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ABSTRACT
A fundamental difference between ASICs and FPGAs is that
wires in ASICs are designed such that it matches the re-
quirements of a particular design. Wire parameters such
as: length, width, layout and the number of wires are de-
signed to meet the performance requirements. Oppositely,
in an FPGA, the area is fixed and the routing resources exist
whether or not they are used, so the goal changes to meet-
ing the performance requirements within the limits of the
available resources.

In this paper, we investigate how this fundamental differ-
ence of resource usage affects the choice of network topol-
ogy when building a Network-on-Chip for an FPGA. By
exploring the routability of different multiprocessor network
topologies on a single FPGA, we show that the underly-
ing FPGA routing architecture does not benefit a particular
topology. We also derive a cost metric that help us estimate
the impact of the topology selection beyond 32 processors
following a standard design flow and targeting commercial
FPGAs.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); D.0 [Computer Systems
Organization]: General

General Terms
Design
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1. INTRODUCTION
With the growing complexity of System-on-Chip (SoC)

circuits, more sophisticated communication schemes are re-
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quired to connect the increasing number and variety of in-
tellectual property (IP) blocks. Approaches like AMBA [1],
CoreConnect [2], WISHBONE [3] and SiliconBackplane [4]
follow a shared bus scheme that works well for Master-Slave
communication patterns where there are peripherals (slaves)
that wait for data to be received or requested from a more
complex processing IP (master). When there are several
masters (e.g., processors) in the system, synchronization,
message passing and I/O may saturate the bus, and con-
tention will slow down data transfers.

The Network-on-Chip (NoC) [5, 6] provides a possible so-
lution for this problem by creating a scalable interconnec-
tion scheme. The concept uses a set of buses connected to
routers or switches that interchange packets, much in the
same way as traditional computer networks or multiproces-
sor machines do. Consequently, NoC approaches have design
parameters and properties similar to traditional networks.
One of these parameters is the topology, which defines the
interconnection pattern between the routers and switches.

Multiple topologies have been studied for NoCs on ASICs [7,
8]. A popular choice is the mesh [6, 9] because it pro-
vides structure, modularity, and better control over electri-
cal characteristics. Moreover, a mesh topology is said to be
orthogonal and therefore packet routing is simple. However,
these advantages are clear for ASICs, but not necessarily for
FPGAs [10]. The electrical characteristics of the FPGA are
solved by the chip vendor, not by the user. As for struc-
ture and modularity it is perhaps intuitive to use a mesh
topology in FPGAs since the reconfigurable fabric layout
is in the form of a mesh. Nevertheless, the placement and
routing of components on an FPGA will not typically re-
sult in a symmetric, well-organized structured layout that
resembles a mesh. Furthermore, manually restricting the
placement of components or routing of nets may lead to in-
efficient resource utilization for the logic that is not part of
the network. Finally, there are other orthogonal topologies
like hypercube or torus networks, or even tree topologies
that also have a simple routing algorithm.

In this paper, we compare the routability of point-to-point
network topologies on FPGAs by measuring the impact of
each topology on a soft multiprocessor system implemented
in commercial and modern FPGAs. We do this by measur-
ing the logic utilization, logic distribution (area), maximum
clock frequency, number of nets, and the place and route
time for five different network topologies. We also derive a
cost metric to try and extract trends for larger systems.

The rest of this paper is organized as follows. Section 2



describes the topologies implemented and a brief description
of the computing node block. Section 3 describes the experi-
mental framework used, and how the systems are generated.
Section 4 presents the results obtained for the baseline sys-
tem and Section 5 explores the chip area required for each
topology. Section 6 shows the highest frequency that each
system could achieve. Section 7 presents a metric we pro-
pose to evaluate the topologies and Section 8 provides some
concluding remarks.

2. THE NETWORK-ON-CHIP
The objective of this work is to investigate how various

multiprocessor network topologies utilize the resources of
an FPGA, focusing mainly on the routing resources, i.e.,
wires. To do this, we create an infrastructure that allows
us to investigate the impact of the topology selection on the
overall design with respect to the FPGA resource utilization
and system clock speed. The focus of this paper is not on
the network interface itself, nor on the computing node, but
on the interconnection patterns and how well they route in
an FPGA fabric using a standard design flow.

2.1 Related Work
Brebner and Levi [10] discuss NoC implementations on

FPGAs, but their focus is on the issues of using packet
switching on a mesh topology in the FPGA and on imple-
menting crossbar switches in the routing structure of the
FPGA. Most NoC work assumes ASIC implementations and
there are numerous studies including work on mesh topolo-
gies [6, 9] and fat trees [7]. Typically, studies on NoCs are
done using register-transfer-level simulations [7] and simu-
lation models [11].

In our work, we are not modeling NoCs to study band-
width, latency, or architectures for packet routing. Instead,
we create actual implementations by performing synthesis,
mapping, placement and routing for real FPGAs using com-
mercial tools. We try five different topologies and three dif-
ferent system sizes (8, 16 and 32 nodes) to examine how
well the topologies can be mapped using an FPGA routing
fabric.

Research has been done on synthesizing application-specific
network topologies [12]. An approach, such as SIMMPL [13],
is a mechanism for realizing a particular topology. In our
work, we created a design flow and tools to automatically
generate systems using a set of well known topologies.

Based on the philosophy of routing packets, not wires [9,
14], NoC architectures have been proposed as packet-switching
networks, with the network interface itself being the focus
of much of the research.

In this paper, we use a simple network interface, more
similar to a network hub than a switch as it does not pro-
vide packet forwarding. Packets can only be sent to, and
received from nearest-neighbor nodes. This makes the net-
work interface extremely simple, but it is sufficient for our
purposes as the focus of this work is on the routability of
various topologies, not on the switching element architec-
ture.

2.2 Network Topologies
Networks can be classified into two categories. Static net-

works consist of point-to-point, fixed connections between
processors, and dynamic networks which have active ele-
ments, such as switches, that can change the connectivity

Table 1: Characteristics of the topologies studied
Topology Diameter Link DegreeRegularBisection

Complexity Width
ring n

2
n 2 yes 2

star 2 n− 1 1,n− 1 no 1

mesh 2(n1/2 − 1)2(n− n1/2) 2,3,4 no 2
√

n

hypercube log2n
nlog2n

2
log2n yes n

2

fully

connected 1 n(n−1)
2

n− 1 yes n2

4

pattern in the system according to a protocol. In an FPGA,
the network can be dynamically reconfigured to adapt to
communication patterns by utilizing the reconfigurability [15]
of the FPGA.

In this paper, we focus on static message passing networks.
The ring, star, mesh, hypercube and fully-connected topolo-
gies are selected as a representative sample, ranging from
the simplest ring topology to the routing-intensive fully-
connected system.

Network topologies can be characterized by a number of
properties: node degree, diameter, link complexity, bisection
width and regularity [16]. Node degree is the number of
links from a node to its nearest neighbors. Diameter is the
maximum distance between two nodes. Link complexity is
the number of links the topology requires. A network is
deemed to be regular when all the nodes have the same
degree. Bisection width is the number of links that must be
cut when the network is divided into two equal set of nodes.
Table 1 shows a summary of these characteristics for each
of the topologies used in this paper.

The characteristics of the network topology define the net-
work interface of a node. For example, the four-dimensional
hypercube is a regular topology, with all nodes having a
degree of four. This means that this topology requires a
single network interface type, each with four ports, i.e., four
communication links. The network interface is used to com-
municate with other nodes in the network. The maximum
distance (diameter) is four, which means that data going
through the network may require redirection or routing at
intermediate nodes and travel on up to four links. The link
complexity is 32, which is the total number of point-to-point
links that the overall system will have. In contrast, a 16-
node mesh has a total of 24 links in the system, but it is
not a regular topology, requiring three different versions of
the network interface. Inner nodes require an interface with
four ports, perimeter nodes require one with three ports and
corner nodes use a two-port interface.

Figure 1 shows examples of the systems with different
numbers of nodes and topologies that were implemented to
carry out our experiments. Every topology can be seen as a
graph that is made of edges (wires) and vertices (computing
nodes). In our implementations, the links are 64 bits wide
with 32 bits used for transmission and 32 bits used for re-
ception, making it a full-duplex communication system. The
links also include control lines used by the network interface.

2.3 Computing Node
The computing nodes in Figure 1 consist of a computing

element and a network interface module. Figure 2 shows a
computing node. The master computing node of the system



Figure 1: A) 8-node ring, B) 8-node star, C) 32-
node mesh, D) 16-node hypercube, and E) 8-node
fully-connected topology

is configured to communicate with the external world using
a UART attached to the peripheral bus shown inside the
dashed box of Figure 2. The rest of the nodes have no
peripheral bus.

Figure 2: The computing node

We use a Harvard architecture soft core processor as the
computing element so that data memory and program mem-
ory are accessed by independent memory buses. The com-
munication between the computing element and the network
interface is achieved by using two FIFOs: one for transmis-
sion and one for reception, 32 bit each.

The network interface module is an extremely simple block
that has two sides: the network side, which is the interface
to the network; and the processor side, which connects to
the processor. On the network side, there are several links
(channels) according to the degree of the node. There are
two FIFO ports on the processor side. The FIFOs are used
as message buffers for the processor.

The network interface is basically a hub that broadcasts
the data to the neighbors on transmission, and it filters out
the data from the neighbors on reception. It is effectively
a FIFO multiplexer that is controlled by the destination
field in the packet header. If the destination value matches

the processor’s ID number, then the packet passes through
the hub to the processor attached to the hub. Again, this
interface is simple, but is enough for the purpose of this
research, since we are interested in the connectivity pattern.

Implementing a single version of the network interface
would not allow us to measure the difference in logic utiliza-
tions between the various topologies because the topologies
requiring nodes of lesser degree should use less logic. It is
likely that the optimizer in the synthesis tool would remove
the unused ports, still allowing the study to be performed,
but we chose to actually implement the different node de-
grees required to be certain that only the necessary logic
was included.

The size of the remaining logic in the computing node is
independent of the node degree i.e., the logic in the pro-
cessors, the FIFOs, the memory controllers, the UART are
independent of the topology selection.

3. IMPLEMENTATION PLATFORM
This section describes the platform and tools used to build

the systems and conduct the experiments.
To build the net list, map the design, place it and route it,

we use the Xilinx EDK tools version 7.1i [17] in combination
with the Xilinx XST synthesis tool. To visualize the place-
ment of the systems, we use the Xilinx FPGA Floorplanning
tool. The network interface is developed in VHDL and sim-
ulated using ModelSim version 6.0b [18]. The routed nets
are counted with the help of the Xilinx FPGA Editor. For
section 6, we use the Xilinx Xplorer utility to try to meet
the timing constraints. All the experiments are executed on
an IBM workstation with a Pentium 4 processor running at
2.8 GHz with Hyperthreading enabled and 2 GB of memory.

Our multiprocessor systems use the Xilinx MicroBlaze
soft-processor core [17] as the computing element. The com-
puting element connects to the network interface module
through a Fast Simplex Link (FSL), a Xilinx core, which is
a unidirectional, point-to-point, communication bus imple-
mented as a FIFO.

We use a variety of Xilinx chips to implement the de-
signs: the Virtex2 XC2V2000, and the Virtex4 XC4VLX25,
XC4VLX40, XC4VLX60 and XC4VLX200. The LX version
of the Virtex4 family only has Block RAM (BRAM) and
DSP hard cores in addition to the FPGA fabric. They do
not have PowerPC processors or Multi-gigabit Transceivers
(MGTs). This provides a more homogeneous architecture
that facilitates area comparisons.

The hard multiplier option for the MicroBlaze is disabled
to minimize the impact of hard core blocks that may influ-
ence or limit the placement and routing. The BRAM are
hard core blocks that also affect placement and routing, but
they are essential for the MicroBlaze system to synthesize
so they have not been eliminated.

A 32-node, fully-connected system requires 1056 links to
be specified, and doing this manually is time consuming and
error prone. Instead, we developed a set of tools that take a
high-level description of the system that specifies the topol-
ogy type, the number of nodes, the number of total links
and the number of links per node, and they generate the
files required by EDK.

The number of nodes is chosen based on the limitation of
the hypercube to 2d nodes, where d is the dimension. For
d = 3, 4 and 5 we have 8, 16 and 32 nodes, respectively.
These values are used for all topologies.



4. BASELINE SYSTEM
The main objective of this experiment is to measure the

logic and routing resources required for each of the topolo-
gies. The timing constraints are chosen to be realistic, but
not aggressive, so that the place and route times are not
excessive. The 8 and 16-node systems are specified to run
at 150 MHz and the 32-node systems are specified to run
at 133 MHz to account for the slower speed grade of the
XC4VLX200 chip that is used for those systems.

The logic resource usage is measured by counting the to-
tal number of LUTs required for a design and the number of
LUTs related to only the interconnection network, i.e., those
used to implement the network interface modules. The logic
resources needed to implement the network are estimated by
first synthesizing the network interface modules as stand-
alone blocks to determine the number of LUTs required.
These numbers are then used to estimate the usage of the
entire network. For example, the 8-node star topology re-
quires one 7-port network interface, which uses 345 LUTs,
and seven 2-port network interfaces, which need 111 LUTs
each. The total number of LUTs required by the network is
345+(7×111) = 1122 LUTs. Note that this is only an esti-
mate as the values reported by synthesizing the stand-alone
block level may change at the system level due to optimiza-
tions that may occur. The register (flip flop) utilization is
found by using the same method as used for finding the logic
resource utilization.

The routing resource utilization is measured by counting
the total number of nets in the design and the number of
nets used to implement only the network links and network
interfaces. The counting of nets is done by using the Xilinx
FPGA Editor, which allows the user to filter out net names.
The number of nets attributed to the network is found by
counting the number of nets related to all the network inter-
face modules in the design. This includes all nets that are
used in the network interface module as well as the nets in
the network topology itself. Including the nets in the net-
work interface module is reasonable because more complex
topologies use more complex network interfaces that also
consume FPGA routing resources.

4.1 Results
Figure 3 shows a histogram of the number of LUTs needed

to implement the complete systems, including the MicroB-
laze, FSLs, memory interface controllers, switches, UART,
and OPB bus. As expected, the system with the fully-
connected network has the highest logic utilization, and as
the system size increases, the difference with respect to the
other topologies gets more pronounced because of the O(n2)
growth in size. The difference is most significant with the
32-node system, which requires over twice the logic of the
other systems. For the other topologies, the maximum dif-
ference in LUT usage amongst the topologies at the same
node size ranges from about 5% in the 8-node systems to
about 11% in the 32-node systems.

A more detailed view of the logic resources can be seen
in Table 2. The Logic Utiliz. column is the total number of
LUTs used for each design and these are the values shown in
Figure 3. Since the ring has the simplest routing topology,
it is used as the baseline for comparisons with the rest of
the topologies.

Column Logic Incr. shows the increase in the number of
LUTs for each topology relative to the ring topology. For
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Figure 3: Logic utilization of systems

Table 2: Logic and register resources used by each
system

Topology Nodes Logic Logic Logic Total Reg. Reg.
Utiliz. Incr.Ovrhd. Reg. Incr.Ovrhd.
(LUTs) (%) (%) (%) (%)

ring 8 10197 0.0 8.7 2637 0.0 11.2
star 8 10393 1.9 10.8 2642 0.2 11.6
mesh 8 10470 2.7 10.7 2641 0.2 11.4
hypercube 8 10701 4.9 12.6 2645 0.3 11.5
fully con. 8 12376 21.4 22.3 2762 4.7 13.9

ring 16 20448 0.00 8.7 5186 0.0 11.4
star 16 20936 2.4 9.6 5190 0.1 11.8
mesh 16 21360 4.5 12.6 5202 0.3 11.7
hypercube 16 22272 8.9 16.2 5218 0.6 12.0
fully con. 16 30176 47.6 38.1 5490 5.9 16.3

ring 32 40648 0.00 8.7 10209 0.0 11.6
star 32 41880 3.0 9.0 10214 0.1 11.9
mesh 32 42936 5.6 13.6 10250 0.4 11.9
hypercube 32 45104 11.0 17.9 10306 0.9 12.4
fully con. 32 87760 115.9 57.8 11330 11.0 20.3

example, the fully-connected topology requires 21.4% more
LUTs than the ring for the 8-node system. In contrast, the
Logic Ovrhd column shows the number of LUTs used for the
network interfaces as a fraction of the total LUTs required
for the complete system. It is calculated as (total number of
LUTs for network interfaces)/(Total LUTs in the system).
As expected, the ring topology has the lowest overhead for
all node sizes and the fully-connected system overhead in-
creases very quickly as the number of nodes increases.

Table 2 also shows the corresponding results for the reg-
ister (flip flop) utilization of the various topologies. The
trends mimic the logic utilization data, but the variation
is smaller because the number of registers in the network
interface module is small.

The routing resource usage of each system is presented in
Table 3. The Routing Utiliz. column is the total number
of nets used in the design. In general, the routing resource
utilization follows a similar pattern to the logic resource uti-
lization across the systems. The fully-connected system re-
quires the most nets, as expected. It should also be noted
that the 32-node, fully-connected topology design could be
placed but not completely routed, leaving 56 unrouted nets.

Column Routing Incr. presents the difference in routing



resources relative to the ring topology. It can be seen that
the greatest increase in routing for the ring, star, mesh and
hypercube topologies occurs for the 32-node hypercube sys-
tem with only a 10.6% increase relative to the 32-node ring
system. This reflects the O(n log n) link complexity of the
hypercube as compared to the O(n) link complexity for the
ring, star, and mesh topologies.

The Routing Ovrhd column is calculated as the total num-
ber of nets for all the network interfaces divided by the total
number of nets in the entire system. A visual representa-
tion of how each network topology contributes to the global
number of nets can be seen in Figure 4. From this figure it
can be seen that the ring topology overhead is practically
independent of the system size at about 6% of the total
nets for the 8, 16 and 32-node systems. The star and mesh
topologies increase slowly to a maximum of about 11% of
the total nets for the 32-node system. The hypercube adds
about 15% overhead to the global routing in the 32-node
system. The fully-connected topology starts at 20% over-
head for an 8-node system, and grows to around 55% of
the total routing for the 32-node topology, which actually
fails to completely route. The other topologies have much
lower routing overhead and will likely be able to expand to
64-node systems, assuming large enough chips exist.
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Figure 4: Topology impact on global routing

The place and route time data varies considerably because
of how the place and route algorithms work and factors that
impact the workstation performance. For the ring, star,
mesh and hypercube topologies, the average times to place
and route are approximately the same for a fixed number of
nodes.

For the 8, 16 and 32-node systems the average times are
12 min., 30 min. and 4 hours 48 min., respectively. The
fully-connected topology exhibits an exponentially growing
time of 15 min. for the 8-node system, 12 hours for the 16-
node system, and remained unroutable after 3 days for the
32-node system.

Table 3 also shows the clock frequency (freq.) achieved
for each of the systems. Of the 8 and 16-node systems,
only the fully-connected, 16-node system is not able to meet
the 150 MHz requirement, achieving only 128 MHz. With
the 32-node systems, the target is 133 MHz, but this is not
achieved by the star or the fully-connected network. The
star incurs congestion at the central node, which affects the
timing, and the fully-connected system requires too many
wires. Despite the fact that the placement and routing ef-

Table 3: Routing resources used by each system
TopologyNodesRouting Routing Routing freq. Target

Util. Increase Ovrhd Clock
(nets) (%) (%) (MHz)(MHz)

ring 8 10744 0.0 5.7 150 150
star 8 10956 2.0 7.6 151 150
mesh 8 11021 2.6 7.7 151 150
hyp.cube 8 11256 4.8 9.5 152 150
fully con. 8 13045 21.4 20.4 150 150

ring 16 21501 0.0 5.7 152 150
star 16 22013 2.4 8.0 150 150
mesh 16 22429 4.3 9.6 151 150
hyp.cube 16 23357 8.6 13.1 151 150
fully con. 16 31373 45.9 34.7 128 150

ring 32 42618 0.0 5.8 133 133
star 32 43888 3.0 8.6 100 133
mesh 32 44945 5.5 10.6 132 133
hyp.cube 32 47136 10.6 14.7 133 133
fully con. 32 90016 111.2 54.4 Fail 133

forts were set to high, no time was spent to try and push the
tools to improve the results that did not meet the targets.

5. AREA REQUIREMENTS
For the previous experiments, LUT and flip flop counts

are used as the reference metrics for logic resource utiliza-
tion. However, for this experiment the number of slices is
used to measure area usage. In the Xilinx architecture, each
slice contains two LUTs. A design requires a certain num-
ber of LUTs and flip flops, and depending on how well the
packing algorithm performs, the design will require more or
less slices. Moreover, the place and route tools may not be
able to utilize the two LUTs in every slice because of routing
constraints and timing requirements. The number of slices
better reflects the actual chip area required to implement
the design. Also, the area constraints used by the Xilinx
tools are specified in terms of slices.

For this experiment, the Minimum Area Required is de-
fined as the smallest number of slices needed for the design
to place and route successfully. It is determined by reduc-
ing, or compressing, the area used by the design until just
before it fails to place and route and counting the number
of slices in the compressed region at that point. This gives
a measure of how efficiently the design can use the resources
when the resources are close to being fully utilized, which
models the effect of trying to implement a design on a chip
that is close to full capacity.

The area compression is done using area constraints in
the User Constraints File, i.e., the .ucf file. The constrained
area is described by giving the coordinates of the bottom-
left and top-right slice positions that define a rectangular
area in the FPGA. The origin is fixed to X0Y0 and the
second X coordinate is fixed at the maximum value allowed
by the specific chip, i.e., the width of the FPGA fabric.
The variable is the second Y coordinate. Decreasing the Y
coordinate compresses the area available for the design and
an iterative process of changing this coordinate is used to
find the Minimum Area Required.

We define Area Utilization as the ratio of the number of
slices actually used by the design to the total number of



Table 4: Area utilization for the 8-node systems us-
ing different chips
Topology XC2V2000 XC4VLX25 XC4VLX40

Min. Area Area Min. Area Area Min. Area Area
Req’d Utiliz. Req’d Utiliz. Req’d Utiliz.
(slices) (%) (slices) (%) (slices) (%)

ring 5376 92.5 9352 62.1 8208 70.7
star 5568 90.8 8736 67.5 8640 68.2
mesh 5376 94.4 9240 64.0 8280 73.5

hypercube 6336 81.9 8568 70.4 8280 72.9
fully con. 6528 92.5 9688 71.2 8208 84.1

Average 5836 90.4 9116 67.0 8323 73.9

slices in the area available to the design. The ideal area
utilization is to use 100% of the slices available to the design.

In this experiment, the 8-node systems using the five topolo-
gies are compared using three different chips. This experi-
ment also requires a time-intensive, iterative search to find
the Minimum Area Required so the 16 and 32-node systems
are not studied.

The fact that the MicroBlaze soft processor needs inter-
nal memory (BRAM) to store the code and data required
a slight modification to our methodology. BRAMs are hard
core macros that have fixed positions within the FPGA
fabric, and they are organized as blocks of 18 Kbits each,
distributed along different columns in the array. A prob-
lem may arise if the restricted area does not have enough
BRAMs for the design. In that case, the map program will
issue an error about the lack of resources or resources be-
ing over mapped. For that reason, the BRAM blocks are
not constrained in our methodology. This implies that nets
connected to the BRAMs may be outside of the restricted
area. However, each MicroBlaze uses only 8 KB of BRAM,
which is only four BRAM blocks. In all of the designs, the
number of BRAMs outside the restricted area is small and
the number of nets involved are not significant compared to
the total number of nets in the design.

To ensure that the resulting maximum clock frequency
is realistic, the timing requirement is set to 150 MHz, but
a successful place and route in this experiment does not
require that timing be met, only that it comes within about
20 MHz to ensure a respectable clock speed. The important
requirement is that there are sufficient resources to complete
a place and route. All of the Virtex 4 designs are able to
achieve 150 MHz using high effort. The Virtex 2 device,
being in a slower technology only has to meet 133 MHz as
the timing constraint. The speeds achieved are 133 MHz for
the ring, star and hypercube, 125 MHz for the mesh and
117 MHz for the fully interconnected system. These results
are also achieved using high effort.

5.1 Results
Table 4 shows the minimum number of slices required

Min. Area Req’d and the area utilization Area Utiliz. for
the 8-node systems. Observe that a higher area utilization
can be achieved in the Virtex 2 chip compared to the Virtex
4 chips and the XC4VLX40 achieves slightly higher utiliza-
tion than the XC4VLX25.

Within the same chip, the fully-connected topology achieves
equal or higher area utilization ratios than the rest of the
topologies, even if the other topologies require fewer re-

sources than the fully-connected one. This occurs because
the fully-connected has more logic to place in the empty
spaces caused by MicroBlaze macros that have holes of un-
used slices in them due to the use of relational placement di-
rectives. These directives force certain parts of the logic into
fixed relative positions, which results in unused slices within
the bounds of the macro. In this case, the fully-connected
topology can make more effective use of the empty spaces
because it has more logic to place.

Table 4 also shows that the average Min. Area Req’d slices
varies quite significantly across the different chips. A part
of the explanation is due to an architectural change to the
Configurable Logic Block (CLB) between the Virtex 2 and
the Virtex 4 families. The effect of the change is that the
implementation of the Microblaze in Virtex 4 uses 160 more
LUTs than in a Virtex 2. This difference explains almost
all of the differences in LUT requirements between the two
FPGA families, which accounts for part of the difference in
slice counts. The other important reason for the differences
in area required arises because of the relative width of the
MicroBlaze macro to the width of the FPGA fabric. For
the same amount of logic, Virtex 2’s fabric is wider than
Virtex 4’s fabric.

6. MAXIMUM FREQUENCY
The goal of this experiment is to determine the maxi-

mum frequency achievable by the different topologies. This
is done by using the Xilinx Xplorer utility, which is a Perl
script that runs the map, and place and route tools up to
six times. Each run uses a different combination of com-
mand line options that enable the tools to try various com-
binations of optimizations to meet the timing constraints.
These options set the mapping effort level to high, place
and route effort levels to high, try different seeds, enable
timing-driven packing, global optimizations, register dupli-
cation and alternative algorithms for the mapping tool. The
specified frequency is 180 MHz because it is the frequency
at which the MicroBlaze synthesizes, being the slowest IP
block in the system.

The fastest Speed Grade available for each chip is used.
The XC4VLX200 is the largest part and it has a maximum
speed grade of 11, which is not as fast as what is available
for the other chips we use. The method for finding the max-
imum frequency is an iterative process and it takes a great
amount of time to map, place and route all of the systems.
Instead, the full set of 16-node systems in combination with
one example from each of the 8 and 32-node systems are
selected for this study. The fully-connected, 8-node network
is chosen because it is the most challenging of the 8-node
systems. The remaining 8-node networks should be easier
than the corresponding 16-node networks. The 32-node ring
system is selected because it is the easiest topology of the
set of 32-node networks.

6.1 Results
Table 5 shows the results of executing the Xilinx Xplorer

utility. The maximum frequency achieved is shown in Col-
umn Max Freq.. The 8-node, fully-connected system fails to
meet the 180 MHz constraint. An examination of the longest
critical paths shows that 88% of the delay is attributed to
routing delay suggesting that routing is the main factor for
not meeting timing.

Most of the 16-node systems meet the target frequency



Table 5: Results from running Xilinx Xplorer
Topology Nodes Max Speed Best Total

Freq. Grade Run Runs
(MHz)

fully con. 8 170 12 2 6

ring 16 180 12 1 1
star 16 180 12 4 4
mesh 16 180 12 2 2
hypercube 16 180 12 2 2
fully con. 16 126 12 5 6

ring 32 123 11 5 6

of 180 MHz. Only the 16-node, fully-connected system is
unable to meet the timing constraints. Examination of the
timing report shows that for the longest critical paths, 72%
of the delay is due to routing.

Interestingly, the 32-node ring is able to achieve 133 MHz
in the previous experiments with about 50% of the critical
path delay in the routing, but when the constraint is changed
to 180 MHz only 123 MHz is achieved, with 72% of the
critical path delay being in routing.

The Best Run is the iteration number in which the maxi-
mum frequency is obtained. The column Total Runs shows
the total number of iterations for which the script invoked
the map, place and route tools. The maximum value is 6,
but it is less if the timing constraint is met in fewer itera-
tions. In the case of the ring with 16 nodes, the topology is so
simple that the maximum frequency is achieved by the first
run. The star needed more runs indicating the tools have
to work harder due to the congestion around the central
node. Adding a few more nodes to the star will likely cause
it to fail to meet the 180 MHz target. The fully-connected
system requires six runs and still cannot meet the timing
constraint, getting the best result in iteration number 5. A
similar situation happens with the 32-node ring system.

The size of the MicroBlaze macros dictates the overall
placement and will not change significantly for the different
topologies. The fact that some topologies can meet timing
and others fail means that placement of the nodes of the net-
work is not the important factor for failing to meet timing.
The only other factor would be the routing. In this experi-
ment, it is observed that routing delay is the major compo-
nent of the critical paths of the star and the fully-connected
topologies, which is indicative of routing being the prob-
lem. From what we know about the star and fully-connected
topologies, routing congestion becomes the problem for large
node sizes, which supports the observation of routing delay
being the major component of the critical paths.

7. A COST METRIC
We identify two types of factors that influence a topology

selection: performance factors and implementation factors.
The performance factors are: network latency and band-
width. In an FPGA, the implementation factors are: area,
logic and routing resources. In order to analyze possible in-
teresting trends, we used the following cost metric (CM ) to
minimize:

CM = k1AN + k2LN + k3RN + k4TN + k5DN

−k6(Bw ×W × freq)N (1)

Figure 5: Cost metric trends

where AN is the area in terms of number of slices used only
by the network interfaces. LN is the number of LUTs occu-
pied by network devices. It is computed as Logic Utiliz.×
Logic Ovrhd from table 2. Similarly, RN is the number of
nets required by each topology is computed as Routing Util.×
Routing Ovrhd from table 3. The TN is the place and route
time for each system. Diameter is the network diameter
computed using the appropriate expression in Table 1. Re-
call that a small diameter indicates fewer links need to be
traversed in the worst case, which means lower network la-
tency.

In this paper we are not dealing with a particular pro-
tocol or particular network interface architecture; therefore,
we define latency in terms of the diameter and we are not
considering switch delay or initialization time delay to ac-
count for the total latency. Bw is the bisection width from
table 1. W is the channel width (64 bits) and freq is the
system frequency as reported in table 3. Assuming a single
clock cycle per data word transmission, then the product
BwWfreq represents bisection bandwidth which is defined
as the bisection width times the bit rate. The subscript N
in each of the attributes in equation 1 means that the data
was normilized to prevent conflict with the different scale
units. The constants k1,2,..6 are weighs assigned according
to the importance of each factor. The actual values of the
constants depend on the application or restrictions in the
design.

Figure 5 shows a plot of the cost metric for the studied
topologies assuming that all the factors are equally impor-
tant, i.e., k1,2..6 = 1.

We can see that the ring topology is good for 8 nodes be-
cause of its relatively low diameter and its easy implemen-
tation; however, the cost will increase consistently as the
number of nodes grows because of a longer network latency
and the bisection bandwidth does not scale well. The star
network shows the opposite behavior. At 8 nodes the con-
gestion surpasses the performance and its cost is high, but
as we increase the number of nodes to 16, the diameter=1
keeps the latency constant and consequently the cost is low.
Nevertheless, for 32 nodes the star will not improve because
the congestion is such that higher frequencies can not be
achieved reducing the bisection bandwidth and therefore the
performance decreases. On the other hand, the Mesh and
Hypercube have both similar costs and they are constantly
reduced as the number of nodes increases. This trend shows
that these topologies scale well in routing and logic while
keeping a good performance. The fully-connected topol-



ogy is the most expensive topology under the assumption
of equally important performance and implementation fac-
tors, because the routing, logic and area required undermine
its performance. However, if the weighs were set such that
privilege the performance, then it would have a lower cost
than some of the topologies despite its complexity (this case
is not shown in figure 5). Since the fully-connected could
not route, we do not have a metric for 32 nodes.

8. CONCLUSIONS
In ASICs, only the required routing is provided so it is

important to make the correct tradeoffs between commu-
nication requirements for the application and the routing
requirements of the interconnect topology. FPGAs have a
rich routing fabric and the wires are there to use or not.
This work has shown that the ring, star, mesh and hyper-
cube topologies can all be routed on a modern FPGA. Even
a fully-connected topology can work for small numbers of
nodes, which suggests that for small networks, it is not as
important to worry about routing considerations when pick-
ing the network topology for an NoC on an FPGA. As the
number of nodes grows larger, the star and fully-connected
topologies are the first to have difficulties because of routing
congestion. Even with 16 nodes, it is still feasible to imple-
ment these topologies but the routing congestion makes it
more difficult to achieve higher clock frequencies. At 32
nodes, the fully-connected topology fails to route, with 56
nets unrouted. This small number of unrouted nets suggests
that the system routing requirements are at approximately
the limits of the device capacity. To do better, the rout-
ing capacity of the device would have to be increased. A
cost metric has been developed that estimates the impact of
these topologies for even larger system sizes. It shows that
the hypercube topology can be used to build even larger
systems if the current FPGA array is simply expanded.

This work is focused on how well a modern FPGA rout-
ing fabric can support several selected network topologies.
It would be useful to try other topologies. Also, another
important concern for current designs is power, which is not
considered in this work.
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