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Fourier Domain Optical Coherence Tomography (FD-OCT), provides faster

line rates, better resolution, and higher sensitivity for non-invasive, in vivo

biomedical imaging compared to traditional Time Domain OCT (TD-OCT).

However, because the signal processing for FD-OCT is computationally

intensive, real-time FD-OCT applications demand powerful computing

platforms to deliver acceptable performance. Graphics Processing Units

(GPUs) have been used as co-processors to accelerate FD-OCT by leveraging

their relatively simple programming model to exploit thread-level parallelism.

Unfortunately, GPUs do not “share” memory with their host processors,

requiring additional data transfers between the GPU and CPU. In this

paper, we implement a complete FD-OCT accelerator on a consumer grade

GPU/CPU platform. Our data acquisition system uses spectrometer based

detection and a dual arm interferometer topology with numerical dispersion

compensation for retinal imaging. We demonstrate that the maximum line

rate is dictated by the memory transfer time and not the processing time

due to the GPU platform’s memory model. Finally, we discuss how the

performance trends of GPU-based accelerators compare to the expected fu-

ture requirements of FD-OCT data rates. c⃝ 2011 Optical Society of America

1. Introduction

Fourier Domain Optical Coherence Tomography (FD-OCT) is a well established optical

interferometric imaging modality that has been rapidly gaining popularity for providing

high-resolution, cross-sectional imaging in biological tissues and materials. FD-OCT is com-

monly used in ophthalmic imaging by clinicians and researchers to gain accurate insight
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into the eyes of patients and research specimen. During the FD-OCT data acquisition, a

line scanning camera of the FD-OCT system is used to collect dataset in the form of multi-

ple scanning lines, called amplitude scans (A-Scans). A typical volumetric dataset acquired

with currently available commercial systems takes several seconds, while acquisition of more

densely sampled volumes for high resolution research applications takes even longer.

The resulting motion artefacts, which are inevitable for live subject imaging, can signifi-

cantly affect the volumetric image quality and diagnostic utility. In order to achieve minimal

motion artefacts, higher acquisition speed is essential. The current fastest line scan camera

available for spectrometer based FD-OCT can achieve a line rate of 200kHz with resolution

of 4096 pixels [1], and the future trend for acquisition speed is even faster [2]. However, due

to the computationally-intensive nature of the FD-OCT algorithm, real-time FD-OCT data

processing and displaying is now facing a challenge to keep up with the increasing data ac-

quisition speed of newer cameras. The advances in wavelength swept source OCT (SS-OCT)

and parallel FD-OCT systems [3] place even higher demands on computation resources for

real time data processing and display of medical images.

Pure software solutions for FD-OCT processing, even on the most up-to-date Intel i7

processors, deliver processing and display rates in the tens of kilohertz. The massively parallel

processing cores in a Graphic Processing Unit (GPU) can be utilized to accelerate FD-

OCT by off-loading the computationally-intensive processing tasks from the CPU. Previous

work [4] reported the use of a NVIDIA GTX285 as an accelerator for FD-OCT using a k-linear

spectrometer, a configuration that is not commonly used in commercial FD-OCT systems. A

follow up study presented GPU acceleration for a standard configuration spectrometer using a

high end NVIDIA FX5800 GPU [5]. The authors reported processing rates for a common path

interferometer topology, excluding the additional processing steps required to compensate for

the dispersion present in the more common dual-arm interferometer configurations used in

ophthalmic imaging [2]. GPUs are also used as accelerators in Monte Carlo simulation [6,7],

a recent study [8] demonstrated a speedup of approximately 600 times over Intel i7 CPU for

Monte Carlo simulation on the new Fermi GPU with a novel scheme to optimize memory

utilization.

In this paper, we investigate the limitations of GPU-based accelerators for real time FD-

OCT processing and project how current trends in GPU architecture will scale for increasing

line rates. Specifically, the contributions of this paper are:

• a GPU accelerated software implementation of a complete FD-OCT system; we demon-

strate that the GPUs are able to process at a maximum line rate of 280 kHz with

dispersion compensation, whereas the maximum throughput for the overall system is

limited to 110 kHz due to the overhead incurred by data transfers.

• the GPU accelerated FD-OCT system incorporates the dispersion compensation pro-
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cessing [2] required for dual arm interferometers and retinal imaging,

• an analysis of the FD-OCT algorithm’s performance profile on a GPU and the impli-

cations of current trends in GPU architecture for future line rates.

The paper is structured as follows: Section 2 summarizes the related previous work; Section

3 describes the data acquisition system and processing algorithm; results are given in Section

4, and finally we conclude the paper and discuss future work in Section 5.

2. Background

In FD-OCT processing, each A-Scan is independent of one another. This characteristic of

FD-OCT suggests speedups could be achieved by exploiting parallelism in the following

aspects,

• FD-OCT A-Scans will benefit from Single Instruction Multiple Data (SIMD) processing

from GPU as it is in the form of vectors,

• multiple A-Scan can be processed in parallel because individual lines are independent,

and

• in the case where the vector operations involves constants, each element within an

A-Scan vector could be processed in a pipelined fashion.

Watanabe et. al demonstrated the use of a NVIDIA GTX285 GPU to accelerate FD-OCT

systems with a line scan CCD camera at 27.9 kHz, while achieving a real-time display frame

rate of 27.9 frames/sec (2048 FFT size, 1000 A-Scans) [4, 9]. The calculation of Fourier

transforms from wavelength space to wave number space is avoided, because a k-linear spec-

trometer was used. A follow-up study [10] from the same group used a linear wavelength (λ)

spectrometer with a zero-filling interpolation technique. Zhang et. al reported a standard

spectrometer configuration with a common-path interferometer topology [5], therefore ex-

cluding the dispersion compensation step required in the more common dual-arm interferom-

eter setup. This work implemented both the λ-to-k resampling and 3D real-time volumetric

rendering on a FX5800 GPU, however, only the GPU processing time was used to evaluate

the system performance. Columns 2 and 3 of Table 1 list the specifications of the GPUs used

in the previous works.

In this paper, we investigate the performance of a GPU-accelerated FD-OCT system

under imaging conditions using a dual-arm interferometer topology. It should be noted that

while GPU accelerated platforms deliver significant speed up by parallelizing the FD-OCT

algorithm, they also require additional steps to copy data back and forth between the host

(CPU) and device (GPU) memory; when calculating the maximum real-time throughput

rate of GPU accelerated platforms, the time required for these additional memory copies

needs to be included.
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The system presented is based on a commercial spectrometer customized by Bioptigen

Inc. As will be discussed in Section 3.B, in addition to all the processing functions in [5],

our system also included a numerical dispersion compensation function, which is highly

computationally intensive as it uses two Fourier transforms and vector multiplication in

complex numbers. For this reason, a higher computational requirement has to be met in order

to achieve the goal of real-time FD-OCT processing and display. In addition to implementing

the GPU accelerator, we also quantified the actual runtime of each of the processing steps

of the FD-OCT algorithm so as to gain better insight into the performance limiting aspects

of the algorithm on the GPU accelerating platform; this information can then be used to

guide future research into accelerating the processing of FD-OCT for real-time applications.

As demonstrated by our analysis, the data transfer rate between CPU and GPU is currently

the limiting factor to accelerating the FD-OCT algorithm.

3. An Overview of a FD-OCT System

A typical FD-OCT system is composed of three stages — data acquisition, processing and

display, as noted in Figure 1.

3.A. Data Acquisition

During the data acquisition, a line scanning camera acquires a dataset from the spectrometer,

which, depending on the configuration of the acquisition device, could be either collected to

form a frame using a frame-grabber for batch transfer or directly transferred out in a serial

fashion (via interfaces such as CamerLink). The demands for faster processing stems from the

increasing acquisition speed, which is in turn made possible by faster scanning rate and higher

resolution. While the scanning rate on a single channel FD-OCT acquisition on ophthalmic

imaging will be bounded for safety reasons, multi-channel scanning implementations could

easily scale the equivalent speed up to 6 times [3].

3.B. FD-OCT Processing

During the processing stage, the data set is processed through the following functions. The

details of the algorithm are described in [2] and [5].

3.B.1. DC Removal

This function subtracts the DC level. While the average DC levels (shown as Avg. DC ) will

need to be acquired (involving add/accumulation/division) prior to the removal, the DC

level remains relatively constant for a specific acquisition, thus it is not necessary to perform

DC acquisition in real time. The DC removal functions is composed of vector subtraction.
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3.B.2. λ-to-k Re-sampling

Because the majority of line scanning cameras deliver data sets that are sampled in wave-

length (λ) space, whereas the FD-OCT algorithm requires data to be presented in evenly

sampled wave-number (k) space, a linear-k space data set needs to be constructed from the

one based on linear-λ space [11]. Linear interpolation is used to re-sample the required data

set [5]. As the sampling frequency and its range (shown as Freq.& Range in Figure 1) for

a specific image acquisition is fixed, the coefficients for linear interpolation can be obtained

prior to the real time FD-OCT processing. The λ-to-k re-sampling function contains vector

add, multiplication, as well as re-ordering.

3.B.3. Dispersion Compensation

This function is an extra step to the FD-OCT processing and is required for high quality

imaging in applications such as retinal imaging [2]. The components of this function contains

a Hilbert Transform [2, 12], which is used to construct a complex number representation of

the spectral sampled data. The compensation is achieved by tuning the phase coefficients

up to the third term [2, 11] (shown as Phase Coe. in Figure 1). The Hilbert Transform is

implemented by a forward Fast Fourier Transform (FFT), vector multiplication in complex

numbers and an inverse FFT.

3.B.4. FFT

A cross sectional image is produced by resolving the information on delay and magnitude

of the optical reflection. This information can be extracted by performing an FFT of the

spectral interference signal the length of the FFT is 2048.

4. Experimental Setup

Figure 3 shows the block diagram of the FD-OCT system used in this work. A Dalsa Spyder

II camera, with 2048 pixels and a maximum line rate of 36 kHz, is used as the detector

for data acquisition. The camera communicates with the computer via gigabit Ethernet and

transmits entire frames (as opposed to individual line scans). Ideally, acquisition of the next

frame is performed at the same time the current frame is being processed.

The GPU accelerator used for our implementation was a dual-GPU GeForce GTX295

from NVIDIA (shown in column 4 of Table 1), with 480 CUDA processor cores (240 cores

per GPU) and 17892 MB of DDR3 memory (896 MB per GPU), and a core clock frequency

of 576 MHz. For the current implementation, we are using one GPU (240 CUDA cores and

896 MB of GPU memory) to make a fair comparison to previous works [4, 5]. The GTX295

GPU board communicates with the CPU via the 16 lanes PCI-Express v2.0 bus as in the

comparative works.

5



We used the Compute Unified Device Architecture (CUDA) language [13], an extension

of the C language for programming NVIDIA GPUs (version 2.3), to develop and debug

the FD-OCT algorithm on the GTX295 GPU. Figure 2a shows the algorithm flowchart, as

well as the data flow between the host (CPU and main memory) and the device (GPU and

device memory). Whenever one frame of data is available in the main memory, the whole

frame is transferred over to the GPU and processed as a batch. The CUFFT library from

NVIDIA [14] is used to process the FFT in two of the processing steps, specifically the

Dispersion Compensation and FFT2048 steps. On the completion of the processing on the

GPU, the results are copied back to the CPU for rendering and display1. We measured the

total FD-OCT processing time including the memory transfer time between host and device

using cudaprof [15], the program profiler provided by NVIDIA. Figure 2b shows a sample

retina image with a resolution of 1024x512 processed using our system.

5. Results and Discussions

In this section we present an analysis of the FD-OCT algorithm on GPUs in terms of its exe-

cution profile and throughput bottlenecks, we then look into the scalability of both platforms

for future line rates.

5.A. Algorithm Execution Profile Analysis

Figure 4 illustrates the percentage of the FD-OCT algorithm’s runtime as attributed to its

various component functions (similar results was seen in [9] which didn’t include dispersion

compensation). Although the specific results presented here are for processing multiple A-

scans in a batch, the percentages of time allocated to the various functions remain relatively

constant as long as the size of the data set is large enough to amortize the cost of the data

transfer2. Figure 4 shows that the processing steps for the FD-OCT algorithm (DC-Removal,

Resample, Dispersion Compensation, FFT2048 and Logarithm) require approximately 40%

of the total runtime time, while the memory (data) transfers (host-to-device and device-to-

host) require approximately 60%. The maximum processing line-rate, excluding the disper-

sion compensation and data transfer, was ∼680 kHz. Adding in the time required to perform

the computationally heavy dispersion compensation slowed the performance down to ∼280

kHz. However, to properly evaluate the real-time performance of a GPU accelerated imple-

mentation, the data transfer time must also be included as it is an unavoidable overhead for

existing GPU architectures. When the time for data transfers between the CPU and GPU are

1Ideally, the post-processed data should be directly copied into the frame buffer on the GPU for display

without additional copies between host and device.
2Due to the overhead incurred from initiating data transfers between device and host memory, data

copies need to be “batched” (i.e. multiple individual copies grouped together into a single multi-word copy)

to amortize this cost [13]. In Figure 4, a batch size of 8192 was used.
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included, the resulting maximum camera line rate for the complete system implementation

is approximately ∼110 kHz.

Figure 5 shows the performance of the GPU accelerated implementation in terms of pro-

cessed A-scan lines per second versus varied batch sizes for the three different scenarios

indicated in the legend: 1) Memcpy Excl, the line rate for pure processing without the mem-

ory copies; 2) Memcpy Incl, the line rate including both memory copies (via a 16-lane PCI

Express Bus); and 3) Intg. GPU, the extrapolated line rate for processing plus memory

transfers if the same GPU architecture had an integrated configuration.

Although NVIDIA recommends maximizing the size of the data transfers to minimize

the overhead, Figure 5 illustrates that there is little difference in the system’s actual maxi-

mum line rate (Memcpy Incl) for varied batch sizes due to the fact that the majority of the

“processing” time (∼60%) is spent in memory copies. The trend line excluding the memory

transfers (Memcpy Excl) demonstrates that when only pure GPU processing time is consid-

ered, there is greater variation in line rates over varied batch sizes, the trend line plateaus

after reaching maximum at 8192 A-Scans. Finally, while the GPU used in these experiments

is only available as a discrete unit due to the processing power requirements, we projected

what the maximum line rates would be if it were available as an integrated device3. We

measured the time needed for data transfers between a CPU and an integrated NVIDIA

GeForce 9400M GPU, which shares the same discrete memory model where the CPU data

must be transferred to the “device memory” of the GPU (even when the host and device

memory are on the same physical device). We used this information to extrapolate what the

effective line rate would be for our GPU in this configuration (Intg. GPU ). Surprisingly, it is

the memory copy itself, and not the data transfer via the PCI express bus, that accounts for

the majority of the performance loss of relative to the pure GPU processing time (Memcpy

Excl). In fact, the integrated GPU scenario only improves the effective line rate of our actual

system by 22%.

Therefore, to significantly increase the maximum line rate, the underlying memory archi-

tecture of the GPU needs to be changed to limit the number of memory transfers between

the CPU and GPU. GPUs on high end work stations with higher PCI Express bus fre-

quency will provide better processing rates for FD-OCT, but it is still necessary for data to

be transferred from the CPU for processing. However, changes to the GPU memory archi-

tecture would allow processed data to be directly rendered to the display and significantly

impact the maximum line rate of the system (nominally a 1.3x increase). We are currently

investigating the latest Fermi architecture GTX480 GPU (shown in column 5 of Table 1)

3Integrated GPUs are packaged on the same chip as the system memory controller and system I/O

controller to provide a compact, low cost, low power-consumption solution. Due to these design constraints,

they provide less processing power and fewer processing cores to meet the requirements.
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from NVIDIA that supports duplex data transfers between the host and device with the goal

of reducing the impact of the memory copy by writing post-processed lines back to the CPU

while new data for processing is read onto the GPU. Furthermore, we are pursuing the use

of multiple host threads to exploit the additional spatial parallelism available on multi-GPU

devices so that one device renders and displays the results while the other device processes

new scans. In general, the key to improving the throughput rates for real time processing

of increased line rates will be reliant on leveraging increased spatial parallelism in the algo-

rithm. As line rates increase, assuming no dramatic changes in GPU architectures, this may

require the use of hardware acceleration to achieve this increased spatial parallelism.

In summary, whereas the GPU processing has a line rate of∼280 kHz, the system’s effective

line rate is ∼110 kHz. To compare our implementation to previous work, we exclude the data

transfer time as well as the dispersion compensation function, resulting in a maximum line

rate of ∼680 kHz. By comparison, the implementation of [5] has a reported maximum line

rate of ∼320 kHz on the FX5800 GPU, demonstrating that our implementation achieves

faster line rate on a GPU with the same number of processing cores but less memory and a

slower clock rate.

5.B. Scalability of Using GPUs as FD-OCT Accelerators

While technology sizes continue to decrease dramatically, following the trends predicted by

Moore’s law [16], clock speeds have leveled off due to power consumption and heat dissipation

requirements. Thus, improved computing power is provided in terms of spatial processing,

or additional processing units. This additional processing power is extremely beneficial to

data processing applications with independent data sets that can be processed in parallel,

as in the case of FD-OCT, where each A-Scan can be processed independently. Ideally, as

the number of processing cores increases, larger batch sizes can be processed in parallel to

increase the throughput.

Figure 6 graphs the maximum processing line rate (i.e. excluding the time for memory

transfers) of the GPU used in the previous experiment, the GTX295, as well as the newer

GTX480. Recalling Table 1, the GTX480 has twice as many processing cores as the GTX295.

As can be seen in Figure 6, the GTX480, has a maximum line rate approximately 2.2x that

of the GTX295, demonstrating the algorithm’s ability to leverage the additional processing

cores on the GTX480. However, Figure 6 demonstrates that the maximum line rate trend

lines for both devices are consistent with each other and flatten out at 2048 A-scans.

Future high speed data acquisition rates for FD-OCT could reach up to 1 MHz for car-

diovascular imaging, while multi-channel FD-OCT system could easily have an even higher

demand [17]. Considering the performance of our current GPU accelerated FD-OCT system

of about 280 kHz, at least a three times speed up is required to meet these future demands.
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Although Figure 6 demonstrates that the number of processing cores on the GPU may soon

meet this need, as the memory transfers consume most of the system accelerator’s time

(∼60%), it will not be possible for GPUs with the current memory architecture to scale to

this line rate.

6. Conclusions

In this paper, we discussed a GPU accelerated real-time FD-OCT system implementation

with numerical dispersion compensation that achieved a maximum overall line rate of ∼110

kHz including the time required for data transfer, with the maximum processing-only line

rate being ∼280 kHz. We analyzed the algorithm’s performance profile to determine its

breakdown in terms of the GPU’s processing time and demonstrated that the performance

bottleneck of using the GPU as an accelerator is the data transfer time between host and

device memory-independent of whether or not the GPU is on a PCI Express card or inte-

grated on the motherboard. As the clock rates of future devices will not increase significantly,

reducing the data transfer time between the CPU and the GPU will have the greatest im-

pact on throughput. In fact, enabling these GPUs to directly render their processed data to

the display (as opposed to requiring additional memory transfers) will result in the great-

est increase in line rate. This better leverages the GPU architecture’s best asset - spatial

parallelism.

Assuming future GPU architectures do not require memory copies, researchers will need to

determine if the latency of GPU accelerated systems is appropriate for real time applications,

including micro-surgeries, particularly if volumetric rendering of the structures is desired.

As the GPU based system achieves high throughput by processing multiple frames at once,

it may not meet the desired latency specifications to enable appropriate response times.

Therefore, platforms such as Field Programmable Gate Arrays, which allow a finer grain of

parallelism and pipelining such that individual A-scans can be processed on arrival, should

be investigated to determine if they better meet the long term scalability requirements of

future data acquisition rates and real time response times.
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Table 1. Specifications for the GPU in discussion.

GPU Models FX5800 [5] GTX285 [4] GTX295 GTX480

Processing Cores 240 240 2x240 480

Device Memory (MB) 4096 2048 2x898 1536

Core Frequency (MHz) 610 648 576 700

Shader Frequency (MHz) 1296 1476 1242 1407

Memory Frequency (MHz) 800 1242 999 1848

Price (USD) ∼3000 ∼500 ∼500 ∼500
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