
Designing an FPGA SoC using a Standardized IP Block Interface

Lesley Shannon, Blair Fort, Samir Parikh, Arun Patel, Manuel Saldana and Paul Chow
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada, M5S 3G4

{lesley, fort, parikh, apatel, msaldana, pc}@eecg.toronto.edu

Abstract

Designing Systems on-Chip is becoming increas-
ingly popular as die sizes increase and technology
sizes decrease. The complexity of integrating differ-
ent types of Processing Elements (PEs) that use dif-
ferent communication protocols and interfaces com-
plicates the system-level design methodology. Re-
cent work provided a proof of concept demonstrating
how a controller could be used to provide a generic
system-level interface that separates the functionality
of a PE from its communication protocols and makes
the actual physical interconnections between mod-
ules a lesser problem. This paper summarizes how
the SIMPPL model is able to implement the system-
specific requirements of an MPEG-1 video decoder
and the overhead this framework incurs.

1. Introduction

Designing Systems on-Chip (SoCs) is becoming
increasingly popular as die sizes increase and tech-
nology sizes decrease. The complexity of integrat-
ing different types of processing elements (PEs) that
use different communication protocols and interfaces
complicates the system-level design methodology.
Recent work presented the SIMPPL model; it uses
asynchronous FIFOs to connect different Computing
Elements (CEs) to create the system [3]. Figure 1 il-
lustrates the underlying abstraction of a CE. The com-
putational unit, called the Processing Element (PE),
uses a controller to act as the physical inter-CE in-
terface and to process the inter-CE communication
protocols. The SIMPPL Control Sequencer (SCS)
provides control instructions to the PE in addition to
those received from other CEs in the system. These
instructions are used to direct how each CE is used by
the system.

The previous work provided a proof of concept,
demonstrating that the controller is a viable CE in-
terface for system design that greatly facilitated sys-
tem integration for these simple designs [3]. It does
not, however, address the effects and changes on
the system-level design, integration and verification
of more complex systems. This paper summarizes
how the SIMPPL model is able to implement system-
specific requirements and the overhead this frame-

PE

(Hardware IP)


SIMPPL Control

Sequencer (SCS)


External I/O Signals


Rx and Tx Communication

Links (FIFOs)


SIMPPL

Controller


Computing

Element (CE)


Rx   Tx


Figure 1. The SIMPPL CE abstraction.

work incurs. As a sample design for this investiga-
tion, an MPEG-1 [2] video decoder is implemented
by a four-person design team previously unfamiliar
with the SIMPPL framework.

2. Design Methodology
As previously stated, a complex application is re-

quired to properly investigate the design benefits and
constraints of using the SIMPPL model and con-
troller. FPGAs are often used to implement video and
audio applications as they allow designers to paral-
lelize and pipeline data-intensive applications. This
suggests that part of the MPEG-2 standard, which is
currently used for encoding DVDs, is a good choice
for the investigation. The MPEG-2 decoder standard
consists of an audio and a video decoder, where the
video decoder presents a considerably more complex
design problem.

A commercially-available implementation of a
parameter-limited MPEG-2 video decoder core for
an FPGA uses 7377 slices on a Virtex-E FPGA [1].
Since the Virtex2V2000 FPGA available on the de-
velopment platform has only 10 752 slices, it is risky
to assume that a complete MPEG-2 video decoder de-
sign will fit on the FPGA and run at speed. There-
fore, the MPEG-1 video decoder is implemented as
it closely approximates the complexities of MPEG-
2 while still fitting on the available hardware. The
main difference between the MPEG-2 and MPEG-1
video decoders is that MPEG-2 supports fully inter-
laced video whereas MPEG-1 does not. Given that
both video decoders use the same functional mod-



Variable

Length


Decoder

(VLD)


Video

Frame

Buffer


Video Stream

Parser


Motion

Compensation


(MC)


Run-Level

Decoder


(RLD)


Colour

Space


Converter


Frame

Storage

Buffer
Inverse


Quantization

(IQ)


Inverse Discrete

Cosine


Transform (IDCT)


Picture Reconstruction

(PR)


Figure 2. A Block diagram of a standard
MPEG-1 video decoder to RGB video
display.

Video

Frame

Buffer


Video Stream

Parser


(Parser)


Motion

Compensation


(MC)


Variable Length

Decoder/Run-Level

Decoder (VLD/RLD)


Colour

Space


Converter


Frame

Storage

Buffer
Picture


Reconstruction

(PR)


S
IM

P
P

L


S
IM

P
P

L


Inverse

Quantization


(IQ)


S
IM

P
P

L


S
IM

P
P

L


Inverse Discrete

Cosine Transform


(IDCT)


S
IM

P
P

L


S
IM

P
P

L


S
IM

P
P

L


status

register


(MC/PR)


S
IM

P
P

L


Missing

Macroblock


Replacer (MMR)


S
IM

P
P

L


S
IM

P
P

L


Figure 3. The MPEG-1 video decoder im-
plemented using the SIMPPL model.

ules, where MPEG-2 implements this extra option,
the MPEG-1 video decoder is an adequate application
for the purpose of investigating the SIMPPL system
design methodology.

Figure 2 [1] shows a block diagram implementa-
tion of a generic MPEG-1 video decoder outlining the
datapath from the compressed data input to the video
output display. Recalling that the SIMPPL system-
level architecture is fixed as a network of CEs inter-
connected via Asynchronous FIFOs in the SIMPPL
model, this architecture naturally lends itself to a
modular design methodology. Initially, the four per-
son design team partitioned the block diagram into
PEs that they designed and verified as individual
modules. Then the team integrated the SIMPPL con-
trollers, along with their SCSs, with the PEs after
which they verified the CE interface.

In contrast to the system-level architecture, the in-
ternal structure of the CE is flexible. This is be-
cause one specific architecture is not likely to work
for all applications, which reduces the usability of the
model. Instead, the CE’s architectural definition is
conceptual: the system-level control and communi-
cation must be separated from the PE’s computation.

Figure 3 shows a block diagram of the MPEG-1
video decoder they implemented using the SIMPPL
model. Obviously, the CE architecture employed in
the MPEG-1 video decoder must adapt the CE ab-
straction, shown in Figure 1, to the system specific
requirements. Figure 4 shows a block diagram of the
specific CE architecture used by the MPEG-1 video
decoder. The PE now has independent input and out-
put SIMPPL controllers called the Consumer and the
Producer, respectively, where each controller has its
own SIMPPL Control Sequencer (SCS).

If the CE’s architecture only had one controller,
it could not concurrently consume and transmit data

PE

(Hardware IP)


SIMPPL Consumer

Control


Sequencer (SCS)


External

 I/O Signals


Rx and Tx Communication

Links (FIFOs)


SIMPPL

Consumer

Controller


Computing

Element (CE)


Rx    Tx


SIMPPL

Producer

Controller


Rx and Tx Communication

Links (FIFOs)


Tx    Rx


SIMPPL Producer

Control


Sequencer (SCS)


Status

Bits


(not used in MPEG1)


Bypass

Link


Figure 4. The MPEG-1 SIMPPL CE imple-
mentation.

packets to the system. However, all the PEs in the
MPEG-1 application are implemented in a pipelined
format as the MPEG encoded data stream is serially
encoded. This allows multiple data packets to be pro-
cessed in flight, which increase the system’s through-
put. Using independent controllers for receiving and
transmitting data allows the Consumer to receive a
data packet for processing while the Producer trans-
mits a packet to the adjacent CE.

3. Results and Conclusions
The usage of SIMPPL controllers as the physi-

cal and communication protocol interface between
CEs greatly facilitated the system level design. The
system-level integration took 12 hours, approxi-
mately 1% of the total design time of 1607 hours.
Furthermore, the PEs only required 3.8% of the total
design time to be converted into CEs. The SIMPPL
framework attributed approximately 23% more LUTs
and 16% more flipflops of overhead to the system de-
sign.

Acknowledgments
This research was supported by the Natural Sci-

ences and Engineering Research Council and the
O’Brien Foundation. The authors would also like to
thank CMC for the SLPS station and Xilinx for the
CAD tools.

4. References

[1] CS6651: Amphion MPEG2 Video Decoder for FPGA.
Online: http://www.amphion.com/ cs6651.html.

[2] Joint Technical Committee ISO/IEC JTC1. Informa-
tion technology: Coding of Moving Pictures and As-
sociated Audio for Digital Storage Media at up to
about 1.5Mbit/s. International Standards Organiza-
tion ISO/IEC 11172-2, Part 2, 1993.

[3] L. Shannon and P. Chow. Simplifying the Integra-
tion of Processing Elements in Computing Systems
using a Programmable Controller. In IEEE Sympo-
sium on Field-Programmable Custom Computing Ma-
chines, Apr. 2005.


