Robotics Corporation2

 Burnaby, BC, Canada North Vancouver, BC, Canada
 {ekchen gruver, lshannon}@sfu.ca {dorian}@iroboticscorp.com

ABSTRACT

Currently, only Xilinx Field Programmable Gate Arrays (FPGAs)
support Dynamic Partial Reconfiguration (DPR). While there is
currently some Computer Aided Design (CAD) tool support for
ISE-based DPR designs, none exists for microprocessor-based
designs created in EDK. Creating DPR systems with the limited
tool support currently available for ISE-based systems is already a
challenging and complex process for novice DPR designers.
These difficulties are severely compounded for potential
microprocessor-based designs requiring a significant learning
curve for novice DPR designers before they can successfully
create their first working DPR system. This paper presents
preliminary work towards extending the automation in Xilinx®’s
current DPR design flow to include microprocessor based systems.
The objective is to abstract low level details for novice designers,
allowing them to focus on learning how to improve the quality of
their design as opposed to how to perform the necessary manual
transformations to generate a preliminary functional design. A
case study demonstrated that the learning curve required to
implement a first working design could be reduced by more than a
factor of 15 times by improving the current automation available
for microprocessor-based EDK designs.

Keywords
Field Programmable Gate Arrays, Dynamic Partial
Reconfiguration, Computer Aid Design (CAD) Tools, SoC
Design, Soft Processors

1. INTRODUCTION

Select Field Programmable Gate Arrays (FPGAs) from Xilinx®
allow Dynamic Partial Reconfiguration (DPR) of the
programmable fabric. DPR allows selected areas of the target
device to be reprogrammed while the remainder of the fabric is
active. Multiple modules are then able to time-share the same
physical area on the target device and thus virtually increasing its
physical resources. A DPR system has advantages over
conventional implementation methods such as reduced footprint,
cost, device count and power dissipation [1,6,7].
DPR systems are typically more complex to implement than non-
DPR systems. It is often possible to purchase alternative devices
with sufficient logic to satisfy design constraints. However, as
power and footprint become essential factors in many of today’s
commercial products, a DPR system may become a practical
solution.
Currently, Dynamic Partial Reconfiguration has been used in
applications such as cryptography [3], network security [4],
reconfigurable communication [5], and aerospace [6]. In
Zeineddini [3], partial reconfiguration is used to devise a secure

reconfiguration scheme that minimizes reverse engineering and
bitstream cloning. Kao [5] discusses how applications designed
for the aerospace industry may be subject to Single Event Upset
(SEUs) that may occur from in-orbit, space-based, and extra-
terrestrial applications. Other literature [6] [7] discusses the
applications of DPR in different industries.
Xilinx had previously presented documentation outlining the
exact procedures to be followed when implementing an ISE-based
DPR design [2]. However, these procedures require a thorough
understanding of different Xilinx CAD tools and the DPR design
flow for a novice DPR designer to create his initial DPR design.
The designer should focus on enhancing his DPR system, rather
than the transformation from a non-DPR to a DPR system.
Recently, Xilinx has incorporated functionality into the
PlanAheadTM software tool that can be used to facilitate the
development of an ISE-based DPR system. However, PlanAhead
does not directly support the generation of microprocessor-based
DPR systems developed in EDK without significant manual
alterations. As an increasing number of FPGA designs include
microprocessors, there exists a need to facilitate the generation of
potential DPR-systems developed in EDK.
This paper presents preliminary work towards extending the
automation in Xilinx’s current Dynamic Partial Reconfiguration
(DPR) design flow to include microprocessor based systems.
EuTOPIA (EDK TO PlanAhead Implementation Automation)
automates the process of converting the non-DPR,
microprocessor-based design in EDK into a PlanAhead-based,
DPR system. EuTOPIA abstracts low level details, allowing
designers to quickly generate their initial EDK-based DPR
systems. EuTOPIA allows novice designers to focus on how to
improve the quality of their systems as opposed to how to perform
the necessary manual transformations to generate a preliminary
functional system.
Figure 1(a) shows the high level overview of the standard EDK-
based design flow. Modifications are required to this design flow
if the processor-based design implemented in EDK is to leverage
DPR. Figure 1(b) illustrates the required modifications to the
standard design flow required to implement a microprocessor-
based DPR system from EDK. The bolded boxes highlight the
modifications to the standard EDK-based design flow for DPR
system implementation.
The designers start by implementing a standard EDK project as
they would for a static embedded system. Manual modifications
of the HDL files are then required before the EDK project is
exported to ISE for synthesis. Given a structured input
architecture in EDK, EuTOPIA generates a PlanAhead project
with full and partial bitstreams. Users are then able to modify and
optimize their systems as desired. EuTOPIA provides users a
quick method to generate their systems with the core
functionalities and flexibilities of a PlanAhead Project.

Figure 1: High level EDK-based design flow for (a) standard non-

DPR systems and (b) the modified design flow for EDK-based
DPR systems

The high-level overview of EuTOPIA is shown in Figure 2.

Figure 2: High-level Overview of EUTOPIA

EuTOPIA uses a two-phase approach to generate the PlanAhead

project. In Phase#1, EuTOPIA modifies HDL files in the EDK
project to conform to the DPR design flow. The modified HDL
files are then synthesized using ISE. In Phase#2, a TCL script
that contains detailed implementation instructions for PlanAhead
is generated. PlanAhead then invokes this TCL script to create
the DPR system. Current version of EuTOPIA supports three
Partially Reconfigurable Regions (PR-Regions). The locations
and sizes of the PR Regions and the types of Bus Macros used are
automatically assigned. PR Regions are configured as OPB slaves
and data-width are fixed at 8 bits.
EuTOPIA is not designed as a replacement for either EDK or
PlanAhead, but is meant to complement the functionality provided
by both tools. It allows novice users to quickly generate their
initial DPR systems and focus their effort on enhancing their
designs, rather than the transformation from non-DPR to DPR
systems. After the initial DPR system is established, experienced

designers can pursue more optimized designs by modifying the
existing PlanAhead project.

2. Preliminary Results and Future Works

An identical experimental DPR system is implemented twice,
once using EuTOPIA and once manually by an experienced user.
It was found that the implementation time for EuTOPIA was 15X
faster than manual implementation. Users are also required to
understand not only the intricate details of the DPR flow, but also
the detailed usage of ISE and PlanAhead for manual
implementation. The minimal time required to have a thorough
understanding DPR, ISE and PlanAhead is approximately 50+
hours. In contrast, only 2-3 hours are required to have the
nominal knowledge of the underlying process and the input
constraints to EuTOPIA. Each additional implementation of this
experimental DPR system requires only 20 minutes for EuTOPIA,
but approximately 1.5 hours for manual implementation. Over the
design-cycle of a product where designers may generate tens or
even hundreds of different implementations of their DPR design,
these time savings would be significant.
Future versions of this CAD tool will provide designers with more
flexibility in the options they can choose for their DPR systems
designs. Current upgrades being developed include: increase the
number of allowable PR Regions, user-specify the locations and
sizes of each PR Region, perform architectural exploration,
increase the data-width between the OPB Bus and the PR
Regions, support FSL and PLB connections to the PR Regions,
and the inclusion of additional development boards and FPGA
device types.

3. References

[1] J. Becker, M. Huebner, and M. Ullmann, “Power estimation

and power measurement of Xilinx Virtex FPGAs: trade-offs
and limitations”, 16th Symposium on Integrated circuits and
Systems Design, SBCCI), 8-11 Sept 2003, pp.283-288

[2] “Two Flows for Partial Reconfiguration: Module Based or
Difference Based”, Xilinx Application Note XAPP290
(V1.2), www.xilinx.com/bvdocs/appnotes/xapp290.pdf, Dec
8, 2007.

[3] A Zeineddini, “Secure Partial Reconfiguration of FPGAs ” ,
M. Sc Thesis, George Mason University , Fairfax, VA, USA,
2005

[4] R.V. Kshirsagar, R.M. Patrikar : “Design of a
Reconfigurable Multiprocessor Core for Higher Performance
and Reliability of Embedded Systems”, IEEE proceedings of
IFIP 14th International conference on Very Large Scale
Integration, VLSI-SoC 2006,pp 251-254, Oct. 16-18,
2006,Nice,France

[5] C. Kao. “Benefits of Partial Reconfiguration” Xilinx Xcell
Journal Fourth Quarter 2005 pp65-68

[6] N. Dorairaj, E. Shiflet, and M. Goosman. “PlanAhead
Software as a Platform for partial Reconfiguration” Xilinx
Xcell Journal Fourth Quarter 2005 pp68-71

[7] P. Lysaght, B. Blodget, J. Mason, J. Young and B
Bridgeford: Invited Paper: Enhanced Architecture, Design
Methodologies and CAD Tools for Dynamic Reconfiguration
for Xilinx FPGAs. FPL2006: 1-6

