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Abstract

Commercial FPGA companies now provide tools
that allow users to implement designs comprising
soft-core processors and modules of dedicated logic.
If a designer chooses to partition a system into multi-
ple processors and hardware modules, tools and tech-
niques for design analysis are necessary to under-
stand system performance.

This paper introduces WOoDSTOCK, a tool that
profiles system performance by adding monitors to
the circuit running in real time on the chip. The user
is able to generate a system specific profiler tailored
to monitor the communication links between the dif-
ferent computing elements. This provides a macro-
scopic picture of system performance, which high-
lights the computing elements that cause bottlenecks
in the design.

1. Introduction
Commercial Field Programmable Gate Array

(FPGA) companies provide design tools that sup-
port the design of large systems that include multiple
processors. This allows a complete embedded com-
puting system to be implemented on a single chip.
To create circuits of this size and complexity while
minimizing design time requires the reuse of previ-
ously designed modules, known as Intellectual Prop-
erty (IP) cores. The concept of module reuse behind
the popularity of IP cores is analogous to the reuse
of software library functions in different applications.
However, the actual use of hardware IP has never
been as easy as in software due to the increased dif-
ficulty of abstracting low-level information from the
hardware designer.

To simplify the integration of IP cores into differ-
ent designs, the VSI Alliance has created a set of Vir-
tual Component Interface Standards that allow users
to treat IP hardware modules the same as compo-
nents on a printed circuit board [1]. However, even
with these standards, there are still many low-level
timing and interface issues that must be considered
to connect IP blocks together. If the communication
between hardware modules is viewed from a higher
level of abstraction, it is possible to uncouple these
low-level issues from the data transfers and create a
single intra-chip communication format between IP
blocks in SoC designs.

MicroBlaze and XPS are registered trademarks of Xilinx Incorporated.
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ure 1. A generic processing system
scribed using the SIMPPL model.

rk is currently being done to investigate the ef-
eness of modelling SoCs as Systems Interfacing
les with Predefined Physical Links (SIMPPL).
IMPPL model represents an SoC as a combi-
of different Computing Elements (CEs) that

nnected via communication links. A previously
sed model for the future of SoC design using
interacting heterogeneous processors [8] can

this structure, however, the SIMPPL model is
general, allowing CEs to depict either proces-
r dedicated logic modules.
ure 1 illustrates a possible embedded system

ssing architecture described using the SIMPPL
l, where the solid lines indicate internal links
e dotted lines indicate I/O communication links.
mmunication links may require different proto-

o interface with off-chip hardware peripherals,
e internal links are standardized physical links
ke the actual interconnection of CEs a trivial
m and to create a framework for embedded sys-
esign. The information passed between CEs is
cted from the links themselves and instead, the
ansfers are adapted to the specific requirements
h CE. This format of communicating data be-
modules is akin to software design, where the
provides the physical interface between soft-
unctions, similar to the proposed internal links.
ver, the information passed on the stack, such as
mber of parameters, is determined by the indi-

l function calls. In the SIMPPL model, the size
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and nature of the data in the packet communicated be-
tween the IP modules performs this task. Each mod-
ule must have internal protocols capable of properly
creating and interpreting the information in a packet.

To study the viability of the design model shown in
Figure 1, requires the building, testing, and analysis
of numerous benchmark systems. However, before
creating any systems, an important first step is to de-
velop tools that provide feedback on the designs. To
autogenerate tools that provide system-specific run-
time information, a standardized format for linking
CEs is desirable. The first proposed internal link for-
mat is a FIFO, which has the added advantage of en-
abling communication of data packets between asyn-
chronous clock domains. Furthermore, the size of the
FIFO can be set to support the size and nature of the
data transmitted on each internal link. Based on this
system model definition, tools can be produced to ob-
tain feedback on the performance of a system at run-
time, thus improving the design process.

This paper presents a real-time, on-chip system
profiler that Watches Over Data STreaming On Com-
puting element linKs (WOoDSTOCK) in designs
similar to Figure 1. WOoDSTOCK is a profiling tool
that is generated automatically for a particular target
system. Its purpose is to monitor the communication
links between CEs and gauge their utilization. This
tool will be used in future work to evaluate the per-
formance of designs implemented using the SIMPPL
model.

A tool for autogenerating system benchmarks,
called the System Generator, creates synthetic bench-
marks that are used to demonstrate the functionality
of WOoDSTOCK. These benchmarks are designed to
mimic real systems that have CEs with varied num-
bers of inputs and outputs. This early version of the
System Generator models all CEs as soft-core pro-
cessors running software. It is a preliminary step that
will eventually allow the user to create systems with
a variable number of links and CEs, be they proces-
sors or hardware modules. The current version of the
system Generator can generate sufficient benchmarks
to verify WOoDSTOCK, which will then be used to
study embedded computing systems built using the
proposed SIMPPL architecture.

Embedded systems typically combine a processor
with some hardware logic to meet specified perfor-
mance constraints. To analyze the performance of the
system, including the interactions between hardware
and software, designers have used complex modelling
techniques to simulate system performance. These
results are able to approximate the operation of the
design to provide some understanding of the system
at run-time.

If the designer uses a reconfigurable design plat-
form to implement the actual system, system devel-
opment can also be done on the platform to study the
real time performance. This leverages the main ad-
vantage of reconfigurability — the user may redesign
the system while avoiding non-recurring costs. Then
hardware design begins to resemble software design,
where debugging and profiling instrumentation are
easily added to the software to obtain run-time infor-
mation. Tools, such as WOoDSTOCK, will play an
important role in this type of environment.

The idea of using the implementation platform
during the design process is presented as part of pre-
vious work that investigated the on-chip profiling of a
single processor on a reconfigurable platform [10]. In
this paper, it is extended by focusing on profiling the
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ure 2. Different application types de-
ribed using the SIMPPL model: (a) a
elined data streaming application (b)

outer.
unication between the different CEs in a com-
reconfigurable system. By analyzing the sys-
erformance on-chip, an accurate real-time un-
nding of the design is obtained to guide the
gn of the system and maximize performance.
ntly, Hemmert et al.’s hardware debugger for
are designs, which can run on-chip to speed up
tion during the debugging process [6], is one of
w existing tools to use an on-chip design ap-
h. Ultimately, the goal is to provide a suite of
ip design tools for designers of reconfigurable
s.

e remainder of this paper is structured as fol-
Section 2 further discusses the proposed SoC

l and outlines some of the previous work on
ating embedded systems and measuring the per-
nce of multiprocessor systems. Section 3 dis-
how the system models are generated and how
STOCK monitors a system, while Section 4

bes the platform-specific implementation de-
f WOoDSTOCK and the system models. A
case studies demonstrating how WOoDSTOCK
is given in Section 5 and the paper closes with
sions and possible future work for this project
tion 6.

ckground
cently researchers have begun investigating
e designs that use multiple Nios [11] or multi-
icroBlaze [7] soft-core processors. As these de-
become more complex, the need to assess inter-
uting element effects increases. Furthermore,
lex multiprocessor designs present the possibil-
system models that differ from typical hardware
s.

SoC Modelling
common hardware design approach is illus-
in Figure 2(a). This design is a data streaming
ation that is pipelined to increase the system
hput. Since these applications have a linear
ow, it is easier to balance the computations and
unications performed by each CE to prevent the
g or starving of any CE. Networking applica-
such as the simplified router model shown in
2(b) [9], however, provide more interesting
models, due to their decision making compo-
The division of computations among the CEs



may not be intuitive to ensure the continuous opera-
tion of the system. More general structures, such as
Figure 1, must then be considered, where it is diffi-
cult to statically predict timing information, and thus,
properly divide system tasks among the CEs. For all
of these application structures, understanding the be-
haviour of the system at run-time is key to maximiz-
ing performance and throughput.

2.2 Measuring Embedded System Perfor-
mance

Most embedded system designs have restrictions
that arise from strict performance, area, and power
constraints. If a solution implemented completely in
software fails to meet performance requirements, por-
tions of the algorithm must be moved to hardware.
The division of the system into hardware and soft-
ware components is called partitioning. The compli-
cations arising from designing a system as a com-
bination of hardware and software, also known as
hardware/software codesign, make simulators a pop-
ular method for measuring embedded system perfor-
mance.

For example, COSYMA [5] allows a user to
cosimulate a design and automatically partitions it
into hardware and software components. Partition-
ing is done at the basic block level using profiling
and software timing information. The user provides a
worst case data set, which COSYMA profiles to ob-
tain the worst case performance. A newer version
of COSYMA replaces the profiling information with
SYMbolic hybrid Timing Analysis (SYMTA), which
combines simulation and formal analysis, allowing
COSYMA to obtain both upper and lower timing
bounds to approximate system performance [12].
Other examples of available simulators include Po-
lis [4] and Seamless [2] from Mentor Graphics.

2.3 Multiprocessor System Profiling
The model shown in Figure 1 resembles applica-

tions run on multiprocessor systems, where software
designers are able to obtain some run-time statistics
about an application’s behaviour on their system. Of
particular interest is their ability to determine the stall
time of individual processors in the system. Typi-
cally, a scheduler monitors when a processor is wait-
ing for another processing task, but as the scheduler
is unaware of the nature of the actual tasks, it only
provides system-level information.

This granularity of measurement is analogous to
the information that WOoDSTOCK provides FPGA
SoC designers. It highlights problems arising from
inter-CE communication and indicates to the user
when a particular CE acts as a system bottleneck.
Like the scheduler, WOoDSTOCK is similarly un-
aware of the actual computation performed on a CE.
Therefore, the precise cause of a system bottleneck is
determined using a combination of the system perfor-
mance results along with user’s knowledge of the de-
sign. Subsequent work will include developing tools
that help the user look in more detail at the problem
areas identified at the system-level.

3. General Architecture
This section provides details on the architecture of

the autogenerated systems and WOoDSTOCK.

3.1 Autogenerated Systems
The autogenerated systems are of the format illus-

trated in Figure 1, where each CE has the generic
structure shown in Figure 3. Each CE has N input
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ure 3. The system generator’s
neric computing element.

nd M output links. Internal links connect a CE
er CEs, where input links connect to parent CEs
tput links connect to child CEs.

e current System Generator tool represents all
s soft-core processors. Figure 3 shows each CE
ing its own local instruction and data memory.
ain reason for this is that sharing memory cre-
ossible data hazards. Even if two processors
a block of memory but have two distinct address
s, there will be bus contentions causing inter-
e in the execution results. Here, it is assumed
ch of these modules should have the same per-
nce independent of the number of other CEs in
stem and that there is no need to share data be-
two CEs unless it is sent via a link. Each CE’s

enerated source program file is stored on its lo-
emory and provides functions for receiving and

itting over the links and constants representing
ocessing time required to generate output data

CE.
e generality of the current system autogenerator
its ability to accurately model all types of sys-
It is only able to model sequential consumption
eneration of data. While modelling pipelining
ther forms of parallelism within a CE would be
using a hardware model, the current focus is to
d study the usefulness of WOoDSTOCK and

Generator creates adequate benchmarks for
rpose.
ce I/O communication links cannot be auto-

ally generated, off-chip peripherals that pro-
onsume system data are modelled as part of

to which they are connected. If there are no
al input links (N=0) to a CE, then it generates
t data by modelling input received from an off-
ardware peripheral that must be processed be-
enerating an output. Similarly, if a CE has no
t links (M=0), all data is consumed to model
t generated for an off-chip hardware peripheral.
ure 4 illustrates the connections between
STOCK and a multi-CE system. Each dia-

represents a monitor that is associated with a
c CE. A monitor is a piece of hardware that
s the behaviour of the traffic on all the internal
and output links connected to its CE through
al counters. These counters are used to mea-
he total possible stalling/starving time for a CE

the profiling period, which is set based on the
m execution of a specially selected base pro-
.
ch of the CEs and their monitors in Figure 4
belled for the purpose of differentiating the
processor (0) from the remaining processors
). Although the current benchmarks are all im-
nted as networks of processors, WOoDSTOCK
to monitor any system that has at least one pro-
and uses FIFOs as communication links. The
rocessor may be any processor in the system
g as its execution can be set for a finite inter-
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Figure 5. Examples of the different types
of bottlenecks detectable by WOoD-
STOCK: (a) interior bottleneck, (b) input
bottleneck, and (c) output bottleneck.

val. This processor will determine the run-time for
the monitors based on its executing Program Counter
(PC EX).

3.2 WOoDSTOCK
The user chooses the region of the base processor’s

source code where the monitors should be running.
Addresses of the instructions bounding this code re-
gion are provided to WOoDSTOCK as start and stop
points. The running signal, shown in Figure 4, is
enabled and disabled when the addresses of the de-
fined start and stop instructions, respectively, are seen
as valid addresses on the PC EX bus. This signal is
used to enable or disable the system’s monitors. The
monitors could also be turned on and off by inserting
instructions into the software that enable/disable the
counters by writing to a memory location, but observ-
ing the PC EX bus is less intrusive to the system’s
normal run-time behaviour.

WOoDSTOCK assumes that the only signals a
monitor can connect to are the full and empty status
signals of the FIFOs implementing the internal input
and output links of its respective CE. These signals
are used to generate enable signals for the counters
used to profile the system. The counters are used to
measure the number of clock cycles where a CE is
potentially starving or stalling the system. A more
naive approach would be to assign individual coun-
ters to the full and empty signals of each link in the
system. However, this provides less useful informa-
tion to the designer as the relationship between these
status signals is required to determine if a CE is a sys-
tem bottleneck as shown in the following paragraph.
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ure 5 illustrates examples of the three types
stem bottlenecks that WOoDSTOCK can be
o detect. Figure 5(a) shows an interior bottle-
where CE 1 has both internal input and output
and is stalling the system. To understand how

STOCK determines there is a bottleneck, con-
when FIFO 1 becomes full. CE 1 may not be
ming the data produced by CE 2 fast enough.
ver, CE 1 may also be stalled because it can-
rite to FIFO 0 if it too is full, in which case a
CE is the bottleneck and not CE 1. To differ-
e between these situations, a CE is defined to
interior bottleneck when all the input links that
e data to generate a specific output are full and
k at the output is not full as depicted in Fig-
a). The specification of the output link as “not
as opposed to empty, delineates an important
t of the system monitoring tool. WOoDSTOCK
ware of the nature of the data being transferred
en CEs, so if CE 1 produces a data packet that
requires in its entirety to continue processing,
he link should normally be empty when the sys-

balanced. However, if CE 1 produces a data
t that is consumed as multiple individual data
ts by CE 0, then there will normally be data in
IFO even when the system is balanced. There-
the output link must be only “not full” instead

pty” to produce a bottleneck.
CE that has internal output links and no inter-
put links may cause an input bottleneck. This
s when either the off-chip hardware peripheral
ing input to the CE is too slow or the process-

me of the CE is too slow. In either case, the
is starved for data. To detect this situation,

STOCK monitors the empty status signal of
tput link. Figure 5(b) shows CE 1 as the po-

l cause of an input bottleneck. The status of the
mmunication link is unknown and FIFO 0 is
. However, CE 1 may not be a bottleneck if CE
umes data at the same rate as CE 1 produces it.
ituation would also cause FIFO 0 to be empty
e majority of the system’s run-time. Since the
s from these measurements are not conclusive
ir own, the designer needs to see how this in-
tion fits in with the results obtained from mon-

the rest of the system.
tput bottlenecks arise in CEs that have internal
links and no internal output links. They occur

the slow processing rate of either the CE or
-chip peripheral. Both cases result in the input
to the CE becoming full as illustrated in Fig-
c). While the state of the I/O communication
is unknown, FIFO 0 becomes full stalling the
. In situations where a CE stalls or starves be-

of an off-chip peripheral’s slow data rate, this is
easured as being caused by the CE implemen-

. Therefore, the user must be sufficiently famil-
th the CE’s processing to determine the precise
of the bottleneck.
generate a system-specific monitoring system,
er writes a description of the system that states
quired combination of data on internal input



links used to produce an output for a given output
link. WOoDSTOCK uses this information to create
an output equation for each CE output described in
terms of link empty and full status signals. Table 1
shows the appropriate output equations for CE 1 in
each of the systems in Figure 5. These equations
generate counter specific enable signals that are com-
bined with the running signal to enable all the appro-
priate counters during each sampling clock cycle.

The frequency of WOoDSTOCK’s sampling clock
can be set to any rate, depending on the desired pro-
filing accuracy. If sampling is done using the fastest
system clock, then the measured results are precise.
However, a slower clock may be used to do the sam-
pling and obtain a statistical measurement of system
performance. This information can still help detect
system bottlenecks, but the system may need to be
profiled for longer run-times to observe the problem.

4. Implementation Details
This section describes the implementation of

WOoDSTOCK and the multi-processor systems us-
ing a Xilinx design platform.

4.1 Experimental Platform
The Xilinx Multimedia Board with a Virtex II

2000 is used to implement MicroBlaze designs. To
obtain a performance profile of the design, WOoD-
STOCK monitors the communication links between
computing elements. The system links are imple-
mented using the Fast Simplex Links (FSLs) created
by Xilinx [3] to allow streaming and buffering of data
between computing elements. The FSLs are FIFOs
that support slave read and master write protocols by
MicroBlaze processors.

Benchmarks are autogenerated using the default
version of the MicroBlaze soft-core processor to rep-
resent each of the system CEs. The code running on
each of the processors is stored in local on-chip mem-
ories and accessed via Local Memory Buses. The
maximum number of MicroBlaze processors is lim-
ited by the tools to eight. Each MicroBlaze has eight
built-in FSL receive and transmit ports and the au-
togenerated send and receive functions are based on
macros provided by Xilinx to read and write from
these ports.

4.2 System Generator and User Interface
The System Generator creates all the necessary

source files to describe a unique project for the Xil-
inx Platform Studios (XPS) software. These files
are generated based on an input description file of
the system provided by the user. The input file de-
scribes how each CE generates its outputs as a func-
tion of its inputs. CE 0 represents the base proces-
sor for the system. Its source file is generated with
a for loop encompassing the region of code repeated
by the processor, thus creating a finite execution in-
terval. Source files for the remaining processors run
continuously, using while(1) loops to enclose the data
consumption/production loop.

The project file is designed to generate a down-
load file that includes all of the executable source files
for the processors. After the bitstream is downloaded
onto the FPGA, all the processors startup and begin
running their program. A print statement is included
in the source code of the base processor, to indicate
when WOoDSTOCK is finished monitoring the sys-
tem. The user then connects to the base processor
through the MicroBlaze Debug Module (MDM) to
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ure 6. The interface of WOoDSTOCK
th a multi-MicroBlaze system.

s execution and read the counter values from
GA via the xmd control window.

WOoDSTOCK Implementation
oDSTOCK generates the necessary system de-

nt VHDL files to implement the monitoring
, along with the files required by XPS to in-

e WOoDSTOCK into a MicroBlaze system as
in Figure 6. WOoDSTOCK connects to the

hip Peripheral Bus (OPB) as a slave device and
status signals that indicate when there is data

FSL to read and when the FSL is full. For the
se of this paper, these signals will be referred
sl empty and fsl full respectively. By monitor-
eir runtime values, WOoDSTOCK enables the
priate counters based on the user-defined output
ons.
e internal structure of WOoDSTOCK is sub-
d into two components — the system moni-
nd the OPB interface. The former profiles the

links based on the user-provided system pro-
ecall Figure 4) while the latter provides soft-
ccess to their values. The counters are memory

ed to an OPB interface for reading and resetting
alues.

Design Decisions
e objective is to make the WOoDSTOCK cir-
small and as fast as possible so that it does not

t the embedded system design. However, to be
ul system profiler, it must allow the user flex-
to assign the appropriate number of counters

e system. The decisions outlined below are an
pt to balance these considerations.
e size of the overall circuit depends mostly on
mber of counters required to store the system
ng data. The counter size is set to 46-bits to al-
maximum system profile period of eight days
MHz, however, the maximum clock speed for

onitoring system is dependent on the complex-
the system being monitored. Additional logic
ces are used to generate the running signal for
unters from two 32-bit comparators for the start
op addresses, which are hardwired for the sys-
reduce the required logic.
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Figure 7. Two application architectures
described with the SIMPPL model: (a)
a pipelined system (b) a system with
branching.

Similarly, the OPB interface needs two compara-
tors to determine if the user has accessed WOoD-
STOCK’s address space plus logic to multiplex the
selected counter onto the OPB. Finally, the logic re-
quired to generate the counter specific enable signals
depends on the complexity of each output equation.
However, the logic resources used are negligible rel-
ative to the size of a counter.

5. Case Studies
This section uses WOoDSTOCK in two different

case studies to show that the measurement approach
works and to demonstrate how the information it pro-
vides can help to refine a design. It details the issues
encountered while profiling each system and con-
cludes with a discussion of the advantages of on-chip
system profiling.

5.1 Methodology

The two benchmarks illustrated in Figure 7 are the
case studies used to demonstrate the functionality of
WOoDSTOCK. The first is a simple pipelined design
that is quite common to hardware design. The second
is an imaginary system used to highlight the increas-
ing difficulties of analyzing a design that is less intu-
itive. For both benchmarks, WOoDSTOCK uses the
global system clock as its sampling clock. Different
configurations of each system are created by assign-
ing delays to model CE processing times. These pro-
cessing delays are used to create system imbalances
that WOoDSTOCK should report as well as balanced
systems to determine how this affects the results ob-
tained by WOoDSTOCK.

Each system configuration is profiled for varying
lengths of time to determine the initial effects of sys-
tem start up on the results. Recall from Section 4.2
that the main processing loop of the base processor
uses a for loop to determine how many data packets
to consume before exiting. The length of the profiling
period is varied by changing the number of packets
the base processors consume before exiting.

5.2 Pipelined System Example

The pipelined system in Figure 7(a) requires 5
counters to monitor the system. The first three
columns of Table 2 list the counters, the output equa-
tions used to generate their respective enables, and
the possible meaning of these conditions. A question
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Table 2. Table for pipelined system counter results des
counters represent, and reporting the measured resul
run time given in Counter 4 to the nearest million clo

Cntr Enable Possible 20 Data Packets
Condition Meaning Con A Con B Con C Con

0 fsl 0 full CE 0 slow 0 0 0 0

1 fsl 1 full and CE 1 slow 0 0 0 0
(not fsl 0 full)

2 fsl 2 full and CE 2 slow 0 0 0 0
(not fsl 1 full)

3 fsl 2 empty CE 3 slow? 100.0 100.0 23.6 100

4 running monitors on 688 368 366 324

Table 3. Table for branching system counter results
the counters represent, and reporting the measured
monitor run time given in Counter 7 to the nearest mi

Cntr Enable Possible 20 Data Packets
Condition Meaning Con A Con B Con C Con

0 fsl 1 full CE 0 slow 21.4 10.1 0 83.

1 fsl 2 full CE 0 slow 0 0 0 0

2 fsl 0 full and CE 1 slow 0 0 0 0.0
(not fsl 1 full)

3 fsl 2 empty CE 2 slow? 2.4 94.9 2.3 0.5

4 fsl 3 empty CE 2 slow? 100.0 100.0 100.0 100

5 fsl 0 empty CE 3 slow? 83.3 94.9 100.0 17.

6 fsl 3 full CE 4 slow 0 0 0 0

7 running monitors on 672 632 352 323

CE 2 acts as an interior bottleneck because it cannot
consume data as quickly as CE 3 produces it. This
is reflected in the value of Counter 2 when the base
processor consumes 200 data packets and highlights
the importance of running systems for long periods of
time to achieve a more steady-state view of the sys-
tem. Furthermore, if CE 3 had still been an input bot-
tleneck to the system, the decrease in the processing
delay of CE 3 should have been mirrored in the total
run-time of the system, which remained almost un-
changed from Configuration B to Configuration C.

5.3 Branching System Example

Figure 7(b)’s branching system requires 8 counters
that are enabled based on the functions described in
column 2 of Table 3 when the monitors are running.
The data in the table is presented following the same
format as Table 2. Counters 0 and 1 monitor fsl 1
and fsl 2 to determine if CE 0 is stalling the system.
Similarly, counters 2 and 6 measure when CE 1 and
CE 4, respectively, stall the system. Counters 3 and
4 count the number of clock cycles for which fsl 2
and fsl 3 are empty as does counter 5 for fsl 0. This
information can help to determine if either CE 2 or
CE 3 are producing output data too slowly, and thus
starving their respective children CEs. The possible
interpretations for the counter values are summarized
in column 3.

In this system, each data packet to and from each
link is processed independently. For example, in CE
2 an output is generated for fsl 2 after a processing
delay and an output is generated for fsl 3 after a sep-
arate processing delay. Therefore, for CE 2, the time
between generating outputs for fsl 2 is the sum of
these two delays. Similarly, in CE 0, data is read from
fsl 1 followed by a processing delay before data is

read f
ing de
readin
lays.
of the
value.
CE 2
is twic
sor’s f
packe
imbal

Tab
A in
ues ar
run-ti
tal pro
clock
runnin
highli
from 2
run-ti
tem b

To
ing de
reduc
tem. T
proce
as the
proce
sults f
subco
pears
closer
still b
period
ically
cribing the counter enables, what the
ts as percentages of the total monitor
ck cycles.
100 Data Packets 200 Data Packets
A Con B Con C Con A Con B Con C

0 0 0 0 0

0 0 0 0 0

0 0 0 0 30.8

.0 100.0 5.2 100.0 100.0 2.7

8 1648 1646 6448 3248 3246

describing the counter enables, what
results as percentages of the total

llion clock cycles.
100 Data Packets 200 Data Packets
A Con B Con C Con A Con B Con C

7 82.2 0 91.8 91.1 0

0 0 0 0 0
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2 3192 1632 6432 6392 3232
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ghted by the results for counter 0, which vary
1.4% to 91.8%. The larger value from the long

me clearly indicates that CE 0 is stalling the sys-
y not consuming data quickly enough.
try and remove this bottleneck, CE 0’s process-
lays for input data read from fsl 1 and fsl 2 are
ed to 50% of the delays for the rest of the sys-
his means that the combined effective per link

ssing delays for fsl 1 and fsl 2 are now the same
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for which fsl 2 is empty has increased dramat-
(see Counter 3). This may indicate that CE 2



cannot keep up with its child nodes. If this is the case,
CE 0 is now starved for data on fsl 2 and still not able
to keep up with its parent node CE 1. This also is re-
flected in the overall run-time that remains basically
unchanged between Configuration A and Configura-
tion B as the profiling period increases. If CE 0 were
the only bottleneck in the system, the system’s perfor-
mance should have increased noticeably. Therefore,
CE 2 must also be a system bottleneck, failing to pro-
vide data at the necessary production rate.

By reducing CE 2’s processing delay for generat-
ing outputs for fsl 2 and fsl 3 to 50% of the origi-
nal processing delay, the system should be balanced.
This is designated as Configuration C and the results
are found in the subcolumns labelled Con C in Ta-
ble 3. In this case, none of the links become full so the
system never stalls. This produces the expected in-
crease in the overall system performance by decreas-
ing the overall run-time by approximately 50% from
the Configuration A.

5.4 Summary
WOoDSTOCK is able to detect bottlenecks in sys-

tem performance and the removal of these bottlenecks
dramatically improves the overall performance as
demonstrated in the above examples. WOoDSTOCK
required 579 LUTs and 331 flipflops to monitor the
pipelined example and 928 LUTs and 478 flipflops
to monitor the branching example. If these results are
normalized in terms of the number of counters in each
system, the pipelined example uses 115.8 LUTs and
66.2 flipflops per counter and the branching example
uses 116 LUTs and 59.8 flipflops per counter. These
results highlight that the increased size of WOod-
STOCk is mainly due to the extra counters and that
overhead logic needed to provide a user interface can
be considered minimal.

The system must be run for a significant period of
time to obtain accurate results using WOoDSTOCK.
This may be on the order of minutes to hours depend-
ing on system complexity, and is necessary to account
for the initial effects of starting up the system. If
these results are to be found via simulation, the re-
quired time could be excessive. Although WOoD-
STOCK obtains only a macroscopic view of system
performance, combined with an understanding of the
individual CEs, it provides greater insight into system
behaviour that can guide the redesign of a system. Fi-
nally, while a designer should be sure that there are no
CEs stalling the system, interpreting the meaning of
the measured results for more complex systems re-
quires that the Counter values not be viewed in isola-
tion as demonstrated in the branching example.

6. Conclusions and Future Work
WOoDSTOCK is a real-time system profiler that

runs on the reconfigurable design platform. It pro-
vides a macroscopic picture of system performance
that can help guide the redesign of a system. It is im-
portant to run the system for a significant period to
account for start up noise and to focus the results to
the real problem areas. A method of autogenerating
system models comprised of Computing Elements
and standardized Communications Links is also pre-
sented. This generic computing model allows sys-
tem analysis based on system communication. Both
WOoDSTOCK and the autogenerated systems have
been implemented on a Xilinx Virtex II FPGA using a
variable number of MicroBlaze processors and FSLs.

The next phase of this research is to use WOoD-
STOCK to investigate the proposed SIMPPL SoC
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