
POLYBLAZE: FROM ONE TO MANY. BRINGING THE MICROBLAZE INTO THE
MULTICORE ERA WITH LINUX SMP SUPPORT

Eric Matthews, Lesley Shannon

School of Engineering Science
Simon Fraser University

ematthew@sfu.ca, lshannon@ensc.sfu.ca

Alexandra Fedorova

School of Computing Science
Simon Fraser University

fedorova@sfu.ca

ABSTRACT
Modern computing systems increasingly consist of multiple
processor cores. From cell phones to datacenters, multicore
computing has become the standard. At the same time, our
understanding of the performance impact resource sharing
has on these platforms is limited, and therefore, prevents
these systems from being fully utilized. As the capacity of
FPGAs has grown, they have become a viable method for
emulating architecture designs as they offer increased per-
formance and visibility into runtime behaviour compared to
simulation. With future systems trending towards asymmet-
ric and heterogeneous systems, and thus further increasing
complexity, a framework that enables research in this area is
highly desirable.

In this work, we present PolyBlaze: a multicore Micro-
Blaze based system with Linux Symmetric Multi-Processor
(SMP) support on an FPGA. Starting with a single-core,
Linux supported, MicroBlaze we detail the changes to the
platform, both in hardware and software, required to bring
Linux SMP support to the MicroBlaze. We then outline
the series of tests performed on our platform to demonstrate
both its stability (e.g. more than two weeks of up time) and
scalability (up to eight cores on an FPGA, with resource us-
age increasing linearly with the number of cores).

1. INTRODUCTION

Computing system complexity is growing rapidly due to the
increasing adoption of multicore systems and the trend to-
ward asymmetric and heterogeneous platforms. Unfortu-
nately, our ability to optimize runtime scheduling on these
systems has not advanced enough to deal with the added
complexity. This has lead to increasingly variable perfor-
mance on these systems, where application performance can
be degraded by as much as 150% [1]. Without greater vis-
ibility into the system, these runtime interactions cannot be
predicted, and a variety of performance characteristics, from
latency to throughput, can be negatively impacted.

Current commercial systems, which are only now start-
ing to include more hardware counters, still focus on mi-
croarchitectural details. This tends to result in the ability to

detect symptoms (e.g. high cache miss rates), but does not
provide an easy means to diagnose the source of the problem
(e.g. cache access patterns). Current multicore systems are
limited by their fixed nature and do not allow us the flexibil-
ity to tune different parameters or provide us with a means of
examining future asymmetric and heterogeneous systems.

There is a wide range of simulators that model, to vary-
ing levels of detail, different parts of the system hierar-
chy [2, 3]. For performance reasons, any given simulator
will typically model only a specific area in detail; however,
few target cycle level accuracy. Simulators also typically
face performance scaling problems when the breadth and
depth of information collected is expanded as all software
data collection has some level of overhead.

Ideally, the target platform for enabling systems research
would be a highly configurable and scalable multicore plat-
form with SMP support for a modern Operating System
(OS) such as Linux. Given the configurable nature of an
FPGA’s fabric and the acceleration it provides over soft-
ware simulation, both researchers and commercial vendors
are now using FPGAs to emulate processors for prototyping
and research [4, 5, 6, 7]. However, the existing multicore
research frameworks that utilize FPGAs either do not run a
standard OS, they do not scale well, or they are too costly
due to resource usage, to be a general research platform. As
such, the focus of this paper is to create a framework for
systems research that meets all of these criteria.

In this paper, we present PolyBlaze, a multicore sys-
tem featuring multiple MicroBlazes and SMP OS support
through the Linux 2.6.37 kernel. Starting with the existing
support for a single MicroBlaze running Linux [8], we de-
scribe the principle changes to the hardware and software
required to enable a Linux-based multicore system derived
from the MicroBlaze platform.

The specific contributions of this paper include:

• hardware extensions to the MicroBlaze processor to
support SMP;

• Linux support for the multicore MicroBlaze system; and
• a scalable Timer and Interrupt Controller for the multi-

core MicroBlaze system

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work in the area of multicore
platforms and FPGAs as a contrast to the overview of the
PolyBlaze platform discussed in Section 3. The transforma-
tion of the MicroBlaze into the PolyBlaze platform is de-
scribed in Section 4 and a system analysis is provided in
Section 5. Finally, Section 6 concludes the paper and sum-
marizes future work.

2. BACKGROUND

The increasing capacity of FPGAs has fueled their growth
in areas of research such as the simulation of traditional ar-
chitectures [7], as well as research into soft-processor ar-
chitectures [9]. Multicore processor architecture research
projects utilizing FPGAs include: the Research Accelerator
for Multiple Processors (RAMP) [10] project, which uses
multiple lightweight processors on tens and hundreds of FP-
GAs [11]; the Beehive Project [12], which enables multi-
ple lightweight processors on a single FPGA; the Hthreads
project [13], which provides support for threads in hard-
ware and software along with a hardware based OS; a xilker-
nel based multicore MicroBlaze system [14]; and emulation
platforms used during the design of commercial multicore
processors [4, 5, 6]. While the commercial emulation plat-
forms do support an OS, they are proprietary and their cores
are too large to easily instantiate multicore systems on plat-
forms affordable to researchers. By contrast, the RAMP,
Beehive, Hthreads and xilkernel multicore MicroBlaze plat-
forms all use lightweight processing cores, enabling multi-
core systems to be instantiated on affordable research plat-
forms. However, none of these systems support an OS with
virtual memory as is desirable for most systems research.

More recently, the emergence of platforms such as the
OpenSPARCT1 [15] and LEON3 [16] has enabled new ap-
proaches into systems research. Their open-source nature
enables visibility into all details of the system, providing ac-
cess to cycle accurate data, while still being able to run a
modern OS on the system, many times faster than software
simulators. However, each OpenSPARC processor core is
large enough to map to a separate Virtex 5 110LXT and the
memory controller is emulated using firmware on a Micro-
Blaze. Thus, scaling the system beyond one core not only
requires multiple FPGA boards due to the size of the proces-
sor, but the MicroBlaze-emulated memory controller signif-
icantly limits the system’s scalability as all memory oper-
ations are handled in MicroBlaze firmware, which makes
the MicroBlaze the bottleneck in system performance. The
LEON3 is another SPARC-based platform that supports a
multi-core setup, however, there is limited memory con-
troller support for different boards. PolyBlaze allows the
user to instantiate up to eight cores on a Virtex 5 110LXT
and, by using Xilinx’s Multi-Port Memory Controller, maps
more easily to different Xilinx research boards.

In addition to the OpenSPARC and LEON3 platforms,
we are aware of only two other soft-processors with full sup-
port for Linux 2.6 or later. They are the NIOS II [17] and
the MicroBlaze [18]. While both processors support Linux
in a single-core configuration, the NIOS II’s support is more
recent compared to the MicroBlaze, which has supported
Linux since the 2.6.30 kernel.

3. POLYBLAZE PLATFORM

A major benefit of choosing the MicroBlaze for our multi-
core system is that we immediately benefit from the high
configurability of the processor design. This will facilitate
future work into asymmetric systems, allowing for configu-
rations with different size caches and varied arithmetic units.
For example, a mix of processors with and without Float-
ing Point Units (FPUs). While transforming the MicroBlaze
into a PolyBlaze processing core requires some architectural
changes, none of these changes restrict the existing config-
urability of the MicroBlaze.

As PolyBlaze will be used for systems research, a
more complex memory hierarchy is desired than the direct
mapped caches of the MicroBlaze. However, adapting the
MicroBlaze’s architecture and the existing Linux kernel sup-
port to support multicore configurations does not require a
complex cache hierarchy. Therefore, a detailed discussion
of cache configurations and hierarchies is left as future work
due to space limitations.

Figure 1 illustrates PolyBlaze, our multicore Micro-
Blaze system on an FPGA. Modules highlighted in blue
indicate the hardware components that have been de-
signed/redesigned for our framework. The Hardware Pro-
filer is used to validate the system and evaluate its perfor-
mance and is not required for normal system operations.
The system consists of one to eight MicroBlaze cores, along
with support for timers, interrupts and extended support
for atomic instructions through the Lock Arbiter1. Sec-
tion 4 will detail the changes in implementation required to
achieve this transformation.

4. BRINGING MULTICORE SUPPORT TO THE
MICROBLAZE PROCESSOR

Adding a second MicroBlaze processor to a system is a
straightforward process; however, the resulting system is
still far from having the necessary infrastructure to support
booting an SMP OS. To achieve this requires many changes
both to the OS support and the hardware platform. Some
support can be provided with minimal changes, such as pro-
cessor identification, which can be implemented through the
existing Processor Version Registers (PVR). Other support,

1Due to the proprietary nature of the MicroBlaze, we are looking into
the possibility of making available an encrypted version of the PolyBlaze
framework to other researchers.

PLB

UART
Debug
Module

FPGA
Memory Controller

Timer & Interrupt
Controller

MicroBlaze

B
R

A
M

L1 I$

Hardware
Profiler

Lock Arbiter

MicroBlaze

B
R

A
M

L1 I$

Fig. 1. PolyBlaze: the Multicore MicroBlaze Platform

requires more extensive changes as is the case for interrupts,
timers, atomic operations and Memory Management Unit
(MMU) support.

4.1. Interrupts

For a single processor system, interrupt support is relatively
straightforward. To support multiple interrupts, a stand-
alone interrupt controller is used to abstract each interrupt’s
type and multiplex the multiple interrupts to the Micro-
Blaze’s single interrupt input (IRQ pin). This solution is
insufficient for multicore systems as we may want interrupts
to be served only by a single (specific) processor or, con-
versely, allow any processor to be the recipient of an in-
terrupt. Further complicating matters is the need for asyn-
chronous communication between processors, which is typ-
ically provided through Inter-Processor Interrupts (IPIs).

Although the interrupt controller provided by Xilinx (the
LogiCORE IP XPS Interrupt Controller v2.01a [19]), has
support for handling multiple interrupts and types of inter-
rupts (level/edge), it only supports a single interrupt output.
Simply duplicating the interrupt controller per processor is
not a viable option, as in addition to the poor scaling of this
approach, it would also complicate software handling of in-
terrupts and still would not provide a mechanism for IPIs.

4.2. Timers

To support the dynamic clock tick timekeeping functionality
in the Linux kernel [20], a free-running counter and per pro-
cessor timers are required. For the single processor system,
this role is adequately served by the Xilinx LogiCORE IP
XPS Timer/Counter peripheral [21]. The timer peripheral
supplies a 32-bit free-running counter and a decrementer,
with an interrupt connected to the interrupt controller. While
this is sufficient for a single core system, it does not scale
well with multiple processors for a few reasons. First of
all, the decrementers are used on a per processor basis, and
while the timer peripheral supports two timers they share
an interrupt output. In addition, each timer would consume
a system wide interrupt pin on the interrupt controller, but

would only ever be sent to a single processor which, is an
inefficient use of resources.

4.3. PolyBlaze Timer and Interrupt Controller

As discussed in the previous section, an integrated approach
to timers and interrupts provides for better system scalabil-
ity, therefore, in PolyBlaze they are combined into a single
Timer and Interrupt Controller (TIC) peripheral as shown in
Figure 2.

PLB

Global
IRQ

Logic

Interrupt
Detection

PLB
Slave

Interface

Global
Registers

CPU 0
Registers

CPU N
Registers

IRQ 0

IRQ N

IPI
Generation

Global
Timer

Per CPU
Decrementers

IRQ
Selection and

Arbitration

Fig. 2. High-level Timer and Interrupt Controller Diagram

The TIC provides each processor with a dedicated 32-bit
decrementer and a per processor interrupt used to schedule
wake-ups in the kernel. There is also an independent, global,
free-running 64-bit counter used for timekeeping purposes
and a configurable number of IPIs. Like the Xilinx inter-
rupt controller, interrupt priority is fixed by connection or-
der, with IPIs and timers having higher priority than all other
system interrupts. A master enable exists for each interrupt
(represented in the global registers block in Figure 2), as
well as on a per processor basis (the CPU X register blocks),
thus support for both distributing interrupts and fixed inter-
rupt assignment exists. On every cycle, the selection logic
determines the highest priority interrupt as well as which
processor(s) have this interrupt priority level enabled. The
interrupt is then assigned to a processor that is not already
servicing an interrupt based on round-robin arbitration.

Just as timer and interrupt support are merged in the
PolyBlaze TIC, support for the timers and interrupts are also
merged in the kernel. Interrupt support has been simplified
within the kernel, with custom paths for edge and level in-
terrupts replaced by a simple “acknowledge on completion,”
as the interrupt controller effectively hides the type of inter-
rupt from the MicroBlaze. In moving from a 32-bit to a 64-
bit free-running counter, the unreliable software approach to
extending the counter to 64-bits (which did not work at cer-
tain operation frequencies) has been removed. However, as
the MicroBlaze is a 32-bit processor this counter must now
be snapshotted prior to reading and requires the protection
of a global spinlock to ensure that the snapshotting and reads
are performed by only one processor at a time.

4.4. Exception Handling

With support in place for interrupts and timers, another area
of operation that differs between the single-core and multi-
core system is exception handling. When an exception or
interrupt occurs during normal operation in the kernel some
registers are needed for temporary processing. However, the
MicroBlaze has no registers available for these operations.
In the single core implementation, some registers are stored
into fixed locations in memory using immediate mode ad-
dressing. Since the addresses generated through immediate
mode addressing would not be unique for multiple cores this
approach will not scale. To address this, we added a new set
of registers called General Purpose Special Purpose Regis-
ters (GPSPRs) to the MicroBlaze, similar to those found in
the PowerPC [22].

Support for these new registers is integrated into the
MicroBlaze’s Move To Special Purpose Register (MTS) and
Move From Special Purpose Register (MFS) instructions.
The modification to the Instruction Set Architecture (ISA)
is shown in Figure 3. The current implementation supports
four GPSPRs, two of which are currently needed for excep-
tion handling in the kernel; however the number is config-
urable and can readily be increased or reduced to meet the
future needs of the PolyBlaze system.

GPSPRxGPSPR Select

313029282726252423222120191817161514131211109876543210

mfs/mts SelectOpcode

Immediate OperandSource / Destination Registers

Fig. 3. Changes to the MFS/MTS Instruction Format to Sup-
port GPSPRs

4.4.1. Linux Support

Inside the kernel, the previously existing reads and writes
to the fixed memory locations are replaced with local stor-
age operations utilizing the GPSPRs. At present, this is ac-
complished with the insertion of the machine code for these
instructions. Support has been implemented in Xilinx’s ver-
sion of the GNU assembler to provide an assembly level in-
terface for these instructions, however, PetaLinux currently
uses a different version of the assembler which is not com-
patible with these changes.

4.5. Atomic Operations

The final significant piece of infrastructure needed for multi-
core support is support for atomic operations. Despite the
existence of a pair of conditional load/store instructions in
the MicroBlaze ISA [18], the existing kernel implementa-
tion did not use these instructions for implementing syn-
chronization primitives. Instead, to perform an atomic op-
eration interrupts are disabled over the “protected” region.

In a single-core system, this is sufficient to make an opera-
tion atomic as the operation cannot be interrupted. However,
this also means that no form of kernel preemption can be
supported, which can increase system latency. With the use
of the MicroBlaze’s Load Word Exclusive (LWX) and Store
Word Exclusive (SWX) instructions, the number of circum-
stances where interrupts need to be disabled can be lessened
and kernel preemption on even single-core systems can be
enabled.

4.5.1. LWX/SWX Behaviour

To perform an atomic operation with the LWX/SWX in-
structions, first a conditional load is performed, which sets
a reservation bit internal to the processor [18]. If this bit
is still set when the next conditional store instruction is ex-
ecuted (to any address), the store will proceed. If the bit
has been cleared, by events such as interrupts or exceptions,
the store will be aborted [18]. While this design is suitable
for a single-core system, it does not provide any guarantee
that the operation will be atomic if there are other devices
that could be modifying those memory locations. As such,
a multicore system requires a more flexible approach.

In a multicore system, in addition to the possibility
of there being multiple concurrent memory requests in
progress, it is also possible for the atomic operations to
be targeting different memory addresses. Therefore, a sys-
tem that is address based will allow for greater scalability.
For our system, we have chosen to implement a conditional
load/store approach with a different set of semantics based
on the ordering of the stores across all processors in the sys-
tem.

Our system provides a centralized location (the lock
arbiter in Figure 1) that acts as the synchronization point
for all reservations in the system. While all data requests
pass through the arbiter, additional per-processor signals are
utilized to communicate whether a request is atomic and
whether the request was put through to memory. When a
processor performs a conditional load operation, a reserva-
tion bit is set for that processor and the address is stored.
Note, there is no restriction on multiple processors having
reservation bits set for the same address. Any store to that
address after that point will clear the reservation bit for any
processor with a reservation for that address. If another
processor then attempts a conditional store operation to the
same address, the store will be terminated upon reaching the
arbiter and will not be committed to memory.

Inside the Linux kernel, there are many types of atomic
primitives from spinlocks to atomic versions of basic oper-
ations such as add/subtract and bit manipulations. As was
previously discussed, the existing MicroBlaze Linux im-
plementation did not provide custom implementations for
any of these operations as it simply disabled interrupts for
atomic operations. For PolyBlaze, we wrote the custom as-

sembly functions required to implement the full set of these
operations.

4.6. MMU

As the MicroBlaze utilizes a fully software managed MMU,
similar to the PowerPC 405 [22], hardware changes are not
required to support a symmetric multicore system. Instead,
only updates to the kernel are required; software contexts
must now be tracked across multiple MMUs and managed
appropriately. Other members of the PowerPC 4xx/8xx se-
ries processors [22] do support SMP and have fully software
managed MMUs, and it was this support that provided the
base for the SMP MMU support for our PolyBlaze platform;
merging it into the existing MicroBlaze support and mod-
ifying it to support MicroBlaze specific behaviours where
necessary.

4.7. Booting Linux on the PolyBlaze

In a system with multiple processors, it is important that the
secondary processors be isolated from the system until they
are brought online. This can be readily achieved by having
the MicroBlaze run in firmware, located entirely in its local
BRAM, until brought online. Since the secondary processor
is executing code in its own BRAM, the only mechanism
available to wake the processor is an IPI. As such, part of
the systems firmware requires the secondary processors to
enable a single IPI and then sleep until they receive that in-
terrupt. Once the IPI is received, the processors jump to the
base address of the kernel and begin their initialization pro-
cess.

5. SYSTEM VALIDATION

To demonstrate both the scalability and stability of the Poly-
Blaze system, an 8-core configuration, as shown in Figure 1,
is used for our testing. Single-core through eight-core con-
figurations are tested on the same 8 core build as inactive
processors do not access any shared resources. All Mi-
croBlazes are identical and configured with the necessary
parameters to support Linux including: the MMU, excep-
tion support and, additionally, a 4KB instruction cache. The
FPU is not included (so as to lessen the demands on place-
ment and routing). We have also excluded data caches, in
an effort to avoid duplicating work, as the existing direct-
mapped caches would need significant work to properly sup-
port locks and cache coherency and will be replaced in the
future (see Section 3).

We consider two different stress tests for validating the
stability of the system: the first is to repeatedly boot up the
system; and the second is to place the system under heavy
load for a prolonged period of time. Resource usage is pre-
sented for both the Timer and Interrupt Controller and the

changes to the MicroBlaze to provide insight into the scala-
bility of the system, along with data collected by a hardware
profiler that shows the impact of bus/memory controller con-
tention in the system. Finally, we compare the performance
of a similarly configured MicroBlaze single-core system to
a PolyBlaze single-core system to demonstrate that the sys-
tem’s performance has not been negatively impacted.

5.1. Stress Tests

Our first stress test was to repeatedly boot-up the 8-core sys-
tem. Each test begins with the configuration of the FPGA,
followed by the copying of the Linux system image into
DDR RAM and then finally, by the boot-up of the system.
To ensure that the system is still alive and responsive after
boot-up, the login process is scripted and the contents of
/proc/interrupts to the terminal. In our testing, this
sequence of steps was repeated well over 200 times (251),
all of which were successful boot ups. While such a test
does not guarantee there are no issues with the system, it
is our experience that even rare corner cases in lock behav-
ior, interrupts, and virtual memory support are hit frequently
during boot up and even a few successful boot-ups is indica-
tive of the system being stable.

To complement our first stress test, our second test re-
peatedly launches sixteen instances of the Dhrystone [23]
benchmark after booting to place the system under heavy
load with frequent context switching. The selection of the
benchmark is arbitrary as, without data caches, even tra-
ditional compute intensive workloads become memory in-
tensive. After more than 14 days the system was still up
and running as can be seen by the console output from
/proc/uptime in Figure 4. The first number is the system
time under load (in seconds) and the second is the aggregate
sum of processor idle time (also in seconds). Also included
is the output of /proc/interrupts, which provides the total in-
terrupt counts for all interrupts across all processors in the
system.

5.2. Resource Usage

An analysis of the platform would not be complete without
reporting on the hardware cost of bringing SMP support to
the MicroBlaze processor.

The changes to the MicroBlaze include the addition of
four GPSPRs and the changes to support external atomic in-
struction synchronization. Together, these two changes in-
cur an overhead of an additional 64 LUTs (2%) and 204 FFs
(8%) compared to an unmodified MicroBlaze. The changes
to the MicroBlaze also did not affect the critical path of the
design and it is still capable of operating at 125MHz on our
platform.

˜ # cat /proc/uptime
1319997.79 4271.02
˜ # cat /proc/interrupts

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
0: 28 37 24 9 25 19 25 202035 per_cpu ipi reschedule
1: 335 361 333 160 365 455 251 308 per_cpu ipi call function
2: 31 22 24 188 18 18 16 14 per_cpu ipi call function single
4: 131948134 131946708 131947585 131945393 131947445 131946235 131946852 131945275 per_cpu timer
5: 387 289 229 240 189 498 510 588 per_cpu serial

Fig. 4. Output of /proc/uptime and /proc/interrutps after more than 14 days of uptime

15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
0

10000

20000

30000

40000

50000

60000
single-core

dual-core

quad-core

eight-core

Data Read Latency (in cycles)

Co
un

t (
in

 th
ou

sa
nd

s)

282318

Fig. 5. Memory Bus Read Latency

5.2.1. Timer and Interrupt Controller

Our current design for the Timer and Interrupt Controller is
intended to be scalable up to 8 cores at 100MHz. Figure 6
illustrates how the resource usage and frequency of the con-
troller scales across the number of cores for, a) the minimum
number of interrupts (4 IPIs, one timer, and one external),
and b) the maximum number of interrupts supported (which
is 32). For the 8-core system, after 12 interrupts the oper-

2 4 8
0

500

1000

1500

2000

2500

3000

0

100

200

300

400

500

600
LUTs

FFs

Frequency

Number of CPUs

C
ou

nt

Fr
eq

ue
nc

y
(M

H
z)

(a) 6 Interrupts

2 4 8
0

500

1000

1500

2000

2500

3000

0

100

200

300

400

500

600
LUTs

FFs

Frequency

Number of CPUs

C
ou

nt

Fr
eq

ue
nc

y
(M

H
z)

(b) 32 Interrupts

Fig. 6. TIC Scalability Across two, four and eight CPUs

ating frequency drops below 100MHz to 91MHz. Currently
the critical path in the design is the interrupt selection, arbi-
tration and assignment operation, which occurs in a single
cycle. The design could be readily modified to pipeline this
process by splitting up the interrupt selection and arbitration
phases without otherwise impacting the behaviour or opera-
tion of the TIC. However, at present we do not have a system
with these requirements so this change will implemented in
the future if it becomes necessary.

5.3. Memory Latency

In this test, we utilize a hardware profiler to collect data bus
read latency measurements of the system at runtime. Across
1, 2, 4 and 8-core configurations, 8 instances of the Dhry-
stone benchmark were launched and then latency measure-

ments were collected for a two minute runtime window, the
results of which are presented in Figure 5. The samples be-
gin at 14 cycles, which is the minimum memory latency in
our system. Without data caches, we expect to see a sig-
nificant increase in read latency as the number of cores is
increased as is confirmed in the results in Figure 5. Aver-
age memory latency for one core is approximately 15 cycles
and is, by far, the largest single bin for the single-core con-
figuration extending well beyond the top of the graph. For
two cores, the average latency increases to approximately
22 cycles. We now see a spread of the latencies as there is
contention for the bus and memory controller. At 4 cores the
latency doubles to around 44 cycles on average, and doubles
again to about 87 cycles for 8 cores. For the larger systems,
it is quite likely that there will always be multiple cores with
outstanding memory requests and thus the distribution of la-
tencies both spreads out and shifts to the right.

5.4. Single-core Performance

In our final test, we create a single-core MicroBlaze system
with the same configuration options as our PolyBlaze cores
(such as cache configuration, multiplier, divider, etc.). On
each system, we run two instances of the Dhrystone bench-
mark (to ensure some context switching takes place) for one
million runs. The Dhrystone’s per second of the original
MicroBlaze averaged 13466 across the runs, whereas the
PolyBlaze core averaged 14106.

The 5% speedup is due to changes in the hardware, and
not due to any kernel changes as the system reports less than
a hundredth of a percent of runtime is from the kernel dur-
ing the test. The source of the speed up is found in the
Lock Arbiter, which passes memory requests to the mem-
ory controller with lower latency in some cases (most likely
during consecutive writes) compared to the original PLB-to-

memory controller interface. Therefore, under normal oper-
ating conditions, we have observed no negative impact on
runtime performance of the system as was expected. With
the changes to the Linux kernel, we expect that with preemp-
tion support, throughput could decrease slightly, but only if
the workload is primarily in the kernel itself, which is rare.

6. CONCLUSIONS AND FUTURE WORK

Today’s multicore systems provide many challenges to the
OS; however it is our goal to help reduce one of them, a lack
of understanding into the system’s actual runtime behaviour.
In this paper, we presented our work in bringing multicore
support to the MicroBlaze processor. This work includes de-
tails about the modifications that were necessary to achieve
SMP support, both in hardware and in software. Through
careful consideration of design parameters we were able to
ensure that our design is scalable which we then verified
through our test cases, demonstrating both the system’s sta-
bility and scalability. Using this platform as a foundation for
future work, our immediate focus will be to provide: a con-
figurable memory hierarchy for the platform; conduct inves-
tigations into asymmetric and heterogeneous system config-
urations; and develop scheduling algorithms that can moni-
tor runtime behavior and adapt to the existing workload.

7. ACKNOWLEDGEMENTS

The authors would like to thank Xilinx Inc, PetaLogix and
the Natural Sciences and Engineering Research Council of
Canada (NSERC) for supplying resources and/or funding
for this project.

8. REFERENCES

[1] S. Zhuravlev et al., “Addressing Contention on Multicore
Processors via Scheduling,” in Int’l Conf. on Architectural
Support for Programming Languages and OSes, 2010.

[2] P. S. Magnusson et al., “Simics: A full system simulation
platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[3] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An
infrastructure for computer system modeling,” Computer,
vol. 35, no. 2, pp. 59–67, 2002.

[4] P. H. Wang et al., “Intel R© atom processor core made
fpga-synthesizable,” in The ACM/SIGDA Int’l Symp. on
FPGAs, 2009, pp. 209–218.

[5] G. Schelle et al., “Intel nehalem processor core made fpga
synthesizable,” in The ACM/SIGDA Int’l Symp. on FPGAs,
2010, pp. 3–12.

[6] S. Asaad et al., “A cycle-accurate, cycle-reproducible
multi-fpga system for accelerating multi-core processor
simulation,” in Proc. of the ACM/SIGDA Int’l symposium on
FPGAs, ser. FPGA ’12. ACM, 2012, pp. 153–162.

[7] D. Chiou et al., “Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in Proc.
of the 40th Annual IEEE/ACM Int’l Symp. on
Microarchitecture, 2007, pp. 249–261.

[8] “PetaLinux System Development Kit PetaLogix.” [Online].
Available: www.petalogix.com/products/petalinux

[9] P. Yiannacouras, J. Rose, and J. G. Steffan, “The
microarchitecture of fpga-based soft processors,” in 2005
Int’l Conf. on Compilers, architectures and synthesis for
embedded systems, 2005, pp. 202–212.

[10] “RAMP - Research Accelerator for Multiple Processors.”
[Online]. Available: ramp.eecs.berkeley.edu/

[11] D. Burke et al., “Ramp blue: Implementation of a multicore
1000 processor fpga system,” in Reconfigurable Systems
Summer Institute, Urbana, IL, 2008.

[12] Chuck Thacker, MSR Silicon Valley, Beehive: A manycore
computer for FPGAs (v6), 2010. [Online]. Available:
research.microsoft.com/en-
us/um/people/birrell/beehive/BeehiveV6.pdf

[13] J. Agron and D. Andrews, “Building heterogeneous
reconfigurable systems with a hardware microkernel,” in
Proc. of the 7th IEEE/ACM Int’l Conf on Hw/Sw codesign
and system synthesis, 2009, pp. 393–402.

[14] P. Huerta, J. Castillo, C. Sanchez, and J. Martinez,
“Operating system for symmetric multiprocessors on fpga,”
in Reconfigurable Computing and FPGAs, 2008. ReConFig
’08. Int’l Conf on, dec. 2008, pp. 157 –162.

[15] “OpenSPARC FPGA.” [Online]. Available:
www.opensparc.net/fpga/index.html

[16] GRLIB IP Core User’s Manual. [Online]. Available:
www.gaisler.com/products/grlib/grip.pdf

[17] Altera Inc., (2011, May) The NIOS Soft CPU Family.
[Online]. Available:
http://www.altera.com/literature/hb/nios2/n2cpu nii5v1.pdf

[18] Xilinx Inc., MicroBlaze Processor Reference Guide.
[Online]. Available: www.xilinx.com/support/
documentation/sw manuals/xilinx12 4/mb ref guide.pdf

[19] ——, LogiCORE IP XPS Interrupt Controller (v2.01a).
[Online]. Available: www.xilinx.com/support/
documentation/ip documentation/xps intc.pdf

[20] “Clockevents and dyntick [LWN.net].” [Online]. Available:
http://lwn.net/Articles/223185/

[21] Xilinx Inc., LogiCORE IP XPS Timer/Counter (v1.02a).
[Online]. Available: www.xilinx.com/support/
documentation/ip documentation/xps timer.pdf

[22] IBM Corp., PPC405Fx Embedded Processor Core Users
Manual. [Online]. Available: www-01.ibm.com/chips/
techlib/techlib.nsf/techdocs/
D060DB54BD4DC4F2872569D2004A30D6/$file/
ppc405fx um.pdf

[23] R. P. Weicker, “Dhrystone: a synthetic systems
programming benchmark,” Commun. ACM, vol. 27, pp.
1013–1030, October 1984.

