IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007 377

SIMPPL: An Adaptable SoC Framework Using
a Programmable Controller IP Interface to
Facilitate Design Reuse

Lesley Shannon, Member, IEEE, and Paul Chow, Member, IEEE

Abstract—As the complexity of designing system-on-chips
increases, so does the need to abstract low-level design issues to
improve designer productivity. The reuse of previously designed
Intellectual Property (IP) modules is a common form of abstrac-
tion used to reduce design time. However, different applications
typically use a variety of physical interfaces, communication
protocols, and global system-level control for IP modules, which
complicates design reuse. In this paper, we describe the SIMPPL
system model and an abstraction for IP modules, called the
computing element (CE), that facilitate the SoC design for both
field-programmable gate array (FPGA) and application-specific
integrated circuit (ASIC) platforms. The CE abstraction decouples
the datapath and system-level communication from the applica-
tion-specific control to promote design reuse by localizing control
redesign of IP for new applications. The SIMPPL model facilitates
multi-clock domain SoC designs and expedites system integration
by defining the intermodule links and communication protocols.

Index Terms—application-specific architectures, applica-
tion-specific integrated circuits (ASICs), customizable controllers,
design reuse, field-programmable gate arrays (FPGAs), Intel-
lectual Property (IP) reuse, system integration, system-on-chip
design.

1. INTRODUCTION

HE term, system-on-chip (SoC), has been used with many
different connotations in previous work. In this paper, we
define an SoC as a collection of functional units that interact to
perform a desired operation. These modules are typically of a
coarse granularity so that previously designed Intellectual Prop-
erty (IP) modules can be reused to try and reduce the design time
of more complex systems. Examples of IP modules range from
data intensive processing cores such as finite-impulse response
(FIR) filters and fast Fourier transforms (FFTs) to more control
intensive cores such as memory controllers and processors.
Unfortunately, reusing IP is more challenging in hardware de-
signs than reusing software functions in new software applica-
tions. Software designers benefit from a fixed implementation

Manuscript received December 31, 2005; revised December 1, 2006.

L. Shannon was with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON MS5S 3G4, Canada. She is now
with the School of Engineering Sciences, Simon Fraser University, Burnaby,
BC V5A 1S6, Canada (e-mail: Ishannon@ensc.sfu.ca).

P. Chow is with the Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: pc@eecg.toronto.
edu).

Digital Object Identifier 10.1109/TVLSI.2007.893645

platform with a highly abstracted programming interface, en-
abling them to focus on adapting the functionality to the new ap-
plication. Hardware designers not only need to consider changes
to the module’s functionality, but also to the physical interface
and communication protocols [1], [2]. Depending on the amount
of time required to adapt IP to a new application, there may be
little benefit in reusing the IP.

In this paper, we describe how modeling SoCs as Systems
Integrating Modules with Predefined Physical Links (SIMPPL
[3]) expedites system integration. We also demonstrate how ab-
stracting IP modules as computing elements (CEs) can reduce
the complexities of adapting IP to new applications. The CE
model separates the datapath of the IP from system-level con-
trol and communications. A lightweight controller provides the
system-level interface for the I[P module and executes a program
that dictates how the IP is used in the system [4]. Localizing the
control for the IP to this program simplifies any necessary re-
design of the IP for other applications.

The remainder of this paper is structured as follows. Section II
provides an overview of communication and IP core standards
along with details of the SIMPPL model and the CE abstrac-
tion. The underlying SIMPPL controller architecture and in-
struction set are outlined in Section III and the SIMPPL con-
troller sequencer’s interface and programming model are dis-
cussed in Section IV. Section V details the additional function-
ality and hardware of the “debug” version of the controllers and
Section VI outlines some SIMPPL SoC implementations. Fi-
nally, Section VII describes the implementation statistics for
various controller and CE architectures and Section VIII con-
cludes the paper along with providing suggestions for future
work.

II. BACKGROUND

This section begins with a description of the SIMPPL model
and the CE abstraction. It is followed by a discussion of some
previous work investigating on-chip interconnect structures and
methods of simplifying IP reuse, demonstrating how SIMPPL
fits into this work.

A. SIMPPL System Model

Fig. 1 illustrates the SIMPPL SoC architecture of a network
of CEs comprising the hardware and software modules in the
system. I/O Communication Links are represented as dotted ar-
rows and are used to communicate with off-chip peripherals
using the appropriate protocols. The solid arrows represent the
Internal Communication Links. These are defined as point-to-

1063-8210/$25.00 © 2007 IEEE

378 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

off-chip

(=)
égé

}
t

v

on-chip

]
v

Fig. 1. Generic computing system described using the SIMPPL model.

point links to provide inter-CE communications where the com-
munication protocols are abstracted from the physical links and
implemented by the CEs.

For our current investigation, we are using n-bit wide asyn-
chronous first-in—first-out (FIFOs) to implement the internal
links in the SIMPPL model. Asynchronous FIFOs isolate
clocking domains to individual CEs, allowing them to transmit
and receive at data rates independent of the other CEs in the
system. This simplifies system-level design by decoupling the
processing rate of a CE from the inter-CE communication rate.
Furthermore, the width and depth of the FIFO can be altered
to provide greater bandwidth and to support data packets of
varying lengths depending on the number and type of data
words transmitted in a data packet. For the purposes of this
discussion, we assume a FIFO width of 33 bits, but leave the
depth variable.

The SIMPPL model representation of SoCs is reminiscent of
Kahn process networks [5], particularly Data process networks
[6], in that it is a collection of CEs interconnected via unidirec-
tional links. However, unlike these models that assume the in-
ternal links have unbounded capacity, the SIMPPL model uses
real FIFOs that have limited capacity. Recent work at Philips
Research produced YAPI [7], an application model based on
Kahn process networks that has been extended to support nonde-
terministic events and decouple the data types used for commu-
nications and computation. Although the SIMPPL model allows
nondeterministic events, they are supported by the CE abstrac-
tion. The SIMPPL model only provides a physical structure for
the system and is oblivious to the meaning of the data flowing
between CEs, deferring the interpretation of the data to the CE
abstraction discussed in the following section.

B. SIMPPL CE Abstraction

The CE is an abstraction of software or hardware IP that fa-
cilitates design reuse by separating the datapath (computation),
the inter-CE communication, and the control. Researchers have
demonstrated some of the advantages of isolating independent
control units for a shared datapath to support sequential proce-
dural units in hardware [8]. This is similar to when a CE is im-
plemented as software on a processor (software CE), the soft-

Rx Tx

H Py

SIMPPL Controller
ContAroIIer Status

SIMPPL Control :
PE Status

Internal Rx and Tx
Communication Links (FIFOs)

Prog Instr

Sequencer (SCS) PE Control
(&L
Data Data
Computing Rx Tx

Element (CE)

PE (Hardware IP)
N

External I/O Signals

~.”

Fig. 2. Hardware CE abstraction.

ware is designed with the communication protocols, the con-
trol sequence, and the computation as independent functions.
Should a software CE need to be reused and updated for a new
application, the software changes should be localized to only the
control sequence functions.

Typically, complex control is easier to implement in soft-
ware than in hardware, but general processors are too big and
too slow for the hardware-to-hardware interactions of dedicated
logic modules (hardware CEs). Ideally, a controller customized
to the datapath of each CE could be used as a generic system
interface, optimized for that specific CE’s datapath. To this end,
we have created two versions of a fast, programmable, light-
weight controller—an execution-only (execute) version and a
run-time debugging (debug) version—that are both adaptable to
different types of computations suitable to SoC designs on both
application-specific integrated circuits (ASICs) and field-pro-
grammable gate array (FPGAs).

Fig. 2 illustrates how the control, communications and the
datapath are decoupled in hardware CEs. The processing ele-
ment (PE) represents the datapath of the CE or the IP module,
where an IP module implements a functional block having data
ports and control and status signals. It performs a specific func-
tion, be it a computation or communication with an off-chip
peripheral, and interacts with the rest of the system via the
SIMPPL controller, which interfaces with the internal com-
munication links to receive and transmit instruction packets.
The SIMPPL Control Sequencer (SCS) module allows the
designer to specify, or “program”, how the PE is used in the
SoC. It contains the sequence of instructions that are executed
by the controller for a given application. The controller then
manipulates the control bits of the PE based on the current
instruction being executed by the controller and the status bits
provided by the PE. Section IV-B illustrates a programming
example for the SCS.

C. IP Reuse

Multiple books exist discussing the complexities involved in
reusing legacy IP in new designs [1], [2]. The challenges of
using IP to reduce design time due to problems that arise when

SHANNON AND CHOW: SIMPPL: AN ADAPTABLE SoC FRAMEWORK

379

H/W IP H/W IP
to to
OCP oCP

IP Interface

OCP to Bus A

OCP to Bus B

H/W IP H/W IP

(b)

Fig. 3. Standardizing the IP interface using (a) OCP for different bus standards and (b) SIMPPL for point-to-point communications.

incorporating previously designed modules into new designs are
of significant concern. This has led to the development of well-
defined IP design methodologies [9], [10] to ensure reusability
of cores with fixed interfaces and functionality. It does not, how-
ever, address the common situation where a module has defined
functionality but requires the ability to interface with different
communication structures.

The VSI Alliance has proposed the Open Core Protocol
(OCP)! to enable the separation of external core communica-
tions from the IP core’s functionality, similar to the SIMPPL
model. Both communication models are illustrated in Fig. 3.
OCP is used to provide a well-defined socket interface for IP,
which allows a designer to attach interface modules that act as
adaptors to different shared bus and point-to-point communica-
tions standards. This allows a designer to easily connect a core
to all bus types supported by the socket interface. In contrast,
the SIMPPL model only targets the direct communication
model and uses a defined, point-to-point interconnect structure
for all on-chip communications, as shown in Fig. 3(b).

More recently, an interface adaptor logic layer has been pro-
posed [11] that uses a socket interface for IP modules, similar
to the OCP. However, unlike OCP, it is specifically aimed at
IP reuse in reconfigurable SoCs. FPGA companies also rec-
ognize the importance of simplifying the inclusion of previ-
ously designed IP into newer system designs. Xilinx provides its
own bus-interface module for interconnecting IP with a defined
socket interface [12]. These protocols make it easier to port IP
among different bus standards, whereas SIMPPL addresses the
problems of adapting an IP core’s functionality to the require-
ments of a new application.

D. On-Chip Communication Structures

Many different on-chip interconnect strategies have been
proposed for SoC design, including hierarchical buses that use
bridges to connect to each other [13]-[15], but the maximum
bandwidth for each bus is limited by the number of modules
connected to it. The WISHBONE [16] SoC Interconnect
architecture provides multiple different interconnect struc-
tures, allowing the designer to select the bus architecture for
a particular system. Since all the Wishbone interconnects are
designed as single-level buses, the standard provides the user
with a simpler design approach, unless components running at
different clock rates must share the same bus.

IVSI Alliance home page. Available: http://www.vsia.org.

Berkeley’s SCORE [17] architecture divides system com-
putations into fixed-size pages and uses the data abstraction
of streams to pass data between pages. Streams provide a
high-level description of point-to-point communication, com-
parable to the SIMPPL internal communication link, but
without defining a physical connection. The adaptive SoC
(aSOC) [18] uses a physical implementation of a point-to-point
communication architecture for heterogeneous systems, where
unlike the SIMPPL model, the communication interface for
each module is tailored in hardware to optimize the module’s
performance.

Networks provide another form of scalable on-chip commu-
nication. Multiple network-on-chip (NoC) topologies have been
studied for ASIC designs [19], [20]. One popular NoC topology
is the mesh [21], [22], which has also been investigated on an
FPGA platform [23]. The SIMPPL model, however, can be
used to implement any fixed point-to-point network topology,
allowing the designer to choose the appropriate topology for
each application.

III. SIMPPL CONTROLLER

The SIMPPL controller acts as the physical interface of the
IP core to the rest of the system. It processes instruction packets
received from other CEs and its instruction set is designed to fa-
cilitate controlling the core’s operations and reprogramming the
core’s use for different applications. Details on the controller’s
architecture, the instructions it supports, and the format of its
instruction packets are given below.

A. Instruction Packet Format

SIMPPL uses instruction packets to pass both control and
data information over the internal communication links shown
in Fig. 1. Fig. 4 provides a description of the generic instruc-
tion packet structure transmitted over an internal link. Although
the current SIMPPL controller uses a 33-bit wide FIFO, the data
word is only 32 bit. The remaining bit is used to indicate whether
the transmitted word is an instruction or data. The instruction
word is divided into the least significant byte, which is desig-
nated for the opcode, and the upper 3 bytes, which represents
the number of data words (NDWSs) sent or received in an instruc-
tion packet. The current instruction set uses only the five least
significant bits (LSBs) of the opcode byte to represent the in-
struction. The remaining bits are reserved for future extensions
of the controller instruction set.

380 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

1 |Num Data Words (NDW) I opcode |} Instruction
0 Immediate Address } Optional
0 Data 0
0 Data 1
0 Data 2
- Data
. Packet
0 Data NDW - 1
control bit program word

Fig. 4. Aninternal link’s data packet format.

Designers can choose to reduce the resource usage of SoCs
using the SIMPPL model that do not require a 32-bit data word
length or address space. If the width of the data word trans-
mitted/received by a CE is less than 32 bit and the maximum
number of data words, the NDW value, is less than 222, then the
designer may choose to reduce the width of the FIFOs used as
internal Rx and Tx links for that CE. For example, if the width
of the data words being processed by a CE is 24 bit, the internal
links can be 25-bit wide, where 24 bit are used for the data word
and one bit is used as the control bit. The opcode of the instruc-
tion word would still be the eight LSBs, however, there would
only be two bytes to represent the NDW value for the instruc-
tion, decreasing the packet size that could be received or trans-
mitted by the CE.

All SIMPPL controller instruction packets have three com-
ponents: 1) the instruction word (mandatory); 2) the address or
status word (optional); and 3) the data words (optional). Each
instruction packet begins with an instruction word that the con-
troller interprets to determine how the packet is used by the
CE. Since the SIMPPL model uses point-to-point communica-
tions, each CE can transfer/receive instruction packets directly
to/from the necessary system CEs to perform the appropriate ap-
plication-specific computations. Therefore, designers need not
memory map the entire system, however, depending on the na-
ture of the CE’s operations, address or status information may
be required. For example, CEs that provide access to memory
require an address field so that designers can specify the data
they wish to access. In contrast, functional units, such as a vari-
able length decoder or run-level decoder, need not be memory
mapped but may require status information about the system or
data. Other types of functional units, such as an FIR or FFT,
may require neither address nor status information. Hence this
component of the address packet is optional. The remainder of
the packet consists of NDW data words, as specified with the
opcode.

SIMPPL Controller

Internal
Rx > E
Link X
|
Prog _ R
Instr 4
<A
£0 >
o8 Controller >] Internal
a5 Status a0 > Tx
S 3 ¢ Bits Link
o@ [—> Rt
E
Cont ~ G
Prog ”
[] Received Transmitted
1 Data Data
PE Control
Optional
Asynchronous
FIFOs
\ 4 \ 4
PE .
Status Processing Element

(Hardware IP)

Fig. 5. An overview of the SIMPPL controller datapath architecture.

B. Controller Architecture

Fig. 5 illustrates the SIMPPL controller’s datapath architec-
ture. The controller executes instructions received via the in-
ternal receive (Rx) link as well as those in the SCS. Instruction
packets from the internal Rx link are sent by other CEs as a
way to communicate control or status information from one CE
to another CE, whereas instructions from the SCS implement
local control. Instruction execution priority is determined by the
value of the Cont Prog bit so that designers can vary priority of
program instructions depending on how a CE is used in an ap-
plication. If this status bit is high, then the “program” (SCS)
instructions have the highest priority, otherwise the internal Rx
link instructions have the highest priority. Since the user must
be able to properly order the arrival of instructions to the con-
troller from two sources, allowing multiple instructions in the
execution pipeline greatly complicates the synchronization re-
quired to ensure that the correct execution order is achieved.
Therefore, the SIMPPL controller is designed as a single-issue
architecture, where only one instruction is in flight at a time,
to reduce design complexity and to simplify program writing
for the user. The SIMPPL controller also monitors the PE-spe-
cific status bits that are used to generate controller status bits for
the SCS, which can then be used to determine the control flow
of a program as will be discussed in Section IV-A. Finally, the
SIMPPL controller’s architecture includes the register a0. It is
provided to allow designers to generate an address or to store
local status information for the instruction packets transmitted

SHANNON AND CHOW: SIMPPL: AN ADAPTABLE SoC FRAMEWORK

381

TABLE 1
CURRENT INSTRUCTION SET SUPPORTED BY THE SIMPPL CONTROLLER

Instruction Type Rd | Rx | Wr | Issue | Exec. | Addr | Data
Req Instr | Instr | Field | Field

Immediate Data Transfer X X X S/R S/R X

Immediate Data + Immediate Address X X X S/R S/R X X

Register Initialization X S S X

Register Arithmetic X S S

Immediate Data + Indirect Addressing X X X S S X X

Immediate Data + Autoincrement X X X S S X X

Bypass S/R S/R X

No-op S R

Reset S R

to other CEs. The contents of a0 may represent the local ad-
dress or status information of data from the transmitting CE or
the address being accessed within the CE processing the instruc-
tion packet. The usage of the a0 register is left to the discretion
of the designer, but is limited by the controllers current instruc-
tion set.

The format of an instruction data packet sent via the internal
transmit (Tx) link is dictated by the instruction currently being
executed. The inputs multiplexed to the Tx link are the instruc-
tion, an immediate address that is required in some instructions,
the address or status stored in the register a0 and any data that
the hardware IP transmits. Data can only be received and trans-
mitted via the internal links and cannot originate from the SCS.
Furthermore, the controller can only send and receive discrete
packets of data, which may not be sufficient for certain types of
PEs requiring continuous data streaming. To solve this problem,
the controller supports the use of optional asynchronous FIFOs
to buffer the data transmissions between the controller and the
PE. The designer can then clock the controller at a faster rate
than the PE to guarantee that it accurately receives/transmits at
the necessary data rate.

C. Controller Instruction Set

The SIMPPL Controller’s instruction set is divided into two
groups; instructions that perform a control operation, and those
that transfer data. Instructions resulting in data transfers are fur-
ther subdivided into three different categories: 1) read requests;
2) receives; and 3) writes. A read request is issued by the pro-
gram of one CE and sent to another CE requesting that data be
transmitted back to the original CE. A receive instruction must
then be generated as the first transmitted word to accompany the
data sent back to the initiating CE, since all transfers via internal
links start with an instruction. Finally, the program can also use
a write instruction to accompany data words transmitted to an-
other CE.

Table I lists all the instructions currently supported by the
SIMPPL controller. The objective is to provide a minimal
instruction set to reduce the size of the controller, while still
providing sufficient programmability such that the cores can
be easily reconfigured for any potential application. Although
some instructions required to fully support the reconfigurability
of some types of hardware may be missing, the instructions
in Table I support the hardware CEs that have been built to
date. Furthermore, the controller supports the expansion of the
instruction set to meet future requirements.

The first column in Table I describes the operation being per-
formed by the instruction. Columns 2 through 4 are used to in-
dicate whether the different instruction types can be used to re-
quest data (Rd Req), receive data (Rx), or write data (Wr). The
next two columns are used to denote whether each instruction
may be issued from or executed from the SC'S (S) or internal
Receive Communication Link (R). Finally, the last two columns
are used to denote whether the instruction requires an address
field (Addr Field) or a data field (Data Field) in the packet trans-
mission.

The first instruction type described in Table I is the immediate
data transfer instruction. It consists of one instruction word of
the format shown in Fig. 4, excluding the address field, where
the two LSBs of the opcode indicates whether the data transfer
is a read request, a write, or a receive. The immediate data plus
immediate address instruction is similar to the immediate data
transfer instruction except that an address field is required as
part of the instruction packet.

Instructions that use the a0 register have a one or two-word
format, but are not transmitted as they only make sense in the
context of the local controller. The initialization of the local
a0 register with an immediate value is a two word instruction,
where the first contains the opcode and the second is the new
address. The register arithmetic instructions are single word in-
structions used to add or subtract an offset to the current value
stored in the a0 register. A CE’s a0 register can be used to store
local status information, or to provide an immediate address for
any data transfer instruction packets sent to other CEs using in-
direct addressing with an optional post-increment.

The remaining instructions provide control functionality for
the controller. The bypass instruction allows a packet of data
received from one CE to bypass the current CE, such that the
bypass instruction header is removed and the enclosed instruc-
tion is forwarded without execution. Fig. 6 illustrates a data
packet that is encompassed within four bypass instructions. By
prepending N bypass instructions to a data packet, the packet
will bypass N controllers before the (N + 1)th controller
processes the actual data packet. The no-op instruction can
be used in combination with SCS status bits to provide hand-
shaking controls between CEs. This will be further discussed in
Section IV-A. Finally, the reset instruction can be transmitted
from CE to reset the controller and PE of the receiving CE.

Designers can reduce the size of the controller by tailoring
the instruction set to the PE. Although some CE’s may receive
and transmit data, thus requiring the full instruction set, others

382 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

Data)
/—J\ Instruction
/™~
=
=0
- Loz
' EEmC')C\Iv—O
3 SEE32E 1313133
e |88 8D 1Z0 |g|ld|d|c| —»
z T | |© |9 %
© SS8I8el 32222
= k=] O @ |0 o
© T (D
[a)] <‘8
o
Q.
(o]
e
*Optional
Bypass
Headers

Fig. 6. A data packet with four bypass instructions.

may only produce data or consume data. The Producer con-
troller (Producer) is designed for CEs that only generate data.
It does not support any instructions that may read data from a
CE. The Consumer controller (Consumer) is designed for CEs
that receive input data without generating output data. It does
not support any instructions that try to write PE data to a Tx
link.

IV. SIMPPL CONTROL SEQUENCER

The SIMPPL Control Sequencer provides the local program
that specifies how the PE is to be used by the system. For
example, a CE that has an audio sampling PE can be repro-
grammed to generate packets of different formats depending on
the requirements of the application. In this section, we discuss
the architecture of the SCS for both ASIC and FPGA platforms,
and to provide a programming example. We then conclude with
a discussion of how the CE abstraction allows a designer to
dynamically generate program instructions, which we refer to
as dynamic programming.

A. SCS Interface

The operation of a SIMPPL controller is analogous to a
generic processor, where the controller’s instruction set is akin
to assembly language. For a processor, programs consist of a
series of instructions used to perform the designed operations.
Execution order is dictated by the processor’s Program Counter
(PC), which specifies the address of the next instruction of
the program to be fetched from memory. While a SIMPPL
controller and program perform the equivalent operations to
a program running on a generic processor, the controller uses
a remote PC in the SCS to select the next instruction to be
fetched.

Fig. 7 illustrates the SCS structure and its interface with the
SIMPPL controller via six standardized signal types. The 32-bit
program word and the program control bit, which indicates if the
program word is an instruction or address, are only valid when
the valid instruction bit is high. The valid instruction signal is
used by the SIMPPL controller in combination with the program
instruction read to fetch an instruction from the Store Unit and
update the PC. The continue program bit indicates whether the
current program instruction has higher priority than the instruc-
tions received on the CE Rx link. Finally, the SCS has access

SIMPPL Control Sequencer (SCS)

Store Unit PC
(Program)
T A
prog Prog
control Instr
cont_prog | valid_instruction bit Word
) 4

prog_instr_read

PE-specific
Controller
Status Bits (e.g.
exec_rx_instr)

SIMPPL Controller

Fig. 7. Standard SIMPPL control sequencer structure and interface to the
SIMPPL controller.

to a set of PE-specific controller status bits that can be used to
branch control within SCS program.

For example, if the SIMPPL Controller provides a status bit
that indicates when the controller is executing an instruction
from an internal Rx Link (e.g. exec_rx_instr), it can be used to
stall the CE until it has received a packet from an adjacent CE.
To perform this handshaking, the SCS program initially stalls
the controller by setting the valid_instruction bit low. When the
controller receives an instruction on the Rx link, it acts as a
request signal and the exec_rx_instr will go high. In response
to this request, the SCS’ valid_instruction signal then goes high
along with the continue_program so that the next instruction
executed by the controller is an SCS instruction to acknowledge
the received request.

Although a PC is traditionally implemented as a counter, the
SCS’s remote PC can also be constructed as a finite state ma-
chine (FSM). This allows branches to be executed implicitly as
transitions in the PC’s FSM depending on the control and status
signal values. The PC FSM is application-specific and uses the
current PC and status bit values to generate the correct index to
the store unit to select the correct instruction to be fetched and
sent to the controller. This reduces the size of both the SIMPPL
controller and the program located in the store unit by elim-
inating the need for branch instructions in the instruction set.
Furthermore, it reduces the performance overhead of using the
SIMPPL controller as an interface since it does not have to ex-
ecute conditional or explicit branch instructions.

If an SoC is implemented on an FPGA, the designer can
choose to implement the program’s store unit in an on-chip
memory. Yet many CEs only require small SCSs for an appli-
cation, thus the instructions can be stored as a separate FSM.
When an SoC is implemented as an ASIC, the designer could
choose to design each SCS for its specific application by in-
stantiating a small memory for the Store Unit and then imple-
menting the PC as application-specific dedicated logic. How-
ever, one of the benefits of the CE abstraction is that it decouples
the control from the datapath to support programmability. Hard-
wiring the PC means that the designer cannot alter the CE’s pro-
gram post-fabrication. To allow post-fabrication programma-
bility, ASIC designers can implement a small memory for the

SHANNON AND CHOW: SIMPPL: AN ADAPTABLE SoC FRAMEWORK

write start addr to a0;

for (i=0; i< 1024; i++)

while (!valid sensor data) ;

write 8 data words starting at addr
a0 = a0 + 8;

}

Fig. 8. Pseudocode for the sensor unit’s SCS program.

(a0) ;

instruction words and a small region of programmable fabric
that enables designers to change the PC to support a variety of
SCS programs for the CE. The following example demonstrates
how to write a program and use the SIMPPL controller interface.

B. Static Programming Example

Assume a hardware system that consists of two PEs: 1) a
memory and 2) a sensor unit used to measure multiple envi-
ronmental quantities at set time intervals. The total storage
requirements for each set of measurements is 32 bytes (eight
data words) and the memory is large enough to store 1024
samples. The user wants to store the first 1024 samples to ex-
perimentally measure when the environmental system reaches
steady state before deciding how often to record samples and
upload the results to a host PC. The sensor unit has a status bit,
valid_sensor_data, that indicates when a set of measurements
is available for reading. The sensor unit’s SIMPPL controller
passes the status information to its SCS to indicate that data is
available for transmission to the memory unit. The pseudocode
for the sensor unit’s SCS program is given in Fig. 8. At present,
we do not have compiler support for the SIMPPL controller
and all programs (SCSs) are hand generated. Fig. 9 illustrates
pseudo-HDL implementations of the sensor CE’s Program
Counter FSM and the valid_instruction signal that dictate the
program instruction and if it is available to be fetched by the
SIMPPL controller using the prog_instr_read signal.

The PC requires four states to implement the pseudocode in
Fig. 8 and the PC state only changes after an instruction has
been read or all 1024 samples have been written to memory.
The first two states, Write a0 state and Write address state, write
the starting address of the memory unit to the a0 register. The
third state (Write autoinc state) writes eight data words to the
memory unit starting at address (a0) and then post-increments
a0 by eight. While the valid_instruction signal is high during
the first two states to initialize the a0 register, it is assigned the
value of the valid_sensor_data status bit in the Write autoinc
state because the data write instruction should only occur when
the sensor has new data to transmit to the memory. A separate
counter state machine(SampleCntr), not shown in Fig. 9, is used
to count the number of times the sensor unit measurements are
sent to the memory unit. When the SampleCntr equals 1024, the
program has completed so the PC goes to the Done state, where
no further instructions are executed, and the valid_instruction
signal goes low permanently.

C. Dynamic Programming Architecture

For some applications, a designer may wish to have a CE
support multiple processing operations that are data packet de-
pendent. If the CE is pipelined with independent Producer and

383

if (rst=1) {

PCstate <= Write a0 state;
else

PCstate <= nextPC;

}

//Next-state state machine for the PC:

case (PCstate) {

Write a0 state: //Instruction to initialize a0
if ((prog_instr_ read) &&(rst=0))

nextPC = Write address state;
else
nextPC = Write a0 state;

Write address state: //New address for a0
if (prog instr read)

nextPC = Write autoinc state;
else
nextPC = Write address state;

Write autoinc state: //Write data to (a0)+
if ((prog_instr_ read)&&(SampleCntr=1024))

nextPC = Done state;
else
nextPC = Write autoinc state;
Done state:
nextPC = Done state;

/*Used to indicate when the instruction is
*valid. Stalls the processor when there
*is no valid instruction. =/

case (PCstate) {

Write a0 state:
valid instruction = 1;
Write address state:
valid instruction = 1;
Write autoinc state:
valid instruction =
Done state:
valid_instruction = 0;
}

Fig. 9. Pseudo-HDL code to implement the state machine for the sensor unit’s
program counter and the valid instruction signal.

valid_sensor_data;

Consumer controllers for the PE, then the Consumer may re-
ceive a variety of instruction packets that should result in the
Producer generating different instruction packets depending on
the received data. The following example demonstrates how the
Consumer and Producer controllers can work together to cor-
rectly process the received instruction packets and generate the
appropriate output instruction packets, even in the presence of
bypass instructions.

Fig. 10 illustrates a CE that receives packets A through F
in order, where packet C' is to bypass the PE entirely, and gen-
erates the appropriate program instructions for the Producer’s
SCS. For the purpose of this example, the Consumer does not
have an SCS and the order of packets received by a CE must
be maintained when they are transmitted to the subsequent CE.
Therefore, it is imperative that data packets A and B, which
were inflight when packet C' arrived, are transmitted first. To
enable this functionality, the instructions from the Producer’s
Rx Communication Link and those created in the Producer’s

384 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

continue_program bit
ol Instruction/State word —

= Instr E IState'E 1
Instr DNIS”tate D]

> ; u
>FSM Instr B |State B |1

—_

Status Bits scs [nstrA [State A 1
=
T <« Rx
Consumer Producer
Rx —p, Controller [] E E ™ Controller L Tx
PE

Fig. 10. A CE with multiple packets of data in flight.

SCS have variable processing priority determined by the value
of the continue_program status bit. When the continue_program
status bit is set, the controller continues to fetch available in-
structions from the SCS, even if there are data packets to be
processed on the receive link. Therefore, each Producer’s SCS
uses a 35-bit wide FIFO to store the instruction word, the con-
trol bit, the valid instruction bit and the continue_program bit
as well. The FIFO acts as the Store Unit where the maximum
depth is equal to the maximum number of data packets that can
be processed concurrently. The PE enqueues valid instructions
into the FIFO for every data packet in flight, setting the con-
tinue_program bit for each instruction, as indicated in Fig. 10.

To ensure that bypassed packets are transmitted in the proper
order, the PE must detect if the Consumer receives a bypass in-
struction. In this situation, the PE will queue a null instruction
into the FIFO with the continue_program and valid_instruction
bits set low, as shown in Fig. 10. To guarantee that instructions
are enqueued in the Producer’s FIFO in the correct order, the
SCS state machine must push the correct instruction onto the
FIFO before the Consumer controller finishes reading the cur-
rent data packet. The Producer will then dequeue the instruc-
tions and transmit the data packets in order. When the “null”
instruction is detected with the continue_program and valid_in-
struction bits set low, the Rx communication Link will be given
priority. The bypassed packet will then be retransmitted by the
Producer to the subsequent CE and the “null” instruction will
be dequeued from the FIFO.

Thus, for the example shown in Fig. 10, the Producer will
transmit packets A and B from the PE. It will then detect a
“null” instruction, with the continue_program bit set low, and
process packet C from the bypass link, while simultaneously de-
queueing the “null” instruction. This will be followed by packets
D and F being sent to the next CE.

V. DEBUG CONTROLLERS

The CE abstraction facilitates verification of the PE’s func-
tionality. A CE can be instantiated on an FPGA platform and
test vectors supplied over the internal Rx link. This method can
be used to quickly integrate the CE with a testbed that gener-
ates numerous test vectors because the Rx and Tx links and
communication protocols are fixed. Furthermore, since the CE
is being tested on-chip, it is orders of magnitude faster than sim-
ulation. Here we introduce a debug SIMPPL controller (debug
controller), based on the execute SIMPPL controller (execute

Status
Check
debug Rxand Tx o0
status Communication o = Internal
uplogd link Links eady | Error
A A 4 A
\ 4
CEID ‘l@mrriunnkz:atmn Execution/
L)
—» Fetch Time
Error_Type J Coupter
Register 7
2 Execute—t Prog/PE
xecute Status
ExIR 1~ simppL s
Controller
Imm. Addr. ¥ Controller
L Status
AO Register +— 4 inlR
A
7
Data Cntr +— —+ Prog IR
Debug SIMPPL Controller

Fig. 11. The SIMPPL debug controller architecture.

controller) described in Section III, that allows the detection of
low-level programming and integration errors.

A. Debug-Controller Architecture and Interface

Fig. 11 shows the architecture of a debug controller, with
the execute controller described in Section III forming the cen-
tral component. While the execute controller has three states in
the instruction execution state machine: fetch, decode, and exe-
cute, the debug controller has a fourth state—the stall state. An
input signal (Status Check) has been added to the debug con-
troller to allow designers to request a status check of the CE
while the system is running. Additional output signals are used
to indicate if a run-time error has occurred in the CE(int_error)
and when the CE’s status information is ready to be accessed
(status_ready). The controller enters the stall state if an error
occurs during the execution of an instruction or if a status check
has been requested (status_check). The stall state allows the con-
troller to upload all of the status information about the current
executing instruction to the debug status upload link before ex-
ecuting the next instruction.

Eleven status registers have been added to the debug con-
troller architecture, as shown in Fig. 11, to store run-time status
information about the CE. These include the CE’s ID register,
registers that store information about the instruction currently
executing (Ex IR, Imm Addr, AO register, Data Cntr, Execution/
Fetch Time Counter), the current state of the CE (Error Type
Register, Prog/PE Status, Controller Status), and the “next” in-
structions available from the program and from the receive link
(Rx IR and Prog IR). The status registers are connected to form a
large shift register to upload the values from the CE to the debug
status upload link. The debug controller requires twelve cycles,
or one cycle plus the number of status registers, in the stall state
to upload all of the status information from the CE to the link,
assuming the upload link is not full. Otherwise, the controller
will remain in the stall state until all the status register values
have been uploaded.

SHANNON AND CHOW: SIMPPL: AN ADAPTABLE SoC FRAMEWORK

385

TABLE 11
CURRENT ERROR CASES DETECTABLE USING THE DEBUG CONTROLLER
Error Case Error Code [Error Type |
Instruction word not in Fetch Cycle 8000 0001 Programming
Data word in Fetch Cycle 4000 0001 Programming
Execution Time Overflow 2000 0001 Programming
Fetch Time Overflow 1000 0001 Programming
Writing to a Full Tx Link 0800 0001 Integration
Reading from an Empty Rx Link 0400 0001 Integration
Writing data to the PE when it is not ready 0200 0001 Integration
Writing an address to the PE when it is not ready | 0100 0001 Integration
Reading data from the PE when it is not ready 0080 0001 Integration
Executing an invalid instruction 0040 0001 Programming
Debug
<—» SIMPPL
Controller
A A
Off- Off-Chip Debug
Chip‘ =« p Interface [« » Controller Debug
Module Interf
nterface «—> SIMPPL
Controller 2% P
switch
Debug
<«—>» SIMPPL Y Ye...
Controller de &
Mem Mem
Bank Bank
Fig. 12. SIMPPL debug controller interface. 0 1

The debug status upload link is implemented as an additional
asynchronous FIFO link that is used to upload the debugging
information to the debug interface shown in Fig. 12. The debug
controller interface connects via a bus to an off-chip peripheral
interface module that allows users to read the available status
information off-chip from the controllers. The interface also
contains a status register that indicates which CEs have status
information available and what, if any, CEs have encoun-
tered run-time errors. Alternatively, if a debug controller is
implemented in ASIC technology, the status information can
be downloaded off-chip by implementing the registers using
scannable flip-flops.

B. Debugger Options and Detectable Errors

The debug controller supports two different run-time opera-
tions: error detection and status checks. When the Status check
signal is set high for a clock cycle, it triggers the CE to upload
status information after the execution of the current instruction
completes. This allows the designer to check what instruction is
being executed by a CE at random points of operation of the ap-
plication. The Status Check can also be tied high for the duration
of the profile period to obtain a continuously running profile of
the CE, however, the CE will stall if the upload link becomes
full.

Column 1 of Table II lists the error cases that the debug con-
troller is currently able to detect, but the number of detectable
error cases may be extended if a future need is determined. The
second column in the table indicates the error code that is up-
loaded from the debug controller when an error occurs. The final

Fig. 13. SIMPPL model for the video streaming and snapshot applications.

column indicates whether an error case is the result of a pro-
gramming error or a CE/system integration error.

VI. SIMPPL SoCs

To investigate the usage of a programmable controller inter-
face for IP modules, three SoCs are created using the SIMPPL
framework. All three of the SoCs are implemented on a Xilinx
Multimedia board. The board’s resources include a Virtex II
2000, five ZBT memory banks, a YCrCb video decoder that runs
at 27 MHz, and an RGB video DAC operating at 25 MHz. This
section describes the nature of the three applications and dis-
cusses the effects on system design time.

A. SIMPPL SoC Applications

Fig. 13 illustrates the system level connections for two video-
based systems. The first is a video streaming system, which does
not include the Switch CE. Instead, it uses the one of the two
memory banks to buffer the video feed from the video camera
while the other bank is displayed using the video DAC to an
SVGA monitor. By adding the Switch CE to the video system,
the user can create a snapshot system, where the SVGA display
is only updated with a new image when the switch is toggled.
The Vid_In CE interfaces with a video decoder to read in data in
YCrCb format and then convert it to RGB format. The Vid_Out
CE receives data in RGB format and transmits it to a video DAC
used to drive an SVGA monitor. These CEs, in combination
with two external memory banks controlled by the Mem CE,

386 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

Video Stream |4 |4 Variable Length |2 |2 Inverse |2 |4 Inverse Discrete |4 |4 Missing |4
—> Parser %—» % Decoder/Run-Level %—» %Quantization %—» % Cosine %—) % Macroblock %
(Parser) 8 | @Decoder (VLD/RLD) | |8 (1Q) 2 | 8Transform (IDCT) | B 2 Replacer E—|

':
Motion
» Compensation [«
g (MC) Colour Video
% Frame |l | Space —» Frame D
! - Storage Converter Buffer
[Picture Buffer Y A—
» Reconstruction (€|
register (PR)
(MC/PR)
Fig. 14. The SIMPPL model for an MPEG-1 video decoder.
are used to implement a video streaming and a video snapshot TABLE I

application.

The video recorder and video display need to be synchro-
nized because the system may come out of reset when the video
recorder is mid-frame. Although the video applications require
synchronization between the Vid_In CE and Vid_Out CE to
properly display the video camera images, they do not commu-
nicate directly. Since the user is able to write individual pro-
grams to control the operation of the Vid_In, Vid_Out, and Mem
CEs, there are multiple ways to implement this system. The
straightforward approach is to have the Vid_In and Vid_Out CEs
become active as soon as the system comes out of reset, and
have the Mem CE only execute the memory reads and writes re-
quested via the internal links from the Video CEs. However, this
would not guarantee synchronization between the video data
being received and the video data written to the SVGA. There-
fore, to achieve synchronization between the two Video CEs,
the Vid_In CE starts running as soon as the system comes out
of reset and the Vid_Out CE stalls, waiting for an indication that
the Vid_In CE has started writing a new frame to the Mem CE.

Another significant design challenge for the video systems is
the different operating frequencies of the CEs. Fortunately, the
CE abstraction and asynchronous FIFO communication links
effectively isolate the different clock domains to simplify their
integration and synchronization. For instance, the Vid_In and
Input Switch CEs operate at 27 MHz, however, the Mem CE
operates at 54 MHz. Furthermore, the Vid_Out CE uses an asyn-
chronous FIFO interface between its PE and controller so that
the controller can run at 50 MHz to guarantee that valid data
will be available for the PE, which runs at 25 MHz to match the
video DAC’s operating frequency.

Fig. 14 illustrates the third system designed using the
SIMPPL model. It is an MPEG-1 video decoder that runs at 30
frames per second, generating 320 by 240 pixel images on an
SVGA monitor. The synchronization challenge for this system
is to maintain the order of packets processed in the system while
ensuring that certain instruction packets are only processed by
selected CEs. Recalling the discussion in Section IV-C and
the CE architecture in Fig. 10, the bypass instruction allows
such packets to bypass processing by a CE, but the Continue
Program status bit can be used to ensure that the bypassed
packet maintains its position in the data stream.

SYSTEM INTEGRATION TIMES FOR SOCS

SoC Design System Integration
Time
Custom Streaming Video System 140 hours
SIMPPL Streaming Video System 4.5 hours
SIMPPL Snapshot Video System 1.5 hours
SIMPPL MPEG-1 Video Decoder System 18 hours

B. SIMPPL SoC Implementation Statistics

Table III summarizes the time required to integrate the CEs
and create the SCSs for the systems shown in Figs. 13 and
14. Before the SIMPPL model was defined, a novice designer
created a custom version of the video streaming application.
The student found it difficult to create the proper system-level
control due to the multiple clock domains and synchronization
requirements. After some redesign, the modules were reused
and integrated with SIMPPL controllers to create the Vid_In,
Vid_Out, and Mem PEs (Fig. 13), which required approximately
40 h. However, the integration of the CEs and the design of
their respective SCSs took only 4.5 h for the SIMPPL Streaming
Video SoC, which is less than 3.5% of the time required to im-
plement the system-level integration for the custom design. The
CE abstraction simplified the system-level integration by iso-
lating the different clock domains, which greatly reduced inte-
gration time. The SIMPPL Snapshot Video system only required
the addition of the Input Switch CE and minor adjustments to the
SCSs previously used in the streaming video system, reducing
the system integration time to 1.5 h. Thus, not only does the
SIMPPL framework reduce system integration time, but it also
facilitates the reuse of CEs for new applications.

It took 18 h to properly connect all the CEs and to generate
the appropriate SCSs for the SIMPPL MPEG-1 Video Decoder
System. Integrating all the MPEG-1 hardware PEs with Pro-
ducer and Consumer controllers required an additional 39 h, or
2.4%, of the total system design time of 1607 h. For complex
designs, system integration can be a significant portion of the
total design time, however, the SIMPPL framework limits the
system integration for the MPEG-1 Video Decoder to 1.1% of
the total design time. Furthermore, the CE abstraction hides the
implementation details of the CE from the rest of the system
so that changes to the PE do not necessitate redesign at the

SHANNON AND CHOW: SIMPPL: AN ADAPTABLE SoC FRAMEWORK

387

TABLE 1V
SIMPPL CONTROLLER IMPLEMENTATION STATISTICS

Controller Type FPGA platform ASIC platform- Area ASIC platform- Speed
Area Max Frequency Area Max Frequency Area Max Frequency

LUTs | Flipops (MHz) (10%um?) (MHz) (10° um?) (GHz)

Consumer Execute 277 117 287 5.25 183 12.16 1.59

Producer Execute 355 125 285 5.42 184 13.16 1.56

Full Execute 346 115 283 5.49 183 13.71 1.59

Consumer Debug 1002 477 180 19.17 165 29.62 1.24

Producer Debug 955 478 199 19.24 164 28.01 1.09

Full Debug 946 478 185 19.48 166 29.59 1.09

system-level. For example, the Video Stream Parser CE is cur-
rently implemented as a software CE on a MicroBlaze, due
to design time constraints. However, the fixed communication
links allow it to be swapped out in favour of a hardware CE im-
plementation in the future without any changes to the rest of the
system.

VII. CE IMPLEMENTATIONS

This section describes the implementation statistics for the
controllers implemented on FPGAs and ASICs, possible dif-
ferent CE architectures, and the different CEs that have been
created and tested to date on an FPGA for the SoCs described
in Section VI.

A. Controller Implementation Statistics

Table IV summarizes the area and operating frequency mea-
surements obtained for the different types of SIMPPL controller
implemented on both FPGA and ASIC platforms. The ASIC
measurements are obtained using Synopsis synthesis tools for
a 90-nm standard cell process. The ASIC platform- Area values
are minimized for area and the operating frequency is left
unconstrained, whereas the ASIC platform- Speed values mini-
mize the operating frequency and leave the area unconstrained.
To obtain comparable operating frequency measurements on
an FPGA, the Virtex4 LX 40 —12 is used since it is the highest
speed grade device fabricated in a 90-nm technology available
from Xilinx. The FPGA measurements are generated using
Xilinx* Place and Route tool from the ISE tool suite version
7.1.4.

Column 1 lists all of the different types of debug and execute
SIMPPL controllers. Although the regularity of the controller’s
architecture can allow them to be autogenerated, the Consumer
and Producer controllers are currently hand tailored from the
Full controller. Columns 2—4 report the resource usage and max-
imum operating frequency for the controllers on the FPGA plat-
form. All of the execute controllers achieved at least a 280-MHz
operating frequency and required a maximum of 355 LUTs and
125 flip-flops. In contrast, the debug controllers can only op-
erate at 180-199 MHz while utilizing 945—-1002 LUTs and 478
flip-flops. The additional flip-flops used in the debug controllers
are attributed mainly to the 11 32-bit debug status registers used
to upload run-time information from the CE. The extra LUTs
are required for implementing the multiplexing and shift logic
for the status registers along with the error detection and up-
loading functionality. However, when designing on an FPGA,
designers may choose to instantiate CEs with debug controllers
to verify functionality on-chip and then use execute controllers

for the final implementation to free up resources or increase the
operating frequency if necessary.

The fifth and sixth columns in Table IV report ASIC syn-
thesis results for the controllers when they are optimized for
area. While these implementations of the controller occupy a
minimal area, the maximum operating frequency of 183 MHz
is comparable to the worst operating frequency on the FPGA
of 180 MHz. However, the final column demonstrates that the
debug controllers can achieve a minimum operating frequency
of 1 GHz when optimized for speed. This requires an approx-
imate increase in area of 50% from the debug controllers op-
timized for area. The size increase for the execute controllers
optimized for speed is approximately 2.5 times that of the area
of the execute controllers optimized for area.

The results shown in Table IV demonstrate that the critical
path delay for the FPGA implementations is approximately 5.5
times greater than the speed optimized ASIC implementations
with the exception of the Consumer Debug controller that has an
increased delay of 6.9 times that of the speed optimized ASIC
implementation. This concurs with recent research that found
the critical path delay on FPGA implementations to be three to
four times that on ASICs [24]. The operating frequency of the
speed optimized SIMPPL controllers is likely fast enough for
most applications, however, there is also the consideration that
the area overhead of using these controllers is not significant.

The MIPS core is on the order of 10 mm? in 90-nm tech-
nology according to industry sources. The maximum number
of Consumer debug controllers, the largest of the SIMPPL con-
trollers, that can be packed into 10 mm? is 337. While most
current SoC designs would probably have significantly fewer
CEs, the area of the controllers could be reduced and the op-
erating frequency increased if the designer used a fully custom
version of the controller. Previous work indicates that the max-
imum operating frequency should increase by a factor of 6 to 8
times [25] that of the standard cell implementation and the full
custom layout area could be reduced to 6.9% that of a standard
cell version [26].

Table V summarizes the execution overhead for the different
versions of the controllers. One clock cycle is required to fetch
the instruction from either the SCS or a Rx link and another
clock cycle is required to decode the instruction. The Execu-
tion-stage clock-cycle overhead is dependent on the current in-
struction being executed, thus the maximum execution-stage
clock-cycle overhead for each controller is dependent on the in-
struction set supported by that controller. The Producer’s max-
imum overhead of two clock-cycles occurs when a Write Im-
mediate address plus Autoincrement instruction is issued. Four

388 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

TABLE V
EXECUTION OVERHEAD CLOCK CYCLES FOR THE CONSUMER,
PRODUCER, AND FULL SIMPPL CONTROLLERS

Measured Quantity | Producer | Consumer Full
Controller | Controller | Controller

Instruction Fetch 1 cycle 1 cycle 1 cycle
Overhead

Instruction Decode 1 cycle 1 cycle 1 cycle
Overhead

Instruction Execute 2 cycles 4 cycles 4 cycle
Overhead

Total Overhead 4 cycle 6 cycles 6 cycles

clock-cycles is the maximum execution overhead incurred by
both the Full and Consumer Controllers when a Read Request
plus Autoincrement instruction is issued.

The total instruction execution overhead of the SIMPPL con-
troller ranges from a maximum of four clock cycles for the
Producer Controller and six clock cycles for the Full and Con-
sumer Controllers. Additional clock cycles of overhead may be
incurred depending on the nature of the PE, ranging from one
clock-cycle of overhead for buffering data transferred between
the controller and the PE to multiple cycles for resource arbi-
tration. However, depending on the nature of the PE, status bits
may be used to provide early warning of the availability or need
for data, allowing the designer to hide some of the overhead in-
curred by the controller during the PE processing to decrease the
effective latency attributed to passing data packets between CEs.
For example, an early warning signal is used by the Vid_Out CE
to request data to ensure it is available to write to the display.
It masks the total controller latency overhead of six cycles with
no impact on the functionality or performance of the PE.

B. CE Architectures

To date, we have investigated three different hardware CE ar-
chitectures. The first architecture, called the Basic architecture,
is a direct implementation of the hardware CE abstraction shown
in Fig. 2. It is used for PEs that do not support the independent
data transfers and have only one Rx and one Tx link. Examples
of CEs with the Basic architecture are Vid_In, Vid_Out, Switch
CEs. Fig. 15 illustrates a second hardware CE architecture, the
Shared architecture, which is designed to support parallel access
to shared PE resources. For example, the Shared architecture is
useful for implementing a shared memory CE with two memory
banks. It uses two controllers, labelled SIMPPL Controller Mem
Bank A and SIMPPL Controller Mem Bank B in Fig. 15, that in-
terface with an arbiter module to determine which controller has
access to which PE, in this case the Memory Bank Controllers.

The arbiter module communicates with both SIMPPL con-
trollers in the Shared architecture (Fig. 15) to service requests
for memory bank accesses and to acknowledge that control of
a memory bank has been granted. It generates the select signals
used to multiplex the I/O signals from the two SIMPPL con-
trollers to each of the two memory bank controllers. The arbiter
is designed as a separate module so that the user can adapt the
arbiter to suit different applications.

Finally, Fig. 16 shows a block diagram of the Pipelined ar-
chitecture utilized for the CEs in the MPEG-1 video decoder

A Interrjal) A
Communication

Links to other CEs

A 4 - v
SIMPPL SIMPPL
Controller |"€9 réq| Controller

Mem Bank A P —2] Mem Bank B

I L
L let 17 Dt Lot

sel0 sel
0 1
\ 4 \ 4
Mem Bank O
Controller

SCSA &— SCSB

ITmMm—— WD >

Mem Bank 1
Controller

Mem CE A A

+ /O Communication +
; Links to off-chip Memory ;

Mem Bank O Mem Bank 1

Fig. 15. Shared CE architecture for a shared memory CE.

Rx and Tx Communication

Rx | Tx Links (FIFOs)

\ 4
SIMPPL
Consumer
Controller

¢ T Status

External . PE Bits
I/0 Signals (Hardware IP)

v 1 :

SIMPPL Consumer
Control
Sequencer (SCS)

[

Computing
Element (CE)

Bypass
Link

SIMPPL SIMPPL Producer
Producer [&— Control
Controller Sequencer (SCS)

4\

Tx | Rx Rx and Tx Communication
v Links (FIFOs)

Fig. 16. The Pipelined CE architecture.

application. All of the PEs in an MPEG-1 application are imple-
mented in a pipelined format to allow multiple data packets to
be processed concurrently Therefore, each PE has independent
input and output Consumer and Producer SIMPPL controllers,
respectively, where each controller has its own SIMPPL Control
Sequencer (SCS). Using independent controllers for receiving
and transmitting data allows the Consumer to receive a new data
packet for processing while the Producer transmits a packet to
the adjacent CE.

C. CE Implementation Statistics

To investigate the CE architectures we described in the pre-
vious section and to demonstrate the benefits of the SIMPPL
model, we implemented the three different SoCs described in
Section VI-A on an FPGA using the nine hardware CEs de-
scribed in Table VI. All the results reported in the table were
obtained using the version 7.1.4 of the Xilinx ISE tools.2 The

2The LUTs and flip-flops resource usage of the Mem CE were reported using
version 6.2.2 of the ISE tools as a bug in the current version of the tools causes
an error during synthesis.

SHANNON AND CHOW: SIMPPL: AN ADAPTABLE SoC FRAMEWORK

TABLE VI
IMPLEMENTED CES

CE Name Architecture | Controllers PE Resources
Type LUTs | Flipops

Input Switch Basic Producer 0 0

CE

Vid_In CE Basic Producer 128 211

Vid_-Out CE Basic Consumer 96 52

Mem CE Shared Full 187 148

Full

VLD/RLD Pipelined Consumer 606 699

CE Producer

1Q CE Pipelined Consumer 429 201
Producer

IDCT CE Pipelined Consumer 1091 1217
Producer

MMR CE Pipelined Consumer 141 152
Producer

MC/PR CE Basic Consumer 1705 742

first column provides the names of the CEs that have been de-
signed. Column 2 describes which of the three architectures de-
scribed in the previous section has been used to implement the
CE. The third column lists which controller type(s) are used in
the CE and the final two columns give the number of LUTs and
flip-flops used to implement the PEs.

The Input Switch CE has no PE resources because the logic
value on the switch is provided directly to the SCS as a status
bit. However, the Vid_In and Vid_Out PEs read and write data
to off-chip peripherals. The Vid_In PE also performs a 4-stage
pipelined conversion of the YCrCb input to RGB format that
makes it larger than the Vid_Out PE. The Mem PE comprises
the two Memory Bank Controllers and the arbiter.

The remaining hardware CEs are: a Variable Length De-
coder/Run-Level Decoder (VLD/RLD CE), an Inverse Quan-
tizer (IQ CE), an Inverse Discrete Cosine Transform (IDCT
CE), a Missing Macroblock Replacer (MMR CE), and a Motion
Control/Picture Reconstruction (MC/PR CE). These hardware
CEs are used to implement an MPEG-1 video decoder. The
range in PE resource usage is due to the varied complexity of
the PEs being implemented in the decoder.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we discussed the SIMPPL model for SoC de-
signs on both ASIC and FPGA platforms. Systems are mod-
elled as a network of Computing Element(s) connected via asyn-
chronous FIFOs. The CE abstraction decouples the system-level
control from the Processing Element and provides a fixed com-
munication interface and protocols to the rest of the system. We
have created the SIMPPL controller to act as the system inter-
face and to process the instructions that allow the designer to
program the use of a PE within the system. The current in-
struction set is limited to minimize the size of the controller
by supporting instructions that are required to transfer data be-
tween CEs, however, it is extensible to support the needs of fu-
ture applications. The execute controllers run at approximately
280 MHz on an FPGA and 1.56 GHz on an ASIC in 90 nm
technology, whereas the debug controllers run at 160 MHz and
1.09 GHz, respectively. The standard cell implementation for
the controllers ranges from 5251 pm? to 29 615 um? depending

389

on which type and version of the controller is used and whether
it is optimized for speed or area. The sizes of the controllers
could be further reduced if they were implemented as custom
cells.

The usage of SIMPPL controllers as the physical and com-
munication protocol interface between CEs incurred latency and
area overhead for the designs. However, they greatly facilitated
system-level design by reducing complexity and simplifying the
reprogramming of CEs for different applications. For example,
the system integration time for each of the SIMPPL modelled
systems was less than 20 h compared to the 140 h required for
the custom designed video streaming system.

Besides reducing system integration time, the SIMPPL
model facilitates debugging at both coarse and fine-grain levels.
The fixed internal communication links simplify the design
of on-chip testbeds that allow CEs to be tested with a large
number of vectors in real time to verify the PE’s functionality.
To detect low-level programming errors, we have created a
debug version of each of the three types of controllers that
provides access to the run-time status of the controller when
an error occurs. Currently, the SCSs are handwritten for each
application. The three types of debug and execute controllers
have also been custom designed. Future work will investigate
the development of a controller specification platform and a
high-level programming environment.

REFERENCES

[1] M. Keating and P. Bricaud, Reuse Methodology Manual for
System-on-a-Chip Designs. Norwell, MA: Kluwer Academic,
1998.

H. Chang, L. Cooke, M. Hung, G. Martin, A. J. McNelly, and L. Todd,

Surviving the SOC Revolution: A Guide to Platform-Based Design.

Norwell, MA: Kluwer Academic, 1999.

[3] L. Shannon and P. Chow, “Maximizing system performance: Using
reconfigurability to monitor system communications,” in Proc. IEEE
Int. Conf. on Field-Programm. Technol., Dec. 2004, pp. 231-238.

, “Simplifying the integration of processing elements in com-
puting systems using a programmable controller,” in proc. IEEE Symp.
on Field-Programm. Custom Comput. Mach., Apr. 2005, pp. 63-72.

[5]1 G. Kahn, “The semantics of a simple language for parallel program-

ming,” in Proc. IPIF Congress 74, 1974, pp. 471-475.

E. Lee and T. Parks, “Dataflow process networks,” Proc. IEEE, vol. 83,

no. 5, pp. 471-475, May 1995.

E. Kock, W. Smits, P. van der Wolf, J. Brunel, W. Kruijtzer, P. Liev-

erse, K. Vissers, and G. Essink, “YAPI: Application modeling for signal

processing systems,” in Proc. 37th Design Automat. Conf., Jun. 2000,

pp. 402-405.

K. Jasrotia and J. Zhu, “Stacked FSMD: A power efficient micro-archi-

tecture for high level synthesis,” in Proc. Int. Symp. on Quality Elec-
tronic Des., Mar. 2004, pp. 425-430.
W. Savage, J. Chilton, and R. Camposano, “IP Reuse in the system on
a chip era,” in Proc. 13th Int. Symp. on Syst. Synthesis, Sep. 2000, pp.
2-7.
[10] G. Martin, “Design methodologies for system level IP,” in Proc. IEEE
Conf. on Design Automat. and Test in Eur., Feb. 1998, pp. 286-302.

[11] T. Lee and N. W. Bergmann, “An interface methodology for retarget-
table FPGA perihperals,” in Proc. Int. Conf. on Eng. of Reconfigurable
Systems and Algorithms, Jul. 2003, pp. 1-7.

[12] Xilinx, OPB IPIF architecture. (2003) [Online]. Available: http://www.

xilinx.com/ipcenter/catalog/logicore/docs/opb ipif.pdf
[13] P.J. Aldworth, “System-on-a-chip bus architecture for embedded ap-
plications,” in Proc. IEEE Int. Conf. on Computer Design, Oct. 1999,
pp. 297-298.

[14] D. Flynn, “AMBA: Enabling reusable on-chip design,” IEEE Micro,
vol. 17, no. 1, pp. 20-27, Jul. 1997.

[15] IBM Corp., The CoreConnect Bus architecture. (1999) [Online]. Avail-

able: www.ibm.com/chips/products/coreconnect

[2

—

[4]

[6

=

[7

—

[8

—_

[9

—

390

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

OpenCores, Specification for the WISHBONE system-on-chip (SoC)
interconnect architecture for portable IP cores. (Sep. 2002) [Online].
Available: http://www.opencores.org/projects.cgi/web/wishbone/wb-
spec b3.pdf, Revision B.3

E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. De-Hon,
“Stream Computations Organized for Reconfigurable Execution
(SCORE): Extended abstract,” in Int. Conf. on Field Programmable
Logic and Appl., Aug. 2000, pp. 605-614 [Online]. Available:
http://brass.cs.berkeley.edu/documents/score tutorial.pdf

J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture
and compiler for scalable on-chip communication,” IEEE Trans. VLSI
Syst., vol. 12, no. 7, pp. 711-726, Jul. 2004.

A. Adrianhantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. Ze-
ferino, “Spin: A scalable, packet switched, on-chip micro-network,”
in Proc. Conf. on Design, Automat. and Test in Eur., Mar. 2003, pp.
70-73.

P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip,” IEEE Trans.
Comput., vol. 54, no. 8, pp. 1025-1040, Aug. 2005.

S. Kumar, A. Jantsch, J. Soininen, and M. Forsell, “A network on chip
architecture and design methodology,” in Proc. IEEE Annu. Symp. on
VLSI, 2002, pp. 105-112.

W. J. Dally and B. Towles, “Route packets, not wires: On-chip in-
terconnect networks,” in Proc. ACM/IEEE Des. Automat. Conf., Jun.
2001, pp. 684-689.

G. Brebner and D. Levi, “Networking on chip with platform FPGAs,”
in IEEE Int. Conf. Field-Programm. Technol., Dec. 2003, pp. 13-20.
I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
in Proc. Int. Symp. Field Programmable Gate Arrays, Feb. 2006, pp.
21-30.

D. Chinnery and K. Keutzer, “Closing the gap between ASIC and
custom: An ASIC perspective,” in Proc. 37th Design Automat. Conf.,
Jun. 2000.

W. Dally and A. Chang, “The role of custom design in ASIC chips,” in
Proc. 37th Design Automat. Conf., Jun. 2000, pp. 643-647.

Lesley Shannon (S’03-M’06) received the
B.Sc.Eng. degree in electrical engineering from
the University of New Brunswick, Fredericton,
NB, Canada, in 1999, and the M.A.Sc. and Ph.D.
degrees from the University of Toronto, Toronto,
ON, Canada, in 2001 and 2006, respectively.

In 2006, she joined the School of Engineering
Science, Simon Fraser University, Burnaby, BC,
Canada, as an Assistant Professor. Her current
research interests include computing system de-
sign, particularly, system-on-chip architectures,
embedded computing systems, and reconfigurable computing, as well as
computing system design methodologies and CAD tools.

Paul Chow (S’79-M’83) received the B.A.Sc.
degree (with hons) in engineering science, and the
M.A.Sc. and Ph.D. degrees in electrical engineering
from the University of Toronto, Toronto, ON,
Canada, in 1977, 1979, and 1984, respectively.

In 1984 he joined the Computer Systems Labora-
tory at Stanford University, Stanford, CA, as a Re-
search Associate, where he was a major contributor to
an early RISC microprocessor design called MIPS-X,
one of the first microprocessors with an on-chip in-
struction cache. Since January 1988, he has been with
the Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada, where he is now a Professor and holds the Dusan and Anne
Miklas Chair in Engineering Design. His research interests include high perfor-
mance computer architectures, architectures and compilers for embedded pro-
cessors, VLSI systems design, and field-programmable gate array architectures,
systems, and applications. From 1998 to 2001, he was the Chairman of the Tech-
nical Advisory Committee (TAC) for the Canadian Microelectronics Corpora-
tion (CMC). Since 2001, he has been a member of the CMC Board of Directors
and still participates as a member of the TAC. In December 1999, he co-founded
AcceLight Networks to build a high-capacity, carrier-grade, optical switching
system. He was the Director of ASIC Technology from May 2000 to October
2002 and managed a group of close to 30 designers that developed over 40 large,
high-performance field-programmable gate array designs.

