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Abstract

This paper examine the Euler-Lagrange equations for the solution of the large
deformation diffeomorphic metric mapping problem studied in [9, 17] in which two
images Io,I1 are given and connected via the diffeomorphic change of coordinates
Ipo ¢! = I where ¢ = ¢1 is the end point at t = 1 of curve ¢, t € [0,1] satisfy-
ing ¢ = vi(¢¢) , t € [0,1]with ¢ = id. The variational problem takes the form

1
argmin ( [ Vol + o 7 - Ilniz) ,
vids=vs(Pt) 0

where ||v¢||v is an appropriate Sobolev norm on the velocity field v;(-), and the second
term enforces matching of the images with || - ||z2 representing the squared-error norm.

In this paper we derive the Euler-Lagrange equations characterizing the minimizing
vector fields v, t € [0, 1] assuming sufficient smoothness of the norm to guarantee exis-
tence of solutions in the space of diffeomorphisms. We describe the implementation of
the Euler equations using semi-lagrangian method of computing particle flows and show
the solutions for various examples. As well, we compute the metric distance on several

anatomical configurations as measured by fol ||lve]||vdt on the geodesic shortest paths.
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1 Introduction

The last decade has witnessed tremendous developments in medical imaging technologies
which are delivering exquisitely detailed pictures of human anatomy. The acquisition of
structural imagery via Magnetic resonance imaging (MRI), anisotropic or orientational im-
agery via Diffusion Tensor Magnetic Resonance Imaging (DTMRI) and functional activation
imagery via Functional Magnetic Resonance Imaging (fMRI) among others is routine. These
capabilities have in turn spurred the development of mathematics and algorithms for analysis
of the information contained in these images. A recurring theme in biomedical image analysis
is registration; the variability in human anatomy is not an exception but a rule and hence
the need to transform the image data into standard coordinates to facilitate analysis and
generalize results to a large subset of the population. The goal of registration is to compute
a transformation ¢ : Q@ —  where Q C R is the domain (n = 2 for 2D or n = 3 for 3D) on
which the data (structural, orientational and functional) are defined. Let images representing
this data be functions I : @ — R? defined on Q. Structural images acquired via MRI are
scalar valued d = 1, color images such as RGB are vector valued d = 3 and anisotropy or
orientational images acquired from DTMRI are matrix valued. Since the diffusion tensor is
symmetric, these can be taken to be vector valued d = 6. Let Iy and I; denote the template
and target images. The transformation of the template image Iy under such a transformation
is the pullback image defined to be ¢.Iy = Iy o p~! = Iy(¢~!). The transformations increase
in dimensionality from low dimensional global transformations specified by a few parameters
such as the affine transformations to the high dimensional non-rigid transformations which
are specified at each point of the image domain.

The early attempts to compute high-dimensional non-rigid transformations in the medical
image setting resulted in the development of the elastic matching strategy by Broit, Bajcsy
and co-workers [4, 2, 3] and development on these lines continues as this model is refined and
specialized to various applications. In this setting, the transformation ¢ is linearized around
the coordinate system of the exemplar or template coordinate system and generated from a
displacement vector field u : Q@ — R" such that ¢(z) = z + u(z) or ¢ 1(z) = z — u(z) for
all points z € Q. The transformed template image Ip then becomes Io(p !(z)) = Io(z —

u(z)), Yz € Q. The “goodness” of the transformation is measured by a cost of the form
EZ(IOJIh(p) = ||IO o (p_l - Il”%

where || - ||z is the standard L? norm of square integrable functions [|f|j3 = [, |f(z)[>dz.
The optimal transformation is the one that minimizes this cost and the optimal vector field

u that generates such a transformation is, from among the many possible solutions, chosen



to be the one with the highest smoothness. The measurement of smoothness is achieved by
specifying the norm on the space of vector fields of the domain 2 to be defined through a
differential operator L by:

Eq(u) = || Lull3

where L is commonly chosen to be a differential operator of the form L = (—aA + v)Lyxn-
In the variational setting (a very nice discussion is in [1]), the optimal displacement vector

field is computed by optimization of the cost
. 1 _
argmin || Lul|3 + —lllooy L- L.
u

This approach of generating transformations from displacement vector fields has been an
important development in computing non-rigid high dimensional transformations of medical
imagery allowing for comparison of anatomy in a standard coordinate system. One of the
limitations of this approach is that there are no explicit constraints that ensure that the
transformations computed are one-to-one or invertible. Indeed, in some cases [§] folding
of the grid over itself can occur thereby destroying the neighbourhood structure which is
essential for the study of anatomy. This method of computing transformations is known as
the small deformations approach as valid transformations of anatomy using this linearized
model via displacement vector fields are computed when the images are seperated by small
deformations of the domain.

It is of considerable interest to compute transformations which are not only invertible but
also preserve properties such as smoothness of curves, surfaces or other features associated
to anatomy. Therefore, diffeomorphic transformations, which are smooth invertible trans-
formations with smooth inverse, are of considerable interest in this regard. Constraining
the transformations to be diffeomorphisms is a natural choice in the study of anatomy and
properties based on anatomical coordinates as under these transformations, connected sets
remain connected, disjoint sets remain disjoint, smoothness of anatomical features such as
curves and surfaces is preserved, and coordinates are transformed consistently.

The large deformation model for computing transformations developed by Christensen,
Rabbitt and Miller [7] overcomes the limitations of the small deformations model by ensuring
that the transformations computed between imagery are diffeomorphic. In this setting, the
transformation ¢ of the domain is generated as the end-point ¢ = ¢; of the flow of a time-
dependent velocity vector field vy : @ = R", ¢ € [0, 1] specified by the ODE by = v¢(¢¢). This
gives a path ¢; : @ = Q, ¢t € [0,1] in the space of transformations starting with ¢y = Id,

where Id is the identity transformation Id(z) = z, Vz € Q, and terminating at the end-point



t = 1 of the flow to the particular transformation ¢ = ¢; = ¢g + fol v¢(¢¢)dt matching the
given images.

The main contribution of this paper is the estimation of the optimal transformation via
the basic variational problem that, in the space of smooth velocity vector fields V' on domain
Q, takes the form:

o= argnin (| el + Lt 0 g7 - Bl ) - M
v:ge=v¢(¢e) \JO o
The optimizer of this cost then generates the optimal change of coordinates ¢ = ¢¥ upon
integration dqgi’ /dt = ﬁt(qgi’), ¢o = id, where the subscript v in ¢V is used to explicitly denote
the dependence of ¢ on the associated velocity field v. As shown in [9, 17], enforcing a
sufficient amount of smoothness on the elements of the space V' of allowable velocity vector
fields ensures that the solution to the differential equation d’t = v(y), t € [0,1], vy € V
is in the space of diffeomorphisms. The required smoothness is enforced by defining the
norm on the space V' of smooth velocity vector fields through a differential operator L of
the type L = (—aA + v)*I,x, where a > 1.5 in 3-dimensional space such that ||f||y =
IILf|l2 where || - ||2 is the standard L? norm for square integrable functions defined on €.
We term the solution satisfying equation 1 as the large deformations diffeomorphic metric
mapping (LDDMM) solution in the sense that (1) similar to the flow approach first introduced
by Christensen [7], it provides large deformation coordinate system transformation and (2)
as shown in [12, 17, 11], in contrast to [7], the length of the shortest path inf fol [|ve]|v de

connecting images Iy to I; defines a metric on the image orbit Z.

In this paper, we present the derivation of the Euler-Lagrange equation for the solution of
the variational problem 1 in the space of smooth velocity vector fields. We present the imple-
mentation details of a gradient algorithm using the Euler-Lagrange equation for numerical
computation of the solution to 1, and in particular a semi-lagrangian method of particle flows
to integrate the vector fields being a non-dissipative method as opposed to traditional Eule-
rian methods which are highly dissipative. The optimizer of 1 generates a geodesic shortest
length path in the space of the group of transformations in contrast to the path generated
by the method of Christensen et. al [7] which is a locally optimal solution with which we

compare the solution to 1.



2 Euler equations for the variational minimization on

vector fields

The starting point for our approach to the analysis of shape and size in anatomical images is
modelling anatomy as a deformable template [10], ie. the observed anatomical imagery Z is
an orbit under diffeomorphic transformations G acting on the coordinate space of a family of
exemplars. A homeomorphism on the background space (2 is a bijective (invertible) function

¢ : Q = Q, which, with its inverse ¢!

is continuous. Let the set of homeomorphisms acting
on the background space be denoted by Hom(f2). The homeomorphisms form a group for
the usual law of composition 9 - ¢ = 1 o ¢. Moreover, for any ¢ € Hom(f2) and any image
I:Q— R, . =10¢p ! defines an action of Hom(Q2) on the set of all images. Let G be
a sub-group of Hom(Q) (for instance the set Diff(Q?) of any ¢ € Hom(Q2) which are, with
its inverse, continuously differentiable). Given a template Iiempiate, the deformable template

model of an anatomical ensemble is the orbit

= { (PItemplate = Itemplate o 80_1 | (NS g }

of Liemplate Under the action of G. The orbit Z being homogenous under the action of the
elements of G which are bijective mappings implies that images in the anatomical ensemble
7 are topologically equivalent i. e. they possess the same sub-structures and for any two

images Iy, I; € 7, there exists a ¢ € G that registers the given images I = ¢lj.

Given two images, the first task is to find the particular element ¢ € G that registers

the given images I} = @Iy = Iy o ¢~ 1.

In the large deformations setting, this element is
estimated as the end point of the flow associated to a smooth time-dependent vector field.
Let v : [0,1] — V be a time-dependent velocity vector-field where V' is a Hilbert space of
smooth, compactly supported vector fields on €. Let such a velocity vector field define the

evolution of a curve ¢" : [0,1] = G via the evolution equation

9 61(w) = w97 (@) )

where the subscript in ¢? is used to explicitly denote the dependence of ¢ on the associated
velocity field v. The initial point of the curve ¢¥ at t = 0 is ¢§ = Id € G where Id is the
identity transformation Id(z) = z,Vz € Q. The end point of the curve ¢” at time ¢ = 1 is
the particular diffeomorphism ¢} = ¢ € G that links the given datasets Iy and I3 such that

L =Ihop

and it is this element ¢ that we compute as the end point ¢j associated to
a flow v. Thus, we seek a time-dependent velocity vector field v which when integrated via

equation 2 generates the particular diffeomorphism matching the given image datasets.



Let the notation ¢, ¢ : 2 — Q denote the composition ¢s ¢+ = ¢¢0(¢s) . The interpretation
of ¢5+(y) is that it is the position at time ¢ of a particle that is at position y at time s.
Therefore ¢} (x) = ¢§ () is the function that denotes the position at time ¢ = 1 of particle
that is at position x at time 0. Let the Jacobian of mapping ¢, ;, the matrix composed with
the space derivatives of ¢, be denoted by D¢, ;.

To solve the variational problem 1, we first need to compute the variation of the mapping
¢Y o under the perturbation of v € L*([0,1],V) by h € L*([0,1],V) which we state in the

following lemma.

Lemma 2.1. The variation of mapping ¢, , when v € L2([0,1],V) is perturbed along h €
L?([0,1],V) is given by:

v+eh _ v t
0ndt, = ane = lim =5 —pgy, (D4 ,) h o 48 du. 3)
, lin .| (s ,

€

Proof. We provide a proof under the assumption that the derivative with respect to € in
equation 3 exists and proceed to its identification. The proof of existence can be carried on
by standard ordinary differential equations (ODE) arguments. We have
deyie"
dt

= v 0 ¢U" + ehyo gt
Computing the differential in € at € = 0 yields

d
aahqb;’,t = Dg» ,040nd5, + hi o &3, (4)

Thus, 053 ; is the solution of a non-homogeneous differential equation, and it suffices to show
that the last expression in 3 is a solution of the same equation with the correct condition

On¢s s = 0, but this is an obvious computation, using the fact that
d v v
%D(ﬁs’t = D¢§,tUtD¢svt ’

which simply comes from computing the space differential of d¢y , /dt = v o ¢ 4. Note that
this identity also provides the solution of the homogeneous equation associated to 4, so that
3 can also be directly identified by variation of the constant.

O

Existence of the transformations generated via equation 2 depend on the smoothness con-
straints placed on vector fields allowed in V' [9, 17]. One choice to ensure existence of solutions

in the space of diffeomorphisms for the ordinary differential equation (ODE) 2 has been to



construct V as the completion of the space of smooth, compactly-supported vector fields for
the inner-product defined through a differential operator L (denoting its adjoint as L) given
by:

(f,9)v =(Lf,Lg)r> = (L'Lf,g) 2, (5)
where (, )2 is the usual L2-product for square integrable vector-fields on . With V' defined
in this way, the flow of v € L!([0,1],V) generates the sub-group of diffeomorphisms G =
{eo]|p=9¢% wveL(0,1],V) } that are the end-points of flows associated to elements
v € L1([0,1],V) (the technical details associated with this construction have been published
in [9, 17]). From the assumptions placed in the construction of V', a compact self-adjoint

operator operator K : L2(Q,R?) — V is uniquely defined by
(a,b)r> = (Ka,b)y. (6)
and together with 5, one gets for any smooth vector field f € V that
K(L'L)f = f. (7)
The variational problem for dense image matching is now stated and solved in the space
of vector fields V.

Theorem 2.1. Given a continuously differentiable idealized template image Iy and a noisy
observation of anatomy Iy, then & € L?([0,1],V) for inezact matching of Iy and I, is given
by

1

R . . 1

5= arginf E()= / loel2dt + = 1Ty 0 6 — T2 (8)
vEL2([0,1],V) 0 o

which satisfies the Euler-Lagrange equation given by
" 2 b
20, K (25 1D6u] V2 (30 = 71)) =0 )

where JY = Iy o ¢ro,J} =110y 1.

Proof. Let the velocity v € L%([0,1],V) be perturbed by an € amount along direction h €
L?([0,1],V). The Gateaux variation 5 E(v) of the energy functional is related to its Fréchet
derivative V, E by
E —-F
OpE(v) = lim (v+eh) ©)

e—0 £

1
2/ (Vo Ey, hy)ydt.
0

The variation of F;(v) = fol ||ve]|2,dt is given by:

1
OnE: (v) = 2 / (v, he) vt
0



Variation of Ey(v) = Z5|[Io o ¢} o — L[5, is

2
OnEax(v) = ;(IO ° ¢11),0 —ILi,DIpo ‘75111,06h¢11),0)L2

Q) 2 ! _
@ o dto—1uDIyo dho( = Déty [ (DE)™h o 8 i)

® -2 [

2/, ((Ioo ¢t o — 11, D(Io © 67 4) (D1 )~ hy 0 67 y)p2dt

with (a) where subsitution of d,¢7 o is made using lemma 2.1 and in (b) collecting D(Ip o
1,0) = DIy o ¢7 ¢D¢7 . Setting ¢7 ;(y) = z i. e. ¢}(z) = y, gives the Jacobian change of
variables |[D¢y ; (z)|dz = dy. With this, ¢} o = ¢ 50 ¢}, = ¢, and substituting in above,

we get:
—92
OnEn(v) = F/o ([Do;11(Jo o dig—T1od;1), Do ¢fo)ht)r2dt

—9 i
= o5 | (D611 = VIR b et

! 2
_/ <K <_2|D¢g1|(J3_Jg)wg),ht> at.
0 g ’ \%

Collecting terms, the gradient of the energy functional is thus

2
(VoB)y = 20 — K (§|D¢;1|wg (79 - Jg)) , (10)

where the subscript V in (V,E;)y indicates the gradient is in the space V. The optimizing

velocity field satisfies the Euler-Lagrange equation
1
2 .
OLE(d) = / <2ﬁt -K (§|D¢§,1|VJE (JP — Jg)) ,ht> dt =0 (11)
0 v

Since h is arbitrary in L%([0,1],V) we get equality (9). O

The optimal vector field for 8 is calculated by using the gradient 10 in a standard gradient
descent algorithm. As we shall see in the next section, the optimization vector fields assign
a metric fol ||ve]|vdt on Z and we denote the algorithm based on this gradient as the large

deformation diffeomorphic metric mapping (LDDMM) algorithm.

3 Numerical implementation of LDDMM algorithm

This section presents the discretization and implementation details of the estimation of the
optimizing vector fields. Let Q = [0,1]?/[0,1]® represent the 2D/3D background space.



Let the discretized flow generating the diffeomorphism be indexed by the discretized index
t; € [0,T],7 € [0, N], the size of a timestep being dt such that T = N x §t. Assume piecewise-
constant velocities in the discretized time intervals. Let fu,{“j (y) and qﬁ,’fj (y) denote the velocity
field and the mapping for the k' iteration of the gradient algorithm and the j** timestep
along the discretized flow. Let Iy = J§ be the image at t = 0 of the flow being mapped to
the image I; = JF at time index ¢t = T of the flow.

3.1 Gradient descent scheme based optimization

The variational optimization of the energy functional (Equation 8) is performed in a standard
steepest descent scheme
Rt = o — eVyr E (12)
J

where the discretized version of the gradient V, E from Equation 10 is given by

Vo B () = 208, ) — 5K (IDGh aIDIL W) (R 0) - W) . (3)

The discretized energy becomes

Z Ik I8¢ + v > Vh) = WP (14)

and the length of the path from the identity to the estimated matching diffeomorphism ¢r

at simulation index k becomes

N-1
Length(Id, ¢2") = > |lvf llvot. (15)
7=0

3.2 Choice of operator L and evaluation of LTL, (L'L)~

Let discretized functions f(x) and g(z) be defined f,g: Q C Z™ — R™ on the discrete lattice
Q) C Z™ and which satisfy equation
LiLf=g. (16)

The operator L is chosen to be of the Cauchy Navier type, L = —aV?2 + vI where I is the
identity operator and V? = &Eg + ay2 + 822 is the Laplacian operator. The coefficient «
enforces smoothness, higher values ensure solutions of high regularity, and the coefficient
is chosen to be positive so that the operator is non-singular. As well, as more anatomies
are mapped in future, we will use the statistics of the anatomical mappings to choose these

coefficients [10]. We assume periodic boundary conditions, in which case L is self-adjoint



L = L. Given the discretized function f, to calculate the function g via Equation 16, write

the discretized version for Lf(x) using finite differences on a periodic domain.

g(x1,22,23) = (—aV®+7)f(z1,72,23)
_ _a(f(ﬂvl + Awy, w2, 23) — 2f (21,02, x3) + f(21 — Awy, 22, 23)
B Az?
f(z1, 22 + Aza,x3) — 2f (71,72, 23) + f(21, 22 — dxa, 3)
+ 2
Az
f($1,$2,z'3 + A.’IJ3) — 2f(.’L'1,$2,.’L’3) + f(.’El,SCQ,.Z‘;g — A.’E3)
+ E )
Az3
+ vf(@1,22,23) (17)

where Azy = 1/Ny, Azy = 1/Na, Azs = 1/N3 are the discretization of the domain €2 to the
unit-cube. The operator L' = L? may be evaluated by L(Lf)) or by explicitly writing out
the discretized version of L2 f on the lines of Equation 17. Given the function g(z), function
f(x) is evaluated using the Equation 16 by solving f = (L'L)"'g. This computation is
efficiently achieved in the Fourier domain: if F' et G are the discrete Fourier transforms
of f et g, equation 17 yields G(k) = A(k)?F(k) where frequency k = (ki,ks, k3) and
Ak) = v+ 2a Zf’zl(%ﬁm—“) Thus given g, equation 17 is solved by taking the
fourier transform, yielding G, dividing each G(k) by A(k)? and then computing the inverse

Fourier transform of the result to yield f.

3.3 Integration of velocity field to generate maps

Given the velocity fields, we need to compute the diffeomorphisms (¢¥)~! that we denote as
#{,o- The equation of evolution of this function is derived by differentiation with respect to

time (¢7) ! o ¢¥(x) = = for all z € Q giving:
9 d
2 60t o 1@ + DN 0 1) S gi@) =0
9
5:(80) 7 0 8{(@) + D(¢7) 7" 0 4} (x) viof(w) =0
o6} “
%0.4) + Datats) v) Lo

where the derivative d/dt(¢}) is given by definition to be v; o ¢, D stands for the Jacobian

operator, and (a) follows from change of variables ¢Y (z) = y and finally changing back to the

notation used throughout the paper that (¢?)~*. This differential equation is in the Eulerian
frame of reference, it is an example of a transport equation where the flow is observed at the

fixed regular Cartesian mesh (note that the velocity is specified on the grid points y € Q at

10



each time t) by following a new set of particles corresponding to those that are at the regular
mesh points at each discretized time instant. In contrast, the Lagrangian equation presented
in (Equation 2), flow is observed by following the streamlines of the flow of particles, this
leads to computations that are on a regular Cartesian mesh to start with but evolve to become
computations on an unstructured mesh. A straightforward computation of the solution to
the equation in the Eulerian frame of reference, since one needs to compute the function
#{, is to approximate the derivative by corresponding finite differences and propogate the
solution from time ¢ to time ¢ 4+ 1 starting with known solution at time ¢ = 0 which is the
identity map. This scheme is known as the Eulerian scheme. The solution to (Equation 2)
also approximated by standard finite differences is called a Lagrangian scheme. The issue
here is the choice of the size of a timestep. On one hand, in the interest of accuracy, the
timestep of discretization needs to be small, on the other hand, overly small timesteps lead to
large computation times and thus impractical. Eulerian schemes have the disadvantage that
the size of timestep is restricted by issues related to CFL stability [13] whereas Lagrangian
schemes are computational stable and provide good tolerance to numerical-accuracy related
errors for choice of larger size timestep compared to Eulerian schemes. On the other hand,
Lagrangian schemes are more involved to implement due to the need to track particles whose

trajectories evolve away from their starting positions on a regular grid.

Semi-Lagrangian schemes [15] are a hybrid between these two schemes, they involve fol-
lowing the streamlines for a timestep with the streamlines chosen at each timestep to be
those that end on the regular grid at the next timestep. This allows the choice of larger
timesteps which are an advantage of Lagrangian schemes and data computation on a regu-
lar grid, which are an advantage of the Eulerian numerical schemes. We have implemented
a two-step semi-Langrangian scheme with iterative backward trajectory calculation which
are described in [15]. Given the velocity field vfj (y) for all discretized timesteps along the
flow ¢;,7 € [0,N — 1],6t = T/N, the semi-Lagrangian based scheme to solve the transport

equations governing the evolution of the mappings ¢3, o(y), ¢fj,T(y) are the equations:
bL0(y) =04, 0y — ) (18)

¢fj,T(y) = ¢fj+1,T(ZU + ). (19)

where « is the displacement in one-timestep of following the streamlines with appropriate
velocity v, 1.5(y) at the mid-point of the interval [t;_1,1;) for Equation 18 and [t;,;11) for
Equation 19. Various schemes to estimate the velocity at the mid-point are described in [15],

and we choose the simple approximation v}, .(y) = vt,(y) based on the assumption of piece-

11



wise constant velocity in discretized time intervals. Given this velocity, the displacement «
is iteratively calculated using the formula:

a ot , a

5 = 5’”%&;0_5 (y - 5) (20)

with the data for non-cartesian grid points being obtained by bi/tri-linear interpolation.

3.4 Constant Speed Reparametrization of velocity vector field

The minimizer of 8 is constant speed (||v¢||v = constant) since it is a geodesic. This property
can be numerically achieved by time reparametrization ([5]), and doing this in parallel to gra-
dient descent can significantly reduce the convergence time. We use the following procedure.

Define normalized length function s : [0,7] — [0,7] given by

T ¢
= dt
5t Length /0 loellv

with Length = fOT ||lv¢||ydt. Define the inverse function h : [0,T] — [0,T] given by h; = s; *
so that sp, =t and izt = 1/$p, Then, define o, = htvht, which has, by construction constant

norm, ||9¢||yv = Length/T. Since the Schwartz inequality implies

T
/ l[vil|2dt > Length? /T
0

this operation can only reduce the geodesic energy, whereas ¢ = h,» implying @3 = ¢ and

the second term of E(v), given in equation 8 is left unchanged. Thus the total energy after

reparametrization monotonically decreases.

3.5 The Large deformation metric-matching algorithm

The matching algorithm initializes with iteration & = 0, vfj = 0,VyEy, = 0,¢¢,0 =
Id, ¢s; 7 = Id Vt; € [0,T)]. For each iteration k =1,2,... K iterate the folowing:

1) Calculate new estimate of velocity vFt! = v* — eV + E. 2) Reparametrize the
velocity field to be constant speed. This is done every 10 simulations. 3) Calculate for
j =N —1to j =0 the mapping ¢fjfr}(y) using Equation 19. 4) Calculate for 5 = 0 to
j = N — 1 the mapping ¢f:01 (y) using Equation 18.  5) Calculate for j =0toj=N —1
the image J9 = Ip ¢f:01. 6) Calculate for j = N —1 to j = 0 the image J}, = I o qﬁff%
7) Calculate for j = 0 to j = N — 1 the gradient of the image DJtOj. 8) Calculate for for
j=0to j =N —1 the Jacobian of the transformation |[D¢;;|.  9) Calculate for j = 0 to

j = N — 1 the gradient V x+1 E for v**! using Equation 10.  10) Calculate the norm of

12



the new gradient ||V «+1 E||. Stop if below threshold. = 11) Calculate the new Energy using
Equation 14. 12) If the number of simulations greater than specified number then Stop.
Else re-iterate with k = k + 1. 13) Denote the final velocity field as ¢ which gives the
estimate of the desired optimizer of Equation 8. 14) Calculate the length of the path on
the manifold using Equation 15. This is the length of the geodesic and hence the estimated

metric between the given images.

3.6 fol ||v¢]|vdt defines a metric on 7

The metric distance between any two points g, 1 € G comes from the geodesic length of
the curve ¢? € G,t € [0,1] associated to a vector field v € L?([0,1],V) given by fol |[ve]]v dt
with end-points o = ¢§ and 1 = ¢¥. The following construction [9, 12, 17]

1
pg<wo,sol)iinf{ / ||vt||vdt|so1=¢1’osoo} (21)
0

defines a distance on G for which G is complete. From the definition of the distance pg and

the construction of G, we get immediately the following right-invariance property:

pg (0o, 1) = pg(po © @, p10¢).

Proposition 3.1. The function pr : T x T — Ry defined on the anatomical ensemble T by:
pr(Io, ) =inf{ pg(Id,p) | L =Too ™", p€G }.
is positive, symmetric and satisfies the triangle-inequality.

Proof. The distance pz(Ip, ;) inherits the properties of positivity and symmetry from the
distance pg. It also satisfies the triangle-inequality if the distance pg is right-invariant to the
stabilizer of the template, which is satisfied here by construction as pg is invariant to the
entire group G [12]. From the results of Dupuis et. al, Trouvé and Younes, it can be shown
that the infimum is attained with pz(Iy,I;) =0 = Iy = I; and thus pz is a metric on Z
[19]. 0

Intuitively, if the images of the given anatomies are close, then the diffeomorphic trans-
formation needed to register the images will be closer to the identity transformation and the
corresponding distance between images as defined in Equation 22 will be smaller than if the
given images are far away. The distance presented only deals with the deformation aspects,
and is not invariant by rigid transformations, which is not an issue for many application, for

which rigid registration is given, or at least may be recovered by standard algorithms.
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It also turns out that the critical points v € L2([0, 1], V) of the length functional fol [|vg ||y dt
are also the critical points of the energy functional fol ||lv¢||3-dt with the additional property

that they are of constant speed giving that

1
P00y 1) = inf { [ el dt | o1 = 6t o o, full = constant}
0

the proof for which is found in in [6]. Therefore, the length of the vector field satisfying the
Euler-Lagrange equation 10 being the variational optimizer of 8 gives the metric distance
between images I and Iy o ¢7 5. The problem which is dealt with in this paper, ie. the

minimization of L
1
[ llfat + o o 81 — Rl
0

can be seen as an approximation of the exact matching problem which corresponds to the

computation of pg, taking into account possible unaccuracies in the observation of I.

4  Numerical results

We first present the application of the LDDMM algorithm to compute a geodesic path
between two given images, and the metric estimated for the pair. The algorithm is imple-
mented in C++ to work on 2D images as well as 3D volumes and parallelized using MPI to
execute on an IBM RS6000-SP computer to take advantages of larger memory and concur-
rent parallel processing for computations. The time interval of the flow is discretized, unless

stated otherwise, into 20 steps, with each step being of length §t = 0.1.

The “Parallel Translation” experiment results are shown in Figure 1, where the image
pair being mapped are a circular ball and its diagonal translated version. The “Heart Map-
ping” experiment results are shown in Figure 2, where the images being mapped are 2D MRI
sections from a normal canine heart and an abnormal canine heart (Data courtesy of Dr.
Raimond Winslow, Center for Computational Biology and Medicine, The Johns Hopkins
University). The “Schizophrenia Hippocampus Mapping” (Schiz.) and the “Alzheimer Hip-
pocampus Mapping” (Alzh.) are shown in Figures 3 and 4 respectively, where a section from
the hippocampus of a patient diagnosed with Schizophrenia and a patient diagnosed with
Alzheimer’s disease are being mapped to a corresponding section from a young control (Data
courtesy of Dr. John Csernansky, Washington University). The “Macaque Cortex Mapping”
(Macaq.) results are shown in Figure 5 where the images being mapped are the cryosection

images of the cortex from two Macaque brains (Data courtesy of Dr. David Van Essen,
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Image Est. Exec.
Tter.

Experiment (Image Size) L
Error Metric Time

“Parallel Translation” (32x32) —0.01V2+0.1]  1.97% 0.769 70 0.2min

“Heart Mapping” (80x80) -0.01V2+1 7.12% 6.122 159  3.7min
“Schiz.” (64x64) —0.01V2 + 171 3.01% 4.891 277  4.2min
“Alzh.” (64x64) -0.01V2 +1 2.69% 5.592 255  3.9min
“Macaq.” (80x80) —0.01V2 +1 3.64% 6.869 134  3.2min

Table 1: Summary of parameters used for the 2D image matching experiments as well as
the final error in image overlap after the mapping relative to the error before the mapping,

metric distance, number of iterations for convergence and execution time.

Washington University). The 2D experiments were run on a single processor, Table 1 shows
parameters and data from these experiments. The “Mitochondria Mapping” experiment re-
sults (Figure 8) show the segmented mitochondria shapes from high resolution micrographs
that were mapped to a single image and the estimated metrics for operator L = —0.01V2+ 1.
The results of mapping 3D hand-segmented volumes taken from Alzheimers and Schizophre-
nia populations are shown in the Figure 9. The 3D images are of dimensions 80 pixels by
128 by 128 pixels and the operator L = —0.01V?2 + 0.1 was used for the mapping. Except
for the “Parallel Translation” experiment, all other images were registered using the software
“Analyze” [14] to remove rigid rotation and translation prior to the experiment. Execution
times depend on the size of images and the number of iterations needed to reach convergence.
For 2D images of the size 64 x 64, the execution time of the algorithm is of the order of a
few minutes on a single processor. For 3D images of the size 80 x 128 x 128, execution time

ranges from half an hour to a few hours running on 8 processors.

For each of these experiments, the sequence comprising the image Iy composed with the
diffeomorphisms at discretized instants ¢;,j = 6,12,19 on the geodesic path to the image I
are shown in Figures 1, 2, 3, and 4. Figures 6 shows the vector plot of the superposition
of velocity fields estimated for the flow, and 7 the estimated mapping ¢; ¢ for each of these

experiments.
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5 The “Christensen Algorithm” for computing large de-

formation diffeomorphisms

As described in the introduction, Christensen et. al. [7] proposed flows for large deforma-
tions generated paths through the space of diffeomorphisms which match the corresponding
images. These paths do not correspond to any global variational problem solution as stated
in 1, and will not in general generate the shortest path connecting the images through the
space of diffeomorphisms. Therefore it is not an algorithm that can be used to give the orbit
a metric distance. The Christensen algorithm exploits the fact that if the operator L does
not differentiate in time, then discretize space-time Q x T into a sequence of time-indexed
optimizations solving for the locally optimal velocity at each time and then forward integrat-
ing the solution. This is only a locally-in-time optimal method reducing the dimension of
the optimization and that at each time-step, the algorithm attempts to greedily reach the
target. The transformation ¢; o registering the given anatomical images is generated from
velocity fields which are assumed piecewise constant within quantized time increments of size
6,k=0,....K,t, = ké,k=0,..., K = %. The locally optimal velocity fields satisfy the
partial differential equation

L'Lv 4+, =0 (22)

where the function b; : 2 — R" is given by
by(z) = —a(J}(z) = Ji(2))V I} (2), (23)

where JP = Iy o ¢¢0 and Ji = I, and « is some constant. The time-indexed sequence of
locally optimal velocity fields vy; are integrated to yield the sequence of transformations ?,
j =0,1,2,..., which are points along a path on the manifold of diffeomorphisms from the

identity transformation to the point ¢; o, the length of which is fol [|vg]|vdt.

One way to interpret this method is to explore the connection to the search for the optimizer
of the cost in the space of diffeomorphisms G [18]. Rewrite Equation 8 as a function on G to
be

B(9) = plid, $1)° + 5 o 0 $r0 — Bl}s (24)
E;(r(l)) E;(rté)

and now the matching diffeomorphism is sought by a search in the space of diffeomorphisms G.

Suppose that the optimization for the matching diffeomorphism ¢; proceeds on the manifold
with the estimate ¢; at time ¢ being the candidate as the end-point of a curve ¢ : [0,t] = G

joining all previous estimated points with ¢g = id € G. The length of the curve traversed
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is then f(f [log|lvdt > pg(id, ¢¢) and this provides an upper-bound on the metric distance
pg(id, ¢;) as the curve traversed is not necessarily the geodesic. Let the cost for traversing
this curve from the identity to ¢; € G on the manifold be denoted by W; where

Wy = Length(id, ¢;)? + E2(¢1) > pg(id, ¢¢)* + Ea(dy) (25)

where Length(id, ¢;) is the length of the curve ¢ with endpoints id,¢; € G. The local
optimization process seeks the velocity v; such that moving along direction v; o ¢; at the
point ¢; on the manifold leads to the lowest increase of the cost Wiyq: at t + dt. Since
Wirar = (Length(id, ¢¢) + ||ve||vdt)? + Ea(¢i4at), which we can rearrange and simplify to the
first order as

Witar = Wi + 2||vg||lv x dt x Length(id, ¢¢) + Oy 0, E2(dt), (26)

where 0y,04, F2(¢:) is the change in F, at the point ¢; along the direction v; o ¢;. Fixing
llvtogillT,, g = 1ie. [|vellv =1, thelocal optimizer v;o; € Ty, G that minimizes 0y, o4, Fa(ft)

is given by
viody = ﬁmr%min (Bvsop, E2(de) = (VE2(dt), vt © 1)1y, G) (27)
ve||lv=1
= —VE,(¢:) = Opposite the direction of steepest increase (28)
= v = -VEk (¢t) o ¢t_1 (29)

More formally, this can interpreted as a gradient descent on the manifold of diffeomorphisms
[18] as:

0
= w0 b = ~VE(6). (30)
The computation of VEs(¢;) is done by writing
a) —2
Oyyop, B2 (1) w ;(Io o ¢t,0 — L1, D(Iy 0 d1,0)ve) 12 (31)
() =2
= ;(K((Jf —JD)VI), vy (32)
© (VEy(¢),vi 0 de)1,y,0 @ (VEy(¢¢) 0 67 Y, o)y (33)

where (a) follows from differentiating the cost Es, (b) from writing the transpose and changing
the notation VJ? = D(J?)! = D(Iy o ¢ o)t along with transferring the gradient from space
L? to space V using Equation 6, (c) from definition of the gradient in the tangent space T,G
at point ¢, (d) from transferring the inner-product to the tangent space V = T;3G at the

identity of the manifold. This is a Riemannian (sometimes called “natural”) gradient in the
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space of diffeomorphisms equipped with the right invariant metric, applied to for the data

term or the fitting term FEs. Comparing Equations 29, 32 and 33, we get that
=-VE o= 2 k(0= T 4
v = =V Ez(¢t) o ¢y =52 (J; 1V (34)

is the optimizer for the incremental local cost given in Equation 24. Rearrangement of
Equation 34 provides the PDE in Equations 22 and the body force function 23 establishing the
connection of the PDE formulation and the Riemannian gradient on the fitting term for the
local optimization of the matching cost in the space of diffeomorphisms. The regularization
provided by the operator K gives this gradient numerically stable behaviour in finite time
(of course, the limit behavior is unstable, because the regularization term p(id, ¢*)? is not
taken into account). Henceforth, we denote this algorithm proposed by Christensen et. al as
the “Christensen” or the “GEC” algorithm summarized as following.

1) Initialize: t; = 0, vy; = 0, ¢y; = Id. 2) Integrate the velocity field v¢; to compute
the map ¢y, ,,,0- Adjust the time-step of integration d¢ such that the largest displacement is
within one pixel in magnitude.  3) Use estimated ¢, , 0 to compute cost Ez(¢z,,,,0). This
cost quantifies the amount of registration of Iy and I; under the estimated mapping.  4) If
E5 < Threshold, STOP. 5) Using Equation 23, calculate the body force b;,,,.  6) Solve
Equation 22 for local optimizer v;,, using FFT-based inversion giving v, ., = —K(bs,,,)-
7) Set j = j + 1 and go to step (2).  8) On STOP, set time ¢; = 1, and number of steps
taken N = j.

Our implementation of the above algorithm also includes the template propogation feature
as originally described by Christensen et. al. (see [7] for details) to handle large deformations
where the computed transformations approach local singularity on a discretized spatial grid
and thus lead to numerical precision errors in interpolating concatenated transformations.
Note that the “demons” algorithm, proposed by Thirion [16], carries the same purpose (min-
imization of E5), but the GEC algorithm has the advantage of performing a true gradient
descent, for a suitable Riemannian structure, and always remain within a space of smooth

diffeomorphisms.

5.1 Comparison of the LDDMM algorithm with the GEC algorithm

Figures 10 and 11 show results for three experiments with the “LDDMM” and the “GEC”
algorithms. The experiments were terminated when estimated mappings from both made
the image mismatch error comparable. Figure 10 shows the image mismatch error as a

function of the estimated distance on the manifold of the estimated transformation from the
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Final Image Error | Distance on Manifold Time(s)
Experiment LDDMM GEC LDDMM GEC LDDMM/GEC
“Parallel Translation” 5.648% 5.65% 0.7223 0.722757 12/1
“Heart Mapping” 11.558%  11.799% 4.631 6.7145 120/2.4
“Macaque Cortex Mapping” 9.55% 9.53% 4.636 5.45 98/1.2

Table 2: Comparison of the length of the path on the manifold of diffeomorphisms from
the identity to the solution of the metric mapping algorithm and the solution of the “GEC”

algorithm.

identity. At the same “distance” from the target image, as measured by comparable values
of image mismatch error shown in table 2, the “LDDMM?” algorithm (solid line) estimates a
transformation whose distance from the identity is shorter than that estimated by the “GEC”
algorithm (dotted line).

Figure 11 shows the velocity field and the mappings generated using the two algorithms.
The mappings generated by both algorithms, by visual inspection, look very similiar. The
velocity fields estimated by the two algorithms are different however. The superposition of
velocity fields in time on a single plot for both algorithms reveals that for the “LDDMM”
algorithm, the velocity fields are smooth not only in space, but also in time, whereas the
velocity fields are smooth in space for the “GEC” algorithm but widely varying from one
time-step to another. The distance traversed on the manifold to reach those points is shorter
for the “LDDMM?” algorithm than the “GEC” algorithm.

6 Discussion

6.1 Hilbert gradient versus L? gradient

Notice that the gradient presented in Equation 10 is computed according to the inner product
on V', and we refer to it as a Hilbert gradient, which we would like to compare to its variant
in the space L2. Let L%(Q, R") be the space of square-integrable vector fields on 2 with the
usual L? product {-,-);2. Using Equations 5 and 7, in a weak sense, we can rephrase equation
11 as

1 2 N
(@) = [ (2wtny - (ZADof, 1990 (7= 7)) ) ar=0

L2
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giving the L2 gradient of the cost to be
2
(VuB) i =28 Dy = ( Z1D61,1992 (32 = 7))

Set the term b, = =2|D¢?¢,|VJP (J? — J}) and write the two gradients in space V and space
L?(Q,R™) with this simplification as being

(VvEt)V = 2Ut =+ Kbt
(VoEy)r2 = 2(L'L)v, + b

From this expression, it is clear that the Hilbert gradient can be deduced from the L2-gradient
by applying the compact operator K, yielding in this way much more stable computations.
Another way to interpret this is by an expansion in an orthonormal basis for L?(Q,R").
Let the self adjoint operator (L'L) be diagonalized in the orthonormal basis (w;)ien With

eigenvalues given by (\;);en. The expression for (V,E;)r2 becomes:

(VvEt)Lz = Z ((2(LfL)’Ut,'wi )Lz + <bt,w,’ )LZ) w; = Z ()\i (2vt,w,~ )Lz + (bt,wi )Lz)wi

ieN ieN
(35)
In the other case, expansion of Kb; in the same basis gives
Kb, = _ _ ( bt7 w; )L2
r =Y (Kb w;)powi =Y (b, Kwi)powi =y Wi
ieN ieN iEN ¢
and the gradient (V, E;)y becomes
V.E _ (b, w; )2
(VoBi)v =D | (201,wi )2 + )i (36)
T

iE€N
The operator K is compact, therefore the eigenvalues 1/\; — 0 as ¢ — oo and hence A\; — oo
as ¢ — oo. The difference in behavior of the two gradients come from the multiplication
or division of the basis coefficients with the eigen-values ;. Consequently, in Equation 35,
the high frequency coefficients are amplified whereas in Equation 36 they are smoothed. The

numerical unstability of the L? gradient clearly derives from this high-frequency amplification.

The gradient derived for the presented cost in the space V is compared to the more tra-
ditional gradient in the space L? and we show that the L? gradient is unstable due to its
high-frequency amplification. As a result, these gradients differ markedly in their numerical
properties. We have implemented both of these gradients numerically and found that the

Sobolev gradient is much more stable than the corresponding gradient in the space L2.
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6.2 The metric structure on Z

The highlight of LDDMM algorithm presented is the computation of the metric distance
between given images coming from the computation of a geodesic path on the manifold of dif-
feomorphisms connecting the images. This method is based on following a gradient-descent
based scheme with a Hilbert gradient in the space V' of vector fields for the global variational
optimization of the proposed cost 1. We present the derivation and implementation details
of this gradient algorithm and denote it as the LDDMM algorithm. The velocity vector
field solving this variational problem defines a “geodesic” path on the manifold of diffeomor-
phisms and the length of this path is a metric distance between the images connected via the

diffeomorphism at the end point of the flow i. e. Iy and Iy o ¢4 .

We compare the matching obtained by our gradient method optimizing over the entire flow
in L2([0,1],V) to the Christensen method of generating locally optimal flows via a viscous-
fluid PDE formulation which probably is one of the most efficient greedy methods in this
context. We also discuss an interpretation of this method as generating a locally optimal
velocity based on the Hilbert gradient of the fitting term. This method generates a path
on the manifold of diffeomorphisms, not necessarily the shortest path, but one for which
the incremental cost at each step is minimized. Comparing the velocity field generated by
these two methods, we see that the field generated by our gradient optimizing over the entire
flow produces a field that is smooth in space and time, whereas the Christensen method
produces a field that is smooth in space but not as markedly smooth with incremental steps
in time, which is to be expected from this local-in-time optimization method. The distance
generated by the Christensen method provides an upper bound for the metric distance. We

show experiments using the two methods for comparing these properties.

In conclusion, we have presented in this paper the derivation and numerical implementation
of a new gradient-based method for computing dense image based mappings solving a global
variational problem as stated in 1 and estimating metrics for images. We also present results
for applying this method to a several biological shapes in 2D as well as 3D. The metrics
estimated for Mitochondrial shapes provide a quantification on relative distance between
images which can be compared to human intuition and seems to be in agreement with it.
This method provides a quantitative measurement tool that can be used to compute many
such metric distances for images mapped to a common anatomical reference image to build
the distribution of these metrics in the population. This will allow the comparison of images

quantifying relative “close” and “far”, providing information that may be of potential use in
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aiding clinical diagnosis and treatment. This algorithm is also directly applicable to non-rigid
dense registration of color images or DT images and the calculation of metric distance on

these orbits.
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IO o ¢t67 IO o ¢t12, d) IO o ¢t19,
Metrlc ( ) 0 (b) 0.2695 ( ) 0.5004 () 0.7699

Figure 1: “Parallel Translation Experiment”. Shown is image [y composed with the diffeo-
morphisms at discretized instants t;,j = 6,12,19 on the geodesic path to the image I; and

the corresponding metric distance for the image with respect to image Iy.

IO o ¢t6, IO o ¢t12, d) IO o ¢t19,
Metrlc ( ) 0 (b) 2.1447 ( ) 3.9830 (d) 6.1277

Figure 2: “Heart Mapping Experiment”. Shown is image Iy composed with the diffeomor-
phisms at discretized instants ¢;,j = 6,12,19 on the geodesic path to the image I and the
corresponding metric distance for the image with respect to image I. Data taken from the

laboratory of Dr. Raymond Winslow, Johns Hopkins University.
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IO o ¢t6, IO o ¢t12, d) IO o ¢t19,
Metrlc ( )0 (b) 1.7119 ( ) 3.1793 () 4.8912

Figure 3: “Schizophrenia Hippocampus Mapping”. Shown is image [y composed with the
diffeomorphisms at discretized instants ¢;,j = 6,12,19 on the geodesic path to the image I
and the corresponding metric distance for the image with respect to image Iy. Data taken

from the laboratory of Dr. John Csernansky, Washington University.

IO o ¢t67 IO o ¢t12, d) IO o ¢t19,
Metrlc ( )0 (b) 1.9575 ( ) 3.6354 (d) 5.5929

Figure 4: “Alzheimer’s Hippocampus Mapping”. Shown is image Iy composed with the
diffeomorphisms at discretized instants ¢;,j = 6,12,19 on the geodesic path to the image I
and the corresponding metric distance for the image with respect to image Iy. Data taken

from the laboratory of Dr. John Csernansky, Washington University.
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(a) Io IO o ¢t6 IO o ¢t12, d) Ioo ¢7t19, I
Metric (a) 0 (b) 2.4042 (c) 4.4649 (d) 6.8690

Figure 5: “Macaque Cortex Mapping”. Shown is image Iy composed with the diffeomor-
phisms at discretized instants t;,j = 6,12,19 on the geodesic path to the image I; and the
corresponding metric distance for the image with respect to image Iy. Data courtesy of Dr.

David Van Essen, Washington University.
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Figure 6: The velocity field along the discretized flow vy;,j = 0...19 are superposed on
a single figure for each of the “Parallel Translation” (panel 1), “Heart Mapping” (panel 2),
“Schizophrenia” (panel 3), “Alzheimer’s” (panel 4), “Macaque” (panel 5) experiments respec-
tively. Notice that the velocity is smooth in space. Also interesting to note is that the velocity

field is quite smooth in time as well.
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Figure 7: Shown here are the estimated matching diffeomorphism ¢; ¢ for the “Parallel Trans-
lation” (panel 1), “Heart Mapping” (panel 2), “Schizophrenia” (panel 3), “Alzheimer’s” (panel
4), “Macaque” (panel 5) experiments repsectively.

27



(Io) (I (I1)2 (I1)3 (11)4

Distance 0 0.845 1.747 2.568 4.410
(lo) (I1)s (I1)e (I1)7 (I)s
Distance 0 2.579 2.918 5.596 5.989

Figure 8 “Mitochondria Mapping Experiment”. Shown in this figure are the results of
mapping a Mitochondrial template image Iy with Mitochondrial target images I; subscripted
by index 1...8 and the calculated metric distances from I below the respective images.
Notice that the estimated metrics agree closely with the human perception of “close” and

“far”.
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(1) Io
Metric 0

(3) Iyo ¢t1970 (4) 5L
4.620

(1)l (2) Iy 0 1500 (3) Io 0 ry9,0 (4) I
Metric 0 3.472 6.313

(1)10 (2) Ioo ¢t10,0 (3) Iyo ¢t19,0 (4) 5L
Metric 0 2.621 4.766

(1)10 (2) Ioo ¢t10,0 (3) Iyo ¢t1970 (4) 5L
Metric 0 2.84 5.174

Figure 9: “3D hippocampus mapping results”. The right column of the top two rows show
two hippocampus volumes taken from Schizophrenia patients and the right column of the
bottom two rows show two hippocampus volumes from DAT patients. Allthe image volumes
were mapped to a common template Iy shown in the first column on the left. The second
column from left shows the mapping at disc%tized instant t19 of the flow of 20 discretized
timesteps. The third column from left shows the image Iy deformed with the estimated
diffeomorphism ¢ o at the final discretized instant along the flow. The numbers below each
image correspond to the metric distance from the image Iy. Data taken from the laboratory

of Dr. John Csernansky, Washington University.



image Error %

Figure 10: Comparing the “LDDMM” and the “GEC” algorithms. Shown is the Image
Error (solid line - “LDDMM?” algorithm, dotted line - “GEC” algorithm) as a percentage of
error before the transformation via the estimated mapping versus the distance of the path on
the manifold joining the identity of the diffeomorphisms to the estimated mapping. In the
left panel is the results from the “Parallel Translation” experiment, in the middle panel is
the “Macaque Cortex Mapping” experiment and the right panel shows the results from the

“Heart Mapping” experiment.
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Figure 11: The left column shows data from the “Parallel Translation mapping”, the middle

column shows the results for “Macaque Cortex mapping” and the right column shows data

. In rows 1 and 3 from the top are the results from the “LDDMM”

algorithm presented in this paper and in rows 2 and 4 are the results from our implementation

of the

)

“Heart mapping

from the

algorithm showing the estimated mappings and the superposed velocity fields

(CGEC”

“GEC” algorithm is smooth in

The velocity field for the

shows marked changes with time-

that generates these mappings.

steps.

space but

31





