
Predicting the Performance of Application-Specific
NoCs Implemented on FPGAs

Jason Lee and Lesley Shannon
Simon Fraser University
Burnaby, BC, Canada

{leeaj,lshannon}@sfu.ca

ABSTRACT
Modern FPGAs are able to implement complex systems such as
Systems-on-Chips (SoCs) and Networks-on-Chips (NoCs).
Appropriate NoC topology choices for ASICs have been
investigated and typically topologies that can be easily mapped to a
two-dimensional fabric are used to reduce chip area and ensure
electrical characteristics. However, for FPGAs, each device's size
and routing fabric are fixed. Since these resources exist
independent of use, the choice of topology is only limited by the
performance of the NoC itself. In this work, we investigate how
topology characteristics impact a NoC's performance on an FPGA.
From this analysis, we have created an analytical model that
describes the maximum operating frequency of a NoC as a
function of the topology's network parameters. This model is in the
form of a simple equation that is accurate to within 4.68% across a
range of topologies, chip sizes, and device families. It
demonstrates how an FPGA's prefabricated routing interconnect
provides increased freedom in the selection of application-specific
topologies. Furthermore, it can also be used by designers for
topology design space exploration before implementation.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids; C.2.1 [Computer-Communication Networks]
Network Architecture and Design – Network Topology.

General Terms
Measurement, Performance, Design, Experimentation, Theory,
Verification.

Keywords
NoCs, FPGAs, Performance, Topologies, Routability, Application-
Specific, Homogeneous, Heterogeneous.

1. INTRODUCTION
As the logic capacity of modern Field-Programmable Gate Arrays
(FPGA) increases, they are used to implement much more complex
systems than ever before. These complex systems often take the
form of a System-on-Chip (SoC) in which individual blocks, or
nodes, are connected using a Network-on-Chip (NoC). Although a
shared bus may be appropriate for simple systems [1,2], this
communication infrastructure does not scale well for very complex
systems. As the number of potential bus masters and slaves

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02...$10.00.

increases, the shared bus may suffer from increased bus
contention, slowing down throughput and limiting bandwidth.
Thus, more complex communication networks are becoming
increasingly attractive for many-node systems.

A NoC is characterized by its topology, which defines the
connectivity pattern between nodes [3]. There are many possible
choices of topologies for NoCs; however, Application-Specific
Integrated Circuits (ASICs) typically employ a mesh-style
topology. A mesh topology maps well to an ASIC’s two-
dimensional implementation platform, providing control over the
network's electrical characteristics [4, 5]. More complex networks,
including star and hypercube topologies, implemented on an ASIC
lead to increased chip area and an increasingly difficult routing
task as the number of nodes grow.

Previous work has shown, however, that when implemented on an
FPGA, these more complex networks are feasible [6]. The primary
reason is that modern FPGAs are over-provisioned with routing;
that is, FPGA architects provide significantly more routing than is
needed for the "common case" to ensure a high fitting rate by the
Computer Aided Design (CAD) tools for customer designs. The
work in [6] showed that due to this over-provisioning, more
complex topologies such as the star and hypercube are possible. In
fact, it suggested that in some cases these types of networks may
be preferable to a mesh, since they have better network latency and
bandwidth characteristics, yet can still be implemented easily on a
modern FPGA.

This result implies that designers have the increased freedom to
select more complex topologies when implementing NoCs on
FPGAs as opposed to ASICs. To leverage these findings,
however, a more concrete understanding of the performance of
various network topologies on FPGAs is required. This paper
provides a step in this direction. In particular, this paper provides
an analytical model in the form of a simple equation that describes
the maximum operating frequency (performance) of a NoC as a
function of various network parameters related to the overall
network topology. Such a model is important for two reasons.
Firstly, it quantifies the effects of specific network parameters on
performance, and thereby the suitability of network topologies for
implementation on an FPGA. This is an important first step to
understanding the flexibility and limitations of mapping
application-specific network topologies to an FPGA’s
prefabricated routing interconnect using its commercial tool flow.
Secondly, it provides guidance to a designer during early design
space exploration, when a suitable network topology is being
chosen. To provide concrete results, we calibrated our model for
the Xilinx Virtex 2 Pro, Virtex 4, and Virtex 5 FPGA device
families. We then verified it with over 2000 different sets of
experiments for these device families, along with Xilinx’s newest
Virtex 6 FPGA device family. Across the range of topologies
represented by these experiments, we found that the accuracy of

23

the operating frequency predicted using the model has a geometric
mean error of 4.68%.

The remainder of the paper is structured as follows. Section 2
provides background on previous NoC work, Section 3 describes
our proposed analytical framework, and Section 4 explains our
experimental environment. Section 5 illustrates our experimental
results, Section 6 describes the performance predictor we
developed, and Section 7 verifies this predictor. Finally, Section 8
concludes the paper and comments on future work.

2. BACKGROUND
While little has been done to characterize the routability and
performance of NoC architectures on FPGAs, there has been
research investigating the use of FPGAs for NoCs [7] and
appropriate switch architectures. Kapre investigated a high-
performance packet-switched on-chip network on FPGAs [8];
Mehta explored well engineered, highly scalable time-multiplexed
FPGA networks [9]. These studies provided a measure of
performance for two types of network interfaces measured on the
Xilinx XC2V4000 and focused on selecting appropriate switch
architectures. When used in conjunction with our work, selecting
appropriate switch architectures could improve the overall
throughput of a NoC topology.

In addition, Mak et al. performed a survey of on-chip architectures
including different NoC topologies. The paper identified that due
to the unique requirements of different applications, there exists a
problem of searching for optimal communication architectures
from a huge design space since choices are often performed ad-
hoc. Our work takes a step in this direction providing a method of
predicting the performance of NoCs to enable easier design space
exploration.

Possible architectural changes to an FPGA’s routing fabric have
also been investigated to better support NoCs. Francis et al.
demonstrated that fine-grain, time-division-multiplexed wiring
outperforms conventional wiring for networks on FPGAs [10].
Goossens et al. proposed a dedicated NoC interconnect fabric [11].
These hardwired NoC fabrics show improved performance,
however, reduce the amount of configurable logic. Whereas these
investigations propose possible changes to FPGA architecture to
support NoCs, our objective is to understand how the existing
interconnect fabric and CAD tools constrain NoC performance on
commercial FPGAs.

To fully exploit FPGA resources, complex CAD algorithms are
used to place and route NoCs on FPGAs. Research has been done
to create automated design flows that generate NoCs for FPGAs.
Kumar et al. developed an automated design flow to instantiate
Multi-Processor Systems on Chip (MPSoC), with a NoC
communication scheme [12] similar to the work done in [6]. The
design flow provides a high level of abstraction, reducing the
design time needed for these types of systems. A framework based
on Xilinx Embedded Development Kit (EDK) is also presented by
Lukovix et al. [12]. In our research, we employed an updated
verson of the tool flow in [6] to automatically generate the wide
variety of NoC systems required for this investigation. Our
experimental setup and CAD flow are described in the following
section.

The most closely related work to our current investigation includes
a preliminary study that suggested the routability and performance
of homogeneous multiprocessor NoCs displayed different

characteristics on FPGAs than ASICs [6]. A study determining
that the heterogeneity of network nodes did not impact NoC
performance followed [14]. The remainder of this paper
investigates the effect of a topology’s routing demand on NoC
performance.

3. PROPOSED ANALYTICAL
FRAMEWORK
The objective of this work is to create an analytical model that
describes the maximum operating frequency of a NoC. Our
overall approach is as follows. We arbitrarily chose a 8-node ring
topology with a 32-bit link-width as a baseline architecture, and
denote the maximum frequency of this baseline architecture
implemented on a given FPGA as Fbase. For different NoC
architectures, we then scale Fbase using two factors:

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 [1]

where the terms kLRD and kGRD are functions of the NoC topology,
the link width, and the number of nodes in the NoC.

The first scaling factor in the above equation, kLRD, models the
impact of local routing demand. Local routing demand is defined
by the routing requirements of a single network node. Topologies
with a high average node degree and larger link widths will have
more congestion around their network interfaces. The CAD tools
resolve this congestion by either using non-direct routes, or by
spreading out the logic related to those nodes with high node
degree. The impact is a decrease in the maximum frequency of the
network; the magnitude of this decrease will be encapsulated in
kLRD.

The second scaling factor in the above equation, kGRD, models the
impact of global routing demand. Global routing demand is
characterized by the routing requirements of the entire NoC.
Topologies that have a high average node degree will have more
links in the overall topology. This is more pronounced as the
number of nodes in the network increases. As the number of links
increases, the difficulty in routing these connections increases,
again leading to a reduction in the maximum frequency of the
network. The magnitude of this decrease will be encapsulated in
kGRD.

The remainder of this paper aims to derive closed-form
expressions for kLRD and kGRD using analytical methods, and
empirical curve-fitting for the coefficients. As explained, both
global and local routing demand can be encapsulated using three
properties: average node degree, link width, and number of nodes.
The following sections analyze these properties to derive our
analytical model. In Section 5, we describe a number of
experimental investigations that justify our analytical approach. In
Section 6, we then derive the equations, and use an additional set
of experiments to calibrate the model to Xilinx Virtex 2 Pro, Virtex
4, Virtex 5, and Virtex 6 devices using a curve fitting approach.
The accuracy of the tuned model for these devices is then
measured in Section 7.

4. EXPERIMENTAL ENVIRONMENT
As explained in the previous section, the form of the equations will
be derived analytically. We will use experimentation, however, for
three purposes. First, in Section 5, we will use experiments to
justify our overall approach in deriving our analytical model.
Second, in Section 6, we will use experimental results to calibrate

24

Figure 1. System generations tool flow

a b c

d e f

Figure 2. NoC topologies: (a) ring, (b) mesh, (c) star, (d) fully,
(e) torus, and (f) hypercube

Network
Interface
(Network
Switch)

Computing
Node

 Output FIFO

Input FIFO

Topology
Communication

Links

Figure 3. Network node

Multiplier
Node

Multiplier
(n) Input FIFO

Output FIFO
Result

Multiplicand
Figure 4. Scalable multiplier computing node

the coefficients for our model. Finally, in Section 7, we use a
separate set of experiments to evaluate the accuracy of the model.
In this section, we describe the methodology used in these three
sets of experiments.

4.1 Benchmark Circuits
In our experiments, we utilize a large set of benchmark circuits
using an automated generator. The generator supports six different
network topologies and several different node sizes. The use of
such a generator allows us to run many more experiments than
would be possible using "real" benchmark circuits; this, in turn,
allows us to isolate the impact of each NoC parameter on the
overall performance of the system.

Figure 1 shows the tool flow used to generate the benchmark
circuits1

1 The topology generator and system generator tools are available

for download from:
http://www.ensc.sfu.ca/~lshannon/students.html

. The topology generator outputs a description file that
defines the connectivity between each network node based on a
given set of input parameters. The system generator parses the

topology description file and produces the necessary system files,
which include the Verilog files that describe the NoC and the CAD
flow constraints. These system files are then used by the FPGA
CAD flow to generate the final NoC implementation on the FPGA.
The system and topology generators are capable of producing
NoCs based on a set of configurable parameters, including:

- Number of Nodes: the number of nodes in the overall system
- NoC Type: heterogeneous or homogeneous
- Node Degree: the number of links to a given node
- Topology type: ring, mesh, star, fully-connected, torus,
hypercube (shown in Figure 2), or application-specific
topologies (represented by randomly generated topologies).
- Average Node Degree: the average number of links to each
node in a topology
- Link-width: the width of the point-to-point links in terms of #
of bits

While it is possible to optimize our NoC benchmark circuits for
performance (e.g. pipelining the topology communication links),
our analysis was solely focused on looking at wire length delay.
We do not make any attempts at improving NoC performance
through architectural or topological changes.

4.2 Network Nodes
Figure 3 illustrates the structure of the network node used in our
experiments. Each node consists of a computing element, two
synchronous 16-word deep FIFOs, and a network interface. The
network interface is connected to other nodes through the topology
communication links. Since we are interested in the performance
achieved by the CAD flow’s ability to leverage the over-
provisioned routing resources to implement the links that define
the NoC topology, and not the NoC’s performance in terms of
bandwidth and throughput, we use a lightweight network switch.
Our network switch is a simple packet switch that broadcasts an
address control packet to all its linked neighbors. A receiving
switch only reads the control packet and subsequent packets if the
address matches its own and otherwise ignores them. Due to their
simplicity, these switches are not capable of multi-hop
communication and are only capable of sending to and receiving
from their directly connected neighbors. In order to completely
isolate the performance of the network node from the topology
communication links, the output from the network interface is
latched.

Each computing node consists of a multiplier, as shown in Figure
4. The multiplier consists of two-bit partial-products pipelined into
stages. Actual implementations would contain more complex
computing nodes, such as the previously used MicroBlaze soft
processor [7]. However, using such a computing node in this study
would complicate our characterization of performance degradation
due to the CAD flow’s mapping of the topology links to the
routing fabric. If a MicroBlaze were used as the compute node,
then in small NoC systems, the critical path would be in the node
itself, and not in the network links. Since we wish to focus
specifically on the network connectivity in this study, this is not
desirable. In addition, designs employing a MicroBlaze would not
be portable to non-Xilinx FPGAs.

Another advantage of using a multiplier is that the size of the
computing node can be adjusted, allowing us to experiment with
different link widths, and topologies with varied network node
sizes. As shown in Figure 4, the multiplicand of the multiplier
node is equal to the link’s width, and the multiplier is equal the

Topology
Generator

Topology
Description

File

System
Generator

System
Files

Input
Parameters

25

lower n bits of the result. We consider both homogeneous and
heterogeneous NoC types; in a homogenous network, all nodes are
of the same size, while in a heterogeneous network, different node
sizes exist. As the multiplicand always remains fixed to the link’s
width, the multiplier (n) is varied to scale the resource usage.
Table 1 lists the multiplier sizes used in our homogeneous
experiments. Mult is defined as the width (n-bits) of the multiplier,
and Link Width is the multiplicand width. We used five different
link widths, with three different multiplier widths for each link-
width. The baseline multiplier Mult_Base was chosen to have
approximately the same resource usage as a MicroBlaze on a
Virtex 5. Mult_Half is approximately half the size, and
Mult_Double approximately twice the size. As the link width
changes, the multiplier width also needs to be adjusted to maintain
approximately constant resource usage for the computing node.
The percent variation in resource usage for each node type is
7.12% with a standard deviation of 3.2%.

To generate heterogeneous NoCs, we kept the link width
(multiplicand) fixed for the design and varied the network node
size by scaling the multiplier width. We use three types of
heterogeneous NoCs (mult_small, mult_full, and mult_large)
generated using a range of multiplier node sizes defined by a
minimum and maximum multiplier width. The size of each
multiplier node in a heterogeneous topology is chosen at random,
and uniformly distributed across the range of multiplier widths
defined by the heterogeneous NoC type and fixed link width. Table
2 lists the range of sizes used in our heterogeneous experiments for
varied link widths.

4.3 Experimental Methodology
To tune our model parameters, we first ran training experiments
using Xilinx EDK 10.1.02 with the Virtex 2 Pro, Virtex 4, and
Virtex 5 FPGAs listed in Table 3. Using these experiments, we
extrapolated coefficients for the equations in our analytical model
explained in Section 6. In order to evaluate the accuracy of our
model, we used the Virtex 4, Virtex 5, and Virtex 6 FPGAs listed
in Table 3, with EDK 11.2. Although we ran ~2400 training
experiments for each device, the results shown in this paper will
focus primarily on the Virtex 5 LX330 due to space limitations.
However, when normalized to account for the performance
improvements due to new device family technology, we previously
found that the results among different families only varied by 3.5%
and among devices within a family varied by 4.2% [6]. In order to
obtain accurate results, each design is synthesized multiple times.
Initially, we ran experiments using the Xilinx Xplorer utility,
which synthesizes designs using known place and route parameters
to provide the best results. However, we found that the utility
resulted in extremely long run times (on the order of 5-7 days) for
each experiment. Therefore, we only used the utility to form a
baseline of comparison for the remaining experiments.

Rather than using the Xplorer utility, we are able to approximate
Xplorer’s process by synthesizing designs multiple times using
different seeds, with the maximum operating frequency averaged
over each run. The number of iterations is determined by repeating
iterations until at least five iterations are run and the change in the
average result over all runs is less than 5%. When the results did
not converge (which occurred in less than 8% of our experiments),
we set an upper bound on the experiments to ten iterations. This
method had an average variation of 2.1% to the Xilinx Xplorer
utility. A design is deemed unroutable if the design would not
route for at least eight out of the ten iterations.

Table 1: Homogeneous multiplier sizes
Link

Width
uBlaze Mult_Half Mult_Base Mult_Double
LUTs Mult LUTs Mult LUTs Mult LUTs

48 2 347 4 658 6 1312
40 2 396 4 703 6 1487
32 629 4 371 6 694 8 1429
24 6 328 9 652 12 1393
16 8 311 12 614 16 1374

Table 2: Heterogeneous multiplier size ranges

Width Mult_Small Mult_Full Mult_Large
Range of Mults Range of Mults Range of Mults

48 2,4 2,4,6,8 4,6,8
40 2,4 2,4,6,8 4,6,8
32 2,4,6 2,4,6,8,10 6,8,10
24 4,6,8 4,6,8,10,12,14 10,12,14
16 6,8,10 8,10,12,14,16 12,14,16

Table 3: FPGA devices

Family Devices
Xilinx – Virtex 2 Pro XC2VP100-6

Xilinx – Virtex 4 XC4VLX200-11
XC4VLX160-11
XC4VLX100-11

Xilinx – Virtex 5 XC5VLX330-2
XC5VLX220-2
XC5VLX155-2
XC5VLX110-2

Xilinx – Virtex 6 XC6LX240T-2
XC6LX350T-2

5. GENERAL NOC PERFORMANCE
TRENDS ON FPGAS
Before experimentally deriving the specific constants to calibrate
our model to the Xilinx device families, we present the general
performance trends exhibited by specific NoC topologies that
strain local and global routing demand on FPGAs. As previously
stated, we use the results from the Virtex 5 LX330 to highlight
these key trends (unless otherwise specified), as it has similar
trends to all the devices listed in Table 3.

5.1 Previous Research
Previous work showed that homogeneous multiprocessor
networks-on-chip exhibited different characteristics on FPGAs
when compared to ASICs [6]. This was extended to show that: 1)
the number of nodes is more important than node size or node
heterogeneity; 2) varying the node size does not impact
performance as long as the node is not the critical path; 3) topology
has a greater effect on performance than resource usage; and 4)
resource usage only becomes significant as it approaches 80%
where larger NoCs consistently fail to route [7]. In this paper, these
results are incorporated into the expressions of kLRD and kGRD in
terms of the NoC’s number of nodes (N) and topology.

5.2 Local Routing Demand
As described in Section 3, the local routing demand factor (kLRD)
characterizes the impact of the routing requirements of a single
network node. These routing requirements are related to the total
number of wires connecting the node’s network interface to the
communication network. The total number of wires is dependent

26

on both the node degree (ND) and link width (LW) of the network.
In this section, we illustrate the effects of local routing demand on
performance by isolating the effects due to node degree and link
width. We use the star topology with a fixed 32 bit link width to
demonstrate the effect of node degree on a single node; a star
topology’s central node has 𝑁𝑁𝑁𝑁 = 𝑁𝑁 − 1, while for all other
nodes 𝑁𝑁𝑁𝑁 = 1. Figure 5 shows the performance of the star
topology using our three homogeneous and three heterogeneous
NoCs. As previously stated, the node size for our heterogeneous
star topologies are generated at random. Therefore, we do not look
at specific heterogeneous cases such as only increasing the size of
the central node.

As the graph shows, although the central node in a star has an
extremely high node degree, very large star topologies are routable
as long as there are sufficient resources for the overall system. As
the number of nodes increases, more links are added to the central
node. This increases the network interface’s connectivity, causing
the CAD tools to distribute the network interface across the FPGA
fabric to enable multiple links to be routed to the central node (this
was verified by analysing various star topology sizes using FPGA
Editor). As the network interface spreads out, longer wires are used
to successfully route the design causing a severe degradation in
performance as shown in Figure 5.

The numeric labels in Figure 5 indicate the logic resource usage of
the FPGA for 80, 96, and 112-node systems. The labels shown
above the performance line are for mult_small NoCs and those
below the line represent mult_large NoCs. Although there is a
large difference in resource usage, the overall performance is
roughly the same for all heterogeneous systems considered. This
suggests that the resource usage does not have a significant impact
on performance until routability fails at >80% resource usage,
which is consistent with the results from our previous work [7].
Since resource usage does not impact performance, the loss in
performance is primarily a function of how well the tools manage
the wiring demand of the central node. The tools attempt to limit
congestion by distributing the network interface of the central
node. As a result, the node degree has a significant impact on the
topology’s performance. However, due to the availability of global
routing resources, this degradation eventually flattens out when the
network interface is spread over almost the entire FPGA (~64
nodes on the Virtex 5 LX330) and larger star topologies will
continue to be routable with constant performance, as long as there
are sufficient logic resources.

To demonstrate the effect of varying link width on local routing
demand for a fixed node degree over an increasing number of
nodes, we use the ring and torus topologies. As seen in Figure 6,
increasing the link width has a linear impact on performance due to
the increase in the number of wires required to connect two
network nodes to each other. Each line in Figure 6 illustrates the
average performance of our three heterogeneous and three
homogeneous ring and torus topologies from 8 to 128-nodes for a
fixed link width of 16, 24, or 32 bits. The dotted lines represent the
torus topologies, and the solid lines are the ring topologies. As can
be seen in Figure 6, generally each line is monotonically
decreasing except for a few cases. This can be attributed to the
CAD flow, as the CAD algorithms are random, and there still
exists a certain amount of unpredictability in performance. This
can also be seen in the following sections, but with our exhaustive
experiments, small variations can be affectively “averaged” out
over a large exploration space.

Figure 5: Star topology performance on Virtex 5 LX330

Figure 6: Varying link widths on Virtex 5 LX330

As seen in Figure 6, as link width decreases, performance increases
for both the ring and torus topology. For the ring topology,
decreasing the link width from 32 to 24 bits resulted in an 8.1%
performance increase, while a change from 32 to 16 bits resulted in
a 14.2% increase. The torus topology exhibited slightly larger
increases; a change in link width from 32 to 24 bits increased
performance by 9.3%, and a change from 32 to 16 bits increased
performance by 16.8%. As seen in the previous analysis, the node
degree has a significant impact on performance. Therefore, since
each node of the torus topology has twice the node degree of a
ring, decreasing the link width by 8 bits for the torus topology,
results in 2x the reduction in wires (ND*LW) compared to that
same change for the ring topology. This results in link width
having a greater impact on performance for higher node degrees.

Another interesting observation from Figure 6 is that a ring
topology with a 32-bit link width has a lower maximum frequency
than a torus topology with 16-bit link width. Both networks have
the same number of total bits incident to each node, and hence the
local routing demand should be the same. Using FPGA Editor, we
have observed that the tools tend to route the wires in a single link
using the same global route (along the same set of channels).
Thus, networks with larger link widths create a harder routing
problem.

5.3 Global Routing Demand
As described in Section 3, the global routing demand factor (kGRD)
characterizes the impact of the routing requirements of the entire
topology. These routing requirements are related to the total
number of network links in the system. The total number of
network links is equal to the number of nodes in the system (N)
multiplied by the average node degree (AND). To show the effects
of changing the total number of links on performance, we vary
AND and N using the fully connected topology (a regular topology
where 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁 − 1).

0

50

100

150

200

250

8 16 32 48 64 80 96 112 128

M
ax

im
um

 F
re

qu
en

cy

Number of Nodes

homogeneous (mult_half)
homogeneous (mult_base)
homogeneous (mult_double)
heterogeneous (mult_small)
heterogeneous (mult_full)
heterogeneous (mult_large)

100
120
140
160
180
200
220
240
260

8 16 32 48 64 80 96 112 128
M

ax
im

um
 F

re
qu

en
cy

Number of Nodes

ring_16 ring_24 ring_32
torus_16 torus_24 torus_32

79% 68% 56%
44% 38% 31%

27

Figure 7: Fully connected topologies on Virtex 5 LX330

Figure 8: Heterogeneous random topologies on Virtex 5 LX330

Figure 9: Performance of torus topology and random

topologies (AND = 4) on Virtex 5 LX330
Figure 7 shows the performance on a Virtex 5 LX 330 for fully
connected topologies with 32-bit link widths as a function of the
number of nodes. We chose the 32-bit link width systems to allow
comparisons with Figure 5. As a fully connected topology grows in
size, the impact on performance is severe as the total number of
links increase quadratically. As seen in Figure 7, for up to 20
nodes, performance has a rapid linear degradation in performance.
Performance then drops dramatically and flattens out at 24 nodes
before routing eventually fails. As the average node degree
increases up to 24 nodes, the network interface for each node is
distributed to allow the CAD tools to use the available routing
resources (much like the star topology). However, this is a much
more difficult problem than that for a star topology since there are
many more links in a fully connected network. Therefore, the
designs become unroutable before running out of logic resources,
as shown in Figure 7 where the largest fully connected topologies
capable of routing used only ~50% of the logic. Fully connected
topologies with 24 and 16-bit link widths exhibited the same
trends, with a significant performance drop at ~28-30 nodes and
routing failure at 36-40 nodes.

Comparing Figure 5 and Figure 7 reinforces the greater impact of
global routing demand than local routing demand; we see that the
performance of the two topologies varies by only 8.2% up to 20
nodes and then diverges as the star topology’s performance flattens
out and the fully connected topologies performance continues to
decline. This suggests that up to 20 nodes, the CAD tools are able
to leverage the global routing resources to facilitate fully
connected topologies. However, above this point the impact due to
the global routing demand of all nodes outweighs that of the local
routing demand of each node, resulting in rapid performance
decline and routing failure.

Fully connected topologies show that the total number of links has
a significant impact on performance by varying the number of
nodes (N) and average node degree (AND), without isolating the
two variables as they both increase at the same rate. In order to
isolate the effects of average node degree from the number of
nodes, we create and map benchmarks containing random
topologies ranging from 16 to 128 nodes with average node
degrees of 2 to 10. Figure 8 shows the performance results for
heterogeneous NoCs utilizing the mult_full range of node sizes,
where each line represents random topologies with a fixed number
of nodes. The topologies with 16 nodes have the highest
performance, which degrades as the number of nodes increases to
128. For a fixed number of nodes, the performance decreases
almost linearly as the average node degree increases, until routing
fails. The rate of degradation increases as the number of nodes
increases, as shown by the increase in the slope’s magnitude for
each line in Figure 8. This is because for a fixed number of nodes,
0.5N links are added as the average node degree increases by one.
Thus, we expect a greater drop in performance for systems with
more nodes.

Much like the fully connected topology, systems with high average
node degrees failed routing before logic resource usage exceeded
80% total resources. For example, for a 64-node random topology,
the highest average node degree that consistently routed is nine,
using 46% of the logic. 96 and 128-node random topologies are
routable with an average node degree of nine and five respectively,
but only use 66% and 77% of the total resources, respectively. This
is because for high average node degree, the stresses of global
routing demand requirements on the CAD tools for the FPGA
fabric cause routing to fail well before logic utilization approaches
80%.

5.4 Regularity
The previous subsections focused on regular topologies such as the
torus, ring, and fully connected topologies. Many applications
may benefit from an irregular topology which is optimized
specifically for that application. In this section, we demonstrate
these random topologies can also be efficiently implemented on an
FPGA.

Figure 9 illustrates the average performance of a mult_full
heterogeneous torus topology in comparison to six random
topologies with the same number of nodes (N), the same average
node degree (AND), and the same link width (LW). Each line
corresponds to the performance of the torus topology for a fixed
link width and the error bars represent the performance variation
exhibited by the corresponding random topologies. The error bars
show an average variation of 2.3% and a maximum variation of
4.8%. These results suggest that an expression written in terms of
only the number of nodes (N), average node degree (AND), and

0

50

100

150

200

8 12 16 20 24 28 32 36 40

M
ax

im
um

 F
re

qu
en

cy

Number of Nodes

homogeneous (mult_half)
homogeneous (mult_base)
homogeneous (mult_double)
heterogeneous (mult_small)
heterogeneous (mult_full)
heterogeneous (mult_large)

0

50

100

150

200

2 3 4 5 6 7 8 9 10

M
ax

im
um

 F
re

uq
ue

nc
y

Average Node Degree

16 nodes
32 nodes
48 nodes
64 nodes
96 nodes
128 nodes

100
120
140
160
180
200
220
240

8 16 32 48 64 80 96 112 128

M
ax

im
um

 F
re

qu
en

cy

Number of Nodes

32
24
16

53%

50%

45%

66%
46%

77%

28

link width (LW) can apply to irregular application-specific
networks as well as regular networks. The derivation and
calibration of the factors 𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 & 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 , in terms of these variables,
are described in the following section.

6. PERFORMANCE MODEL
In this section, we derive the equations for kGRD & kLRD and tune
the coefficients using experimental curve fitting to predict the
maximum operating frequency of a NoC implemented on Xilinx
FPGAs. We use experiments run on three different Xilinx FPGA
families. Each device family has a unique frequency, Fbase, for the
8-node ring topology with 32-bit link widths that we use as our
baseline architecture. For our training data, the baseline
frequencies used to generate our equation are 190MHz for Virtex
5, 145MHz for Virtex 4, and 110MHz for Virtex 2 Pro. Recalling
from Equation [1] that we chose to express the model in terms of
𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 & 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 multiplied by the Fbase, the predicted frequency
represents the remaining percentage of Fbase after accounting for
changes in global and local routing demand with respect to our
baseline architecture. Therefore, if we wish to “predict” the
performance of our baseline 8-node ring topology with a 32-bit
link width, we expect 𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 = 1 and 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 .

6.1 Local Routing Demand
Local routing demand (kLRD) describes the performance impact
from the perspective of a single network node. As discussed in
Section 5.2, local routing demand is directly correlated with the
node degree (ND) and link width (LW) of the network node. Since
we want to model both regular and irregular topologies, we
approximate the node degree of individual nodes in the topology as
being equal to the average node degree (ND ≈ AND). However, as
discussed previously in Section 5.3, the average node degree also
affects the global routing demand of the entire system. Therefore,
we chose to only encapsulate the effects due to a change in link
width and how it is magnified by average node degree in kLRD. The
overall effect of average node degree will be encapsulated in
𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 and discussed in the following section.
Increasing the link width increases the number of wires to a node,
causing the CAD tools to distribute the network interface, creating
longer wire lengths and impacting performance. As average node
degree increases, a fixed change in link width will result in more
wires being added for higher average node degrees, thus further
impacting performance. Therefore, 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 is expressed as a change
in link width amplified by the average node degree. The expression
for local routing demand is shown below:

𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆∆𝐿𝐿𝐿𝐿 + 1, [2]

where ∆𝐿𝐿𝐿𝐿 represents the change in link width given by (∆𝐿𝐿𝐿𝐿 =
𝐿𝐿𝐿𝐿𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐿𝐿𝐿𝐿𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 where 𝐿𝐿𝐿𝐿𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 32). If ∆𝐿𝐿𝐿𝐿 = 0 then there
is no change in link width and ∆𝐿𝐿𝐿𝐿 reduces to zero resulting in
𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 = 1. The slope (𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆) describes the rate of change of
performance due to link width for a fixed node degree. In order to
calculate 𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 , Figure 10 shows a family of lines representing the
performance of all topologies as a percentage of 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 with respect
to changing the link width, where each line in the figure represents
topologies with a constant average node degree. The horizontal
axis indicates the change in link width from the 32-bit link width in
the baseline degree, a constant change in link width results in a
constant change in the number of wires added to a network node.
Since the number of wires is directly proportional to the link width

Figure 10: Performance variation due to a change in link width
(# of wires = ND*LW ≈ AND*LW), the impact on performance
due to link width has the linear relationship given in Equation [2]
for a constant value of AND.

As shown in Figure 10, changing the average node degree changes
the impact of changing the link width on performance,
corresponding to the slope of each line (i.e. 𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆). For example,
if a node has AND = 2, then increasing the link width by 8 bits
requires 16 additional wires to be routed to that node. However, if
a node has AND = 3, then 24 more wires must be routed to that
node. Therefore a topology with an AND of three would result in
more wires being routed, and thus an increased local routing
demand (on average), than the same change in link width for a
topology with an average node degree of two. Thus, the higher the
average node degree, the greater the effect link width has on
performance. Since the value of 𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 is directly proportional to
the average node degree, the slope remains constant for a fixed
node degree, and decreases linearly as the node degree increases.
We isolated the slope (𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆) of each line in Figure 10 and
mapped the change in slope as a linear relationship, deriving the
slope and intercept values through curve fitting to be:

𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 = (−0.0012𝐴𝐴𝐴𝐴𝐴𝐴− 0.0046) [3]

6.2 Global Routing Demand
Global routing demand (kGRD) is characterized by the routing
requirements of the entire system. Independent of network node,
type, and size, global routing demand is directly affected by the
total number of links in the system (N*AND). A link is defined as
a single unidirectional link between nodes, thus a channel between
two nodes has two links. In order to model these effects, we first
consider how average node degree impacts performance and how
the number of nodes magnifies this effect. An increase in average
node degree results in more links being added to the topology since
∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑁𝑁 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴. As the number of nodes in a system
increases, a change in average node degree results in even more
links being added. The number of links affects performance by
increasing the number of wires in the system, thus expanding the
network over the fabric and effectively decreasing performance.
Since kGRD is directly correlated with the # of links, the effect due
to kGRD is shown below:

𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴 − 2) + 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 [4]

75%
80%
85%
90%
95%

100%
105%
110%
115%
120%
125%

-16 -8 0 8 16

Pe
rc

en
ta

ge
 P

er
fo

rm
an

ce
 (%

F b
as

e)

Link Width (Fpred) - Link Width (Fbase)

ND = 2
ND = 4
ND = 6
ND = 8
ND = 10

29

The linear equation is characterized by a slope, 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆 , and an
intercept, 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 , which vary when the number of nodes change.
Since 𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 should be equal to one for an eight node ring topology
(N=8, AND=2), the (𝐴𝐴𝐴𝐴𝐴𝐴 − 2) terms reduces the slope to zero
and the intercept must be equal to one when N=1. In order to
determine 𝐺𝐺𝐺𝐺𝐷𝐷𝑆𝑆𝑆𝑆 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 , we analyse the effect of varying
average node degree for sets of NoCs with fixed numbers of nodes.
Figure 11 shows the remaining percentage of 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 as a function of
average node degree for a given number of nodes. Each line
corresponds to a set of topologies with the same number of nodes
and link width at varying average node degrees as expressed in
Equation [4]. For a fixed number of nodes, as the average node
degree increases, a constant number of wires is added to the
network. This number of wires is directly proportional to the
average node degree, thus a change in average node degree from 2
to 3, or 4 to 5 will always result in the same number of additional
wires being added to the system.

When moving between the different lines in Figure 11, the slope
(𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆) and intercept (𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼) change to reflect the rate of
performance loss (slope) and maximum possible performance
(intercept) for that number of nodes. Since the slope
(𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆) describes the rate of performance decrease when
changing the average node degree for a fixed N, it varies when N
changes. For example, changing the average node degree of a
system with 128 nodes should have a higher impact on
performance than changing the average node degree of a 16-node
system as there are a greater number of links added to the system.
For a change in average node degree of one, adding 128 links
results in significantly more network connectivity than 16 links.
Analytically, this corresponds to the slope having a polynomial
relationship to account for the increased connectivity in very large
systems. In order to find the different values of 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆 for each
number of nodes, we found the slope of each line in Figure 11. We
found that the slope had a square polynomial relation to the
number of nodes and increased in magnitude when the number of
nodes increased.

𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆 = −0.0000025𝑁𝑁2 − 0.00026𝑁𝑁 − 0.0336 [5]

The slope (𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆) takes the form of a square polynomial to
account for the increased complexity of routing very large systems.
For small systems (<64 nodes), the 𝑁𝑁2 term becomes negligible
and a linear relationship approximately models the effect of the
CAD tools distribution of the topology over the FPGA fabric.
However, as systems and their corresponding network become
very large, the tools are challenged to find available global
resources, which cause a significant decrease in performance
resulting in the 𝑁𝑁2 term.

The intercept (𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼) defines the fixed performance loss when
N≠8 and ND = 2 and changes as the number of nodes is changed.
Increasing the number of nodes should result in a linear decrease in
performance as adding one node to a toplogy results in a fixed gain
in routing demand. In other words, going from 10 to 11 nodes or
100 to 101 nodes would result in the same increase in routing
demand and consequently the same decrease in maximum
performance. Therefore, 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 can be expressed as a linear
relationship. In order to find the coefficients describing this linear
line, we isolated the intercept for each line in Figure 11 and used
curve fitting to find that the values of 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 . The intercept

Figure 11: Performance loss due to node degree

decreased linearly as the number of nodes in the system increased
according to the following relation:

𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = −0.0015𝑁𝑁 + 1.012 [6]

The intercept for Equation [6] results in 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = 1, when N = 8
to ensure that 𝑘𝑘𝐺𝐺𝐺𝐺 = 1 for our baseline 8-node ring topology. By
substituting the relations given in Equations [2]-[6] back into our
original framework given in Equation [1], we obtain our final
model for predicting the frequency of any regular or irregular
topology. The accuracy of our model will be verified in the
following section.

7. VERIFICATION
To measure the accuracy of our model, we created 750 new
benchmark circuits heterogeneous and homogeneous systems with
8 to 128 nodes with a random topology with node degrees from 2-
10 and link widths of 16, 24, 32, 40 or 48 bits. The circuits are
mapped to Virtex 4, Virtex 5, and Virtex 6 FPGAs, resulting in
2250 data points. Since the Virtex 6 FPGA’s recent release is not
supported in Xilinx EDK 10.1.02, we used Xilinx EDK 11.2 to run
all our verification experiments. In order to ensure that the trends
we saw in EDK 10.1 still existed in 11.2, we ran several
preliminary experiments on the Virtex 5 LX330 in EDK 11.2. The
results showed that the actual performance increased on average by
8.4% with a standard deviation of 3.2%. However, the normalized
performance to the new 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 values obtained using the new CAD
flow only varied by ~1.8% with a standard deviation of 1.4%.

Table 4 shows a sample set of the operating frequencies predicted
by our model, the actual frequency obtained from the CAD tools,
and the geometric mean error for selected NoC topologies
characterized by the number of nodes, node degree and link width.
We chose the geometric mean error as it weights the error’s
magnitude depending on the maximum operating frequencies. The
new 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 for each device generated with EDK 11.2 is also listed
in Table 4. The overall error was found to be 4.68%.

As seen in Table 4, our equation resulted in large errors for some
topologies (see highlighted entries). To determine the relationship
between error and NoC characteristics, we analyzed the
relationship between error and the values of N, LW, and AND. In
Figure 12, we plotted the geometric mean error as a function of
average node degree, maximum node degree, and (max node
degree – average node degree). We chose these parameters to see
how our model encapsulates application specific topologies. If a

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 P

er
fo

)r
m

an
ce

(%

F b
as

e)

Average Node Degree

16
32
48
64
96
128

30

Table 4: Predicted Operating Frequencies
of Nodes Node

 Degree
Width Predicted

(MHz)
Actual
(MHz)

Error

Virtex 4 Base Frequency = 150MHz
16 5 48 105.1 110.1 4.58%
16 8 24 116.8 113.6 2.73%
32 3 16 154.5 150.4 2.68%
32 4 32 128.6 122.9 4.53%
32 6 32 112.5 114.7 1.94%
32 8 24 107.5 111.4 3.61%
64 3 16 144.2 144.0 0.10%
64 5 32 107.5 103.5 3.86%
64 6 24 106.8 97.5 9.48%
64 7 40 78.5 80.4 2.37%
96 4 24 113.4 108.7 4.28%
96 6 32 80.8 74.1 8.88%
96 8 48 43.3 47.1 8.01%
96 9 16 54.4 52.8 18.8%
128 3 32 107.8 92.9 15.9%
128 4 16 106.5 102.9 3.44%
128 5 24 83.9 84.9 1.21%
128 6 40 56.3 53.1 5.91%

Virtex 5 Base Frequency = 200MHz
16 7 32 149.4 147.9 1.08%
16 9 24 146.2 150.7 2.97%
32 2 24 203.6 201.1 1.23%
32 5 16 187.9 178.3 5.44%
32 7 32 139.3 136.4 2.10%
32 9 40 103.4 99.4 4.03%
64 3 48 203.5 201.1 1.23%
64 5 16 167.7 166.5 0.73%
64 7 32 116.8 115.4 1.20%
64 8 40 91.2 93.1 1.46%
96 2 24 183.3 190.1 3.58%
96 3 32 157.1 148.9 5.52%
96 4 32 140.6 136.3 3.20%
96 5 40 113.6 110.4 2.93%
128 4 48 104.9 110.1 4.77%
128 5 24 111.9 122.4 8.60%
128 6 32 82.8 73.2 13.1%
128 8 16 51.9 45.7 13.5%

Virtex 6 Base Frequency = 240MHz
16 3 32 225.6 232.2 2.85%
16 7 24 197.9 196.5 0.76%
32 3 16 247.2 256.9 3.78%
32 4 24 221.2 223.3 0.98%
32 6 40 163.1 162.2 0.58%
32 8 32 154.4 170.1 0.49%
64 2 32 219.8 218.1 0.82%
64 3 48 177.2 180.4 1.80%
64 5 16 201.2 191.2 5.25%
64 7 24 154.8 160.9 3.80%
96 3 16 213.3 215.3 0.95%
96 4 40 156.1 153.1 1.94%
96 6 32 129.2 133.6 3.27%
96 9 24 78.5 72.5 8.19%
128 2 24 207.8 211.1 1.58%
128 4 32 148.1 125.8 17.8%
128 5 40 113.3 115.1 1.61%
128 6 16 118.2 92.5 27.9%

Geometric Mean 4.68%

Figure 12: Geometric mean error as a function of node degree

Figure 13: Geometric mean error as a function of resource

usage
single node has much higher node degree, max node degree >>
average node degree. Thus, local routing demand should have a
large effect on performance as seen for the star topology. We also
analyzed the variation in error as N and LW, error remained small
(1.3%), and never exceeded 7%, thus we do not show them here
due to space limitations. The dotted line in Figure 12 shows the
geometric mean error of all our benchmarks. While numerous data
points lie above this line, a majority of our benchmarks resulted in
points below this line. The percentage of systems below this line is
given in the legend.

From Figure 12, we can see that the error increases minimally and
remains less than 11% for all three cases, indicating that error is
not directly correlated with the node degree as there are no
significant trends. Thus our analytical model is still capable of
accurately predicting random topologies where max node degree
may be greater than average node degree. However, not captured
in this analysis is the star topology, which represents an extreme
case when the maximum node degree is much larger than the
average node degree. For the star topology, our predictor exceeds
25% error when the number of nodes is larger than 16. Addressing
this is a topic of future work.

For all benchmarks in which the error was above 10% had a
resource usage above 70%. Our current model does not include
the resource usage as an input parameter. We plotted our set of
benchmark circuits by resource usage, and calculated the average
error for each bin. The results are shown in Figure 13. For
benchmarks with less than 65% resource usage, the geometric
mean error is less than 10%; however above this point, the
geometric mean error increases significantly.

These results suggest that to improve the accuracy of our equation,
resource usage needs to be considered. Our objective was to
provide designers with a means of early design space exploration
and if resource usage was included as a parameter in the

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 5 10 15 20

G
eo

m
et

ri
c

M
ea

n
E

rr
or

Node Degree

Average Node Degree (54%)
Max Node Degree (73%)
Max - Average Node Degree (82%)

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%

5-
10

%
10

-1
5%

15
-2

0%
20

-2
5%

25
-3

0%
30

-3
5%

35
-4

0%
40

-4
5%

45
-5

0%
50

-5
5%

55
-6

0%
60

-6
5%

65
-7

0%
70

-7
5%

75
-8

0%
80

-8
5%G

eo
m

et
ri

c
M

ea
n

E
rr

or
Resource Usage

4.68%

31

performance equation, it would be necessary for the designer to
fully map the NoC. Therefore, provided the NoC has sufficient
routing resources on a respective FPGA, our equation provides an
accurate method of predicting the maximum frequency with
minimal design time.

8. SUMMARY OF ANALYTICAL MODEL
Below is a summary of our analytical model. Our analytical
framework is:

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 [7]

where global routing demand (𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺) and local routing demand
(𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿) are:

𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆∆𝐿𝐿𝐿𝐿 + 1, [8]

𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴 − 2) + 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 [9]

Global routing demand and local routing demand are both defined
as linear equations with variable slope and intercept, which are
affected by the number of nodes and average node degree. These
expressions are tuned for Xilinx FPGAs and shown below:

𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 = (−0.0012𝐴𝐴𝐴𝐴𝐴𝐴− 0.0046) [10]

𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆 = −0.0000025𝑁𝑁2 − 0.00026𝑁𝑁 − 0.0336 [11]

𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = −0.0015𝑁𝑁 + 1.012 [12]

As previously stated, the expressions of our analytical model
shown in Equations [7]-[12] are analytically derived. In order to
tune our model to Xilinx FPGAs, we used empirical curve-fitting
to determine the coefficients given in Equations [10]-[12].
Therefore, using both analytical and empirical analysis, we were
able to develop our analytical model that is capable of predicting
performance of a NoC on a Xilinx FPGA with 4.68% error.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an analytical model in the form of a
simple equation that describes the maximum operating frequency
(performance) of a NoC as a function of various network
parameters related to the overall network topology. The equation
was shown to be accurate to within 4.68%, even for random
topologies. This model provides a measure of the effect of varying
different topology parameters on NoC performance on FPGAs.
Furthermore, it provides guidance to a designer during early design
space exploration when a suitable network topology is being
selected.

A key observation from this work is that modern FPGAs contain
enough routing to implement fairly complex NoCs. This opens the
door to new system architectures based on application-specific
NoC's rather than the more restricted mesh topologies that are
typically used in ASIC SoC implementations. These application-
specific NoC's can be tailored to the problem at hand, leading to an
overall improvement in system-level performance measures.

We are currently calibrating our model for Altera devices.
Preliminary work suggests that the model has a predictive error of
7.98%, utilizing different coefficients tuned to Altera FPGAs. We
are also investigating the possibility of manually placing nodes
using relatively placed modules (RPMs).

10. ACKNOWLEDGMENTS
We would like to thank NSERC for funding this project and Xilinx
and CMC for their equipment and software donations. We would
also like to thank the reviewers and Dr. Steve Wilton for their
recommendations.

11. REFERENCES
[1] IBM Corporation, NY, “The Coreconnect Bus Architecture,”

(1999). [Online]. Available: http://chips.ibm.com Ding, W.
and Marchionini, G. 1997 A Study on Video Browsing
Strategies. Technical Report. University of Maryland at
College Park.

[2] OpenCores.org, “The WISHBONE system architecture,”
(2002). [Online]. Available:
http://opencores.org/projects.cgi/web/wishbone

[3] G. de Micheli and L. Benini, “Networks on Chip: A new
paradigm for systems on chip design,” in Proc. Conf. Des.,
Autom. Test Eur. (DATE), 2002, pp. 418-418

[4] N. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J.
Oberg, K. Tiensyrja, and A. Hemani, “A network on chip
architecture and design methodology,” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, 2002, pp. 105–112.

[5] W. J. Dally and B. Towles, “Route packets, not wires: On-
chip interconnection networks,” in Proc. 38th Conf. Des.
Autom. (DAC), 2001, pp. 684–689.

[6] M. Saldana, L. Shannon, and P. Chow, “The Routability of
Multiprocessor Network Topologies in FPGAs,” in Proc.
IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 63-72, April 2005.

[7] G. Brebner and D. Levi, “Networking on chip with platform
FPGAs,” in Proc. IEEE Int. Conf. Field-Program. Technol.
(FPT), 2003, pp. 13–20.

[8] N. Kapre, “Packet-switched on-chip FPGA overlay
networks,” 2006, California Institute of Technology.

[9] N, Mehta, “Time-multiplexed FPGA overlay networks on
chip,” 2006, California Institute of Technology

[10] R. Francis, S. Moore, and R. Mullins, “A Network of Time-
Division Multiplexed Wiring for FPGAs,” in Proc. Second
ACM/IEEE Int. Symp. On Networks on Chip. (NOC), 2008,
pp. 35-44.

[11] K. Goossens, M. Bennebroek, J.Y. Hur, and M.A. Wahlah,
“Hardwired Networks on Chips in FPGAs to Unify
Functional and Configuration Interconnects,” in Proc. Second
ACM/IEEE Int. Symp. On Networks on Chip. (NOC), 2008,
pp. 45-54

[12] A. Kumar, A. Hansson, J. Huisken, H. Corporaal, “An FPGA
Design Flow for Reconfigurable Network-Based Multi-
Processor Systems on Chip,” in Proc. Design, Automation &
Test in Europe Conference & Exhibition. (DATE). 2007, pp.
1-6.

[13] S. Lukovic, and L. Fiorin, “An Automated Design Flow for
NoC based MPSoCs on FPGA,” in Proceedings of the 19th
IEEE/IFIP Int. Symp. On Rapid System Prototyping. 2008,
pp. 58-64

[14] J. Lee and L. Shannon, “The Effect of Node Size,
Heterogeneity, and Network Size on FPGA based NoCs,” in
Proc IEEE Symposium on Field-Programmable Technologies,
December 2009

32

	INTRODUCTION
	BACKGROUND
	PROPOSED ANALYTICAL FRAMEWORK
	EXPERIMENTAL ENVIRONMENT
	4.1 Benchmark Circuits
	4.2 Network Nodes
	4.3 Experimental Methodology

	GENERAL NOC PERFORMANCE TRENDS ON FPGAS
	Previous Research
	Local Routing Demand
	Global Routing Demand
	Regularity

	PERFORMANCE MODEL
	Local Routing Demand
	Global Routing Demand

	VERIFICATION
	SUMMARY OF ANALYTICAL MODEL
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

