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Abstract. Anatomical shape change over time is a biomarker for track-
ing disease progression. Given a database of anatomical images where
each subject is represented by a time-series of images that have been ac-
quired over time, algorithms for estimation of longitudinal progression of
morphometric changes over time are required to address 1) the common
practical issue where not all subjects are sampled at uniform and ho-
mogenous time instants, and 2) the fact that the baseline image for each
subject is different hence changes with respect to baseline for each sub-
ject are with respect to a different starting frame of reference. To address
the first issue, we have previously shown how to estimate the flow of vec-
tor fields interpolating through the given time-series of followup images
starting from each subject‘s baseline image in the large deformation dif-
feomorphic metric matching (LDDMM). In this work, we show one way
of addressing issue 2, namely, the normalization of the 4D within-subject
flows estimated with respect to individual baseline images into a com-
mon central template. We apply this method on the hippocampus shape
taken from a small database of 5 controls and 5 cognitively-impaired
no dementia (CIND) subjects that underwent magnetic resonance (MR)
imaging every 3-6 months over 2 years. The time-series images for each
subject were segmented for extracting the hippocampus using an auto-
mated multi-atlas segmentation method, and these were used to generate
the longitudinal within-subject flow of vector fields with reference to the
baseline shape. Then, these flows were transformed into a central unbi-
ased hyper-template shape created from the baseline shapes to provide a
common frame of reference. In this central template frame of reference,
standard statistical methods can be applied to the 4D vector fields, such
as average flows and principle modes of variation in the 4D flows. We
computed the means and principal modes of variations for both the con-
trol and the CIND group in the central template and demonstrate their
time evolution. Statistical analysis on the dimensionality-reduced flow
showed significant group differences in the hippocampus shape change
over time between the controls and the CIND group. With the increas-
ing availability of time-series data, this method is likely to find use in
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understanding the space-time patterns of evolution of anatomical change
in normal control subjects and those within a disease group.

1 Introduction

Morphometric quantification of shape change over time is a potentially promis-
ing tool for early detection, diagnosis, and followup of diseases that demonstrate
distinguishable space-time patterns of progression in the acquired in-vivo images.
With the increasing trend towards acquisition of longitudinal datasets containing
several 3D anatomical images acquired over time for each individual, techniques
for the analysis of shape changes occurring over time have become increasingly
desirable. Several databases now exist and are being collected that provide im-
ages of human anatomy, in particular, the living human brain in controls and
disease taken at several time points for each individual. Cross-sectional analysis
of these time-indexed changes is challenging as 1) images are not acquired at
the same time-instant for each individual, 2) some individuals may miss some
imaging sessions, and 3) although each subject’s baseline can serve as his/her
own control, relating shape changes over time computed with respect to baseline
of the individual subject to changes in others across the database is challenging
as each subject’s baseline image is different.

The dynamic growth model [1, 2], which constructs deformations of a base-
line template image to represent the time series of images acquired over time,
presents a natural choice to represent within-subject time-indexed shape change
due to it’s inherent smoothness obtained by parameterizing the deformation in
terms of smooth time-indexed velocity vector fields that define the deformations.
Extension to interpolating and representing shape evolution in a discrete set of
time-indexed images was presented in our previous work [3] allowing the accom-
modation of irregularly time-sampled or missing data. Only a few techniques
now exist to analyze the time-series of images where more than two images are
given for each subject. One of these recent techniques is the point-set based
time-sequence diffeomorphic metric mapping and a parallel transport mecha-
nism to compare shape change over time across subjects [4]. Another technique,
also using point sets, performed longitudinal shape regression along with spatio-
temporal pairwise registration to facilitate cross-subject longitudinal compar-
isons [5]. Previous work in cardiac motion analysis used non-rigid registration
of end-diastolic images to compare cross-subject motion fields [6] in a common
reference frame, but did not perform quantitative analysis of the motion fields.
More recently, mean motion models of respiratory lung motion [7] were gen-
erated using the Log-Euclidean mean of mapped transformations obtained via
intra-subject and inter-subject diffeomorphic registration.

This paper presents a principled method for the construction and cross-
sectional statistical analysis of the flow of velocity vector fields for describing
shape change of volumetric 3D brain structures taken from magnetic resonance
grayscale images (MRI) acquired over time. The first step is to segment the struc-
ture of interest, in this case, the hippocampus, from the time-series of in-vivo
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brain images. The segmentation is performed with a standard multi-atlas fusion
strategy. Using these binary images representing anatomical shape, the next step
is to estimate a within-subject flow carrying the subject’s baseline segmentation
image through corresponding segmentations from each of the acquired followup
images. To account for heterogeneity in baseline images for comparison across
subjects in a database, an unbiased central hyper-template image is computed.
The novel contribution of this paper is a method to normalize each within-subject
4D flow to the frame of reference of this central template. This transfer of frame
of reference creates a correspondence between different within-subject flows that
were each constructed with respect to a different baseline image. Finally, the
mean and ‘principal directions’ of time evolution are computed to explore the
group differences in the given populations. We test and evaluate our framework
on the evolution of hippocampal shape over time in a set of 5 controls and
5 patients (cognitively-impaired no dementia or CIND subjects), each scanned
several times over 2 years.

2 Method & Materials

2.1 Automated subcortical segmentation with multi-atlas fusion

Accurate segmentation of MRI images over time within an individual is im-
portant as changes due to disease processes can be subtle and easily swamped
by errors in segmentation. Automated atlas-based methods for subcortical seg-
mentation, in particular multi-atlas fusion, have been shown to be reasonably
accurate [8]. In this approach, several images are designated as database tem-
plates, and manually segmented to obtain accurate representations of the object
of interest. In the experiments presented here, a group of six brain MRI scans
from elderly subjects with manually delineated segmentations were designated
as templates. Each of these templates is then used to segment each target brain
image in the database resulting in six segmentations for each target brain image,
which are then fused to create a final segmentation. This step was conducted us-
ing our existing large deformation atlas-based brain MRI segmentation approach
[9], which used Freesurfer automated segmentation labels to initialize a region of
interest (ROI) for subsequent grayscale image registration. The manual segmen-
tation from each template was propagated using the resulting transformation
after grayscale matching to generate the target segmentation, and multiple tar-
get segmentations were fused via a simple voxel-based average to create the final
target segmentation. Several techniques can be used to generate automated seg-
mentations, and depending on the particular application, some techniques may
be more advantageous than others. The final result is a set of 3D segmentations
representing the anatomy of interest as observed in each baseline and follow-up
image.
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2.2 Construction of 4D within-subject flow from discrete image
time-series

To represent the change in shape over time with respect to baseline, a smooth
velocity vector field vkt that evolves the baseline (t = 0) image Ik0 for subject
k to interpolate through the given time-indexed samples Iktj=0...N

is computed.
This flow is estimated via the basic variational problem in the space of smooth
velocity vector fields V on domain Ω by minimizing the energy functional:

E(v) =
∫ T

0

‖vkt ‖2V dt+ λ

N∑
j=1

‖Ikt0 ◦ φktj ,0 − Iktj‖2L2 .

This equation is solved via a gradient descent approach described in [3]. The
mappings φkt = φk0,t are also found via semi-lagrangian integration of the flow,
so that Ikt ≈ φk0,t ·Ik0 = Ik0 ((φkt )−1) = Ik0 (φkt,0). Note that time t = [0, T ], is related
to the physical time between followup images, enabling the energy function to
deal with irregular temporal sampling of followup images or missing data.

2.3 Normalization of 4D within-subject flow to a central template

A single central hyper-template I? is generated based on a group-wise average
estimation of all baseline image segmentations [10]. Each subject’s baseline im-
age Ik0 is then spatially normalized to this template such that Ik0 ≈ φk?,0 · I? =
I?(φk0,?). Finally, each within-subject flow is normalized to the template by trans-
forming the flow from each time instant t using the composition of mappings from
t 7→ 0 7→ ?. The maps φk?,t = φk0,t ◦ φk?,0 and φkt,? = φk0,? ◦ φkt,0 refer to transfer
of coordinates between the hyper-template and each time instant along the flow
for the k-th subject. Define the Ad operator as

Adψ(v) = Dψ ◦ ψ−1v ◦ ψ−1,

which describes the transformation of vector data, v, with the map, ψ, taking
into account the Jacobian change of variables at each grid point in v. The transfer
of the within-subject 4D flow, vk = (vkt ), t ∈ [0, T ], into the coordinates of the
template I? is accomplished via

wkt = Adφk
t,?
vkt = Dφkt,? ◦ φk?,t vkt ◦ φk?,t (1)

In this equation, for each Eulerian grid-point x in the template I?, the point
φk?,t(x) is the mapping of this point to the corresponding point in the flow at
time t. The velocity at that point vkt (φk?,t(x)) is found by interpolation from
surrounding Eulerian grid-points. Then, this velocity vector is mapped back
to the template via the Jacobian of the map Dφkt,? computed at the point
φk?,t(x) ie Dφkt,?(φ

k
?,t(x)). One way to compute Dφkt,?(φ

k
?,t(x)) is by using in-

terpolation from the Jacobian values calculated at the neighboring Eulerian grid
points. Alternatively, since vkt (φk?,t(x)) = Dφk?,t(x)wkt (x), then wkt (x) can be
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computed via solving a linear system at each point x. The partial derivatives
η1 = ∂/∂x1(φ?,t), η2 = ∂/∂x2(φ?,t), η3 = ∂/∂x3(φ?,t) are available at each point
x, and the velocity vkt (φk?,t(x)) = (b1 b2 b3)t is available for the point φk?,t(x).
Then, vkt (φk?,t(x)) = Dφk?,t(x)wkt (x) where wkt = (a1 a2 a3)t can be written as
(b1 b2 b3)t = a1η1 + a2η2 + a3η3 and solved using standard techniques.

The procedure specified by Equation 1 maps all within-subject 4D flows to
the same central hyper-template removing the individual baseline differences
from which the flows were built, and temporally compressing all the 4D vector
fields into the coordinates of the hyper-template. Figure 1 shows a visual repre-
sentation of how 4D within-subject flows are normalized to a central template.
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Fig. 1. A schematic showing normalization of a 4D within-subject flow, starting with
the generation of the within-subject flows (upper-left), the generation of the hyper-
template (upper-right), the composition of the maps from 4D flow to hyper-template
(lower-left), and the normalization of the flow into the frame of reference of the central
template via the Ad operator (lower-right).

Taking advantage of the vector-space properties of trajectories wkt in a com-
mon hyper-template, operations such as average flow w̄t = (1/M)

∑M
k=1 w

k
t in

the hyper-template can be performed. The average evolution can be defined to be
φ̄t, φ̄0 = id and follows the evolution specified by d/dt φ̄t = Dφ̄tw̄t. The cross-
sectional average shape evolution over time is thus given by Īt = φ̄tI

? = I?(φ̄−1
t )

and also, the Eulerian velocity v̄t corresponding to the average hyper-template
velocity w̄t is found by v̄t = Adφ̄t

w̄t. The inverse maps φ−1
t = φt,0 follow the

equation

∂/∂t (φt,0 ◦ φ0,t) = ∂/∂t φt,0(φ0,t) +Dφt,0(φ0,t)Dφ0,twt = 0

and therefore, ∂/∂t φt,0 = −wt(φt,0). For the average inverse map, denoting
φ̄−1
t = φ̄t,0 = ηt, φ̄−1

0 = η0 = id, the equation for the average inverse map
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evolution becomes d/dt ηt = −w̄t(ηt) which is in the form of the standard ODE
φ̇t = vt(φt) implemented previously in [11].

2.4 Statistical evolution of within-subject 4D flows in the
hyper-template

By placing each within-subject’s hyper-template normalized flow in a matrix
W = [w1w2 · · ·wM ] of dimensionality (n = Nx × Ny × Nz × T × 3) ×M , we
can perform PCA on this database matrix to find principal components that
best capture the variability of the database. By projecting each column of W
on the subspace spanned by a reduced set of principal components, we can
represent a within-subject 4D flow in the reduced dimensionality space, where
the coefficients are directly amenable to statistical tests on the reduced data.

Furthermore, we can also reconstruct the within-subject flows based on a
single principal component ‘direction’. Let ŴPCi be the database matrix formed
from the projection of each hyper-template-indexed within-subject flow on the
subspace of the ith principal component. The mean over a subset of columns,
representing the two groups, would generate the mean trajectory of that subset
of subjects along the ith principal component. These hyper-template-indexed
‘principal component flows’ can then be integrated as described above to generate
time-evolutions of the hyper-template along those ‘directions’.

2.5 Materials

We applied this proposed methodology on a small pilot dataset of 10 subjects
from a study of cognitive-impairment with no dementia (CIND) [12], consisting
of 5 CIND and 5 controls, aged 69.9±7.9 years of which 6 were female and 4 were
male. Subjects were followed for a period of two years, with MRI (T1 SPGR,
1.5T) scans 3-6 months apart, with six subjects scanned 9 times, one subject
scanned 8 times, and three subjects scanned 7 times. Automatic left and right
hippocampus segmentations were generated for each MRI using a typical multi-
atlas segmentation procedure. All further processing was done separately for the
left and right hippocampus. Each subject’s earliest scan was used as the base-
line image, with the last followup scan taken 24 months later. Within-subject
4D splines were computed on the left and right hippocampus segmentations sep-
arately with T = 48 time-steps, corresponding to 24 time-steps per year. This
temporal-resolution was chosen considering the trade-off in computational and
model complexity with the ability to represent sufficient longitudinal deforma-
tion. This is a small database and hence the purpose of this experiment is mainly
to demonstrate the feasibility of the technique and not to generalize the results
to the control vs CIND groups from which this data was taken.

3 Results

Figure 2 shows the mean template evolution for the control and patient (CIND)
groups, at time from baseline of 6, 12, 18, and 24 months. Visualizations of the
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evolved template shape at each point of the flow, t = T , were generated using an
isosurface of the propagated template, colored by the determinant of the Jaco-
bian of the map. PCA was performed on the hyper-template indexed flows to gen-
erate reconstructions using each of the 9 principal components, ŴPCi , i = 1 . . . 9.
As described earlier, the columns corresponding to flows of the control and CIND
subjects were extracted from the database matrix to generate flows along each
principal component ‘direction’. The evolved hyper-template shape at the end-
points of these flows are shown in Figure 3 where there are noticeable differences
in the evolution of the hyper-template along the principal directions specified by
the two groups. For example, the evolution along the left fifth principal compo-
nent displays a different pattern of atrophy between the controls and the CIND
group.

Statistics on mean coefficients along each principal component (the ‘dimensionality-
reduced flows’) for each group are plotted in Figure 4. Comparing these plots to
the visualizations of Figure 3, one can see the space-time representation of the
between-group differences. To determine if there are any statistically significant
group differences, we performed two-sided Student t-tests on coefficients along
each of the ‘principal directions’, with a null-hypothesis of equal means. We found
statistically significant group differences for the left hippocampus’ 5th coefficient
(p-value=0.042) and the right hippocampus’ 4th coefficient (p-value=0.0074), all
other p-values were higher than 0.05 and are thus not reported.

The top 4 most significant t-test coefficients from each side, (right=[2, 4, 6, 9],
left=[2, 5, 6, 9]), were selected to determine if a subset of coefficients along prin-
cipal components taken together can provide evidence of statistically signifi-
cant group differences. The Hotelling T 2 statistic was used with permutation
testing(n=10,000) to determine significance, resulting in significant group dif-
ferences for both left (T 2=118.44, effect size=6.88, p-value=0.0104) and right
(T 2=176.95, effect size=8.41, p-value=0.0060) hippocampal shape evolution over
time.
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Fig. 2. Mean template time-evolutions for the controls and CIND subsets at times
t = 0, 11, 23, 35, 47, corresponding to 0, 6, 12, 18, and 24 months, shown coloured with
|D(φ̄0,T )| to show volumetric contraction (cool) and expansion (warm). In hippocampal
contraction representing atrophy, is observed to be more prevalent in the CIND group
in line with the expected pattern of atrophy.
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Fig. 3. Modes of variation of controls and CIND within-subject 4D flows in the hyper-
template obtained from projections of the individual flows into subspace of single prin-
cipal components of the database matrix and evolution of the average hyper-template
indexed flow (w) to mapping at final time t = T , shown coloured with |D(φ0,T )|.
The color pattern (volumetric contraction (cool) and expansion (warm)) on the hyper-
template for the two groups shows differences in some principal components. These
results are mainly illustrative of the method as due to the small size of the database
used in this experiment, their generalization is limited.

4 Conclusions & Discussion

Construction of hyper-template normalized within-subject 4D shape represen-
tations using volumetric images acquired over time is likely to be an impor-
tant tool for discovering and comparing the space-time progression of various
neuro-degenerative diseases. In this paper, we show one method that uses multi-
atlas segmentation of each time-series MR image to construct the within-subject
flows, followed by transforming them to a single central hyper-template. This
template-normalized 4D flow can then be subjected to statistical analysis to
discover modes of variation in the database, and visualize the evolution of the
hyper-template along these modes of variation.
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Fig. 4. The bar plots show the mean coefficients from the control and CIND groups for
each PC calculated from the database matrix. The average projections of the controls
group and the CIND group along the ‘principal modes’ show distinguishing features
that may be representative of the underlying differences in disease state.

The Ad-operator based approach presented here offers some methodologi-
cal advantages. In contrast to the method of parallel transport that relies on
a geodesic path of transformation between individual baseline shapes and cen-
tral hyper-template to creates an isometry between tangent spaces and is thus
path dependent, our proposed Ad-operator approach of transforming flows does
not depend on the path and corresponds only to a change of reference frame.
Therefore, our approach can be used with any transformation between the hyper-
template and the baseline shapes, and does not require a geodesic shortest path
transformation. The normalization by the Jacobian of the transformation in this
Ad-operator approach as seen in Equation 1 also has mathematically desirable
properties in handling issues of scaling across varying anatomical sizes across
subject’s baseline shapes. Baseline neuroanatomical shapes of different subjects
may be of varying sizes reflecting different cranial vault size. Longitudinal mor-
phometric changes with respect to a smaller (with respect to the hyper-template)
baseline shape are scaled up versus changes seen in relation to a larger (with re-
spect to hyper-template) baseline shape. The issue of size, and how to compare
changes that are with respect to different ’size’ baselines is a important issue in
longitudinal analysis, and this formulation gives one way of incorporating scaling
of measurements in the analysis.

The experiments presented in this work are on a small database limited due to
our data sharing agreement and hence mainly for demonstration of the method;
particular observations regarding patterns of atrophy seen in this experiment
will require further confirmation on a larger database. Visualization of shape
evolutions of controls vs CIND along the database principal components (the
‘modes’ of shape evolution) demonstrate several distinguishing features such as
prevalence of regions of inward deformations in CIND group. These differences
are indicative that this method could potentially be a useful tool to discover the
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modes of progression of of morphometric shape change over time given a larger
database.

Another important issue not addressed here before valid longitudinal com-
parisons can be made across the database is the considerable heterogeneity in
the baseline image with respect to placement in time along the disease process.
Although individuals in the database are grouped in overarching categories such
as controls and CIND, they are likely in different phases of the disease evolution,
and the disease may also be evolving at differing rates within individuals. Thus,
choosing a baseline image that represents the same stage in the disease across in-
dividuals is an important consideration to compare shape evolutions over similar
time-course of the disease, as well as some form of time matching to account for
the heterogeneity in the speed of evolution of the disease. These issues are not
straightforward to address as most imaging databases are acquired over a fixed
duration in time with limited imaging samples. For our experiments thus, the
first available scan of each individual was chosen as their ‘baseline’ even though
these baseline states represent different states for each individual. Given a longer
study duration, a better choice would be to temporally align the longitudinal
time-sequences according to some measurable event, such as disease onset but
due to limited imaging samples, and small numbers of subjects, this may not
always be feasible.

In conclusion, this paper presents a method for the normalization of 4D
within-subject flows of vector fields constructed with respect to individual sub-
ject baseline shapes into the frame of reference of a single central hyper-template
shape. This provides a way for the cross-sectional analysis of 4D longitudinal
flows that can be used to statistically and visually investigate shape changes
over time across subjects. This method was demonstrated on a small set of lon-
gitudinal MR image database. Although the small size of the database precludes
generalization of observations, and the utility is mainly in showing the feasibility
of the method, statistically significant group differences between normal controls
and cognitively-impaired patients with no dementia were found in testing for
group differences in the dimensionality reduced coefficients along the database
principal components. Future plans involve application of this methodology to
a larger longitudinal dataset and exploration of the time evolution of a larger
number of brain structures.
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