ENSC 383 Feedback Control Systems
 Assignment 2 Solutions

Fall semester, 2007
3.16 (a)

$$
\begin{align*}
\text { DC gain } & =\lim _{s \rightarrow 0} G(s) \\
& =\lim _{s \rightarrow 0} \frac{3}{s^{2}+2 s-3} \\
& =-1 \tag{1}
\end{align*}
$$

(b) Response of a step input

$$
\begin{align*}
Y(s) & =U(s) G(s) \\
& =\frac{1}{s} \frac{3}{s^{2}+2 s-3} \tag{2}
\end{align*}
$$

Final value:
Since the system is unstable, FVT is not applicable. Therefore output $y(t)$ is unbounded.

3.19 (a)

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{1}}+G_{2} \tag{4}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=G_{7}+\frac{G_{1} G_{3} G_{4} G_{6}}{\left(1+G_{1} G_{2}\right)\left(1+G_{4} G_{5}\right)} \tag{5}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{G_{4} G_{5}\left(G_{6}+G_{2} G_{6}+G_{1} G_{2} G_{3}\right)}{\left(1+G_{2}\right)\left(1+G_{4}\right)}+G_{7} \tag{6}
\end{equation*}
$$

3.23 The closed-loop transfer function is

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{K}{s^{2}+2 s+K} \tag{7}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\omega_{n}^{2} & =K \tag{8}\\
2 \zeta \omega_{n} & =2 \tag{9}
\end{align*}
$$

Then

$$
\begin{equation*}
\zeta^{2}=\frac{1}{K} \tag{10}
\end{equation*}
$$

Based on the definition of overshoot and requirement

$$
\begin{align*}
M_{p} & =e^{-\pi \zeta / \sqrt{1-\zeta^{2}}} \leq 10 \% \tag{11}\\
\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}} & \geq-\ln 0.1=2.3026 \tag{12}
\end{align*}
$$

Solving above equation, we have

$$
\zeta^{2} \geq 0.3495
$$

and

$$
0<K \leq 2.8612
$$

3.24 The closed loop system transfer function is

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{100 K}{s^{2}+(25+a) s+25 a+100 K} \tag{14}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\omega_{n}^{2} & =25 a+100 K \tag{15}\\
2 \zeta \omega_{n} & =25+a \tag{16}
\end{align*}
$$

Based on the requirement of system response, we have

$$
\begin{align*}
e^{-\zeta \omega_{n} t_{s}} & \leq 0.01 \tag{17}\\
t_{s} & =0.1 \tag{18}\\
M_{p} & =e^{-\pi \zeta / \sqrt{1-\zeta^{2}}} \leq 25 \% \tag{19}
\end{align*}
$$

Deriving the above inequalities, we have

$$
\begin{align*}
0.1 \zeta \omega_{n} & \geq-\ln 0.01=4.6052 \tag{20}\\
\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}} & \geq-\ln 0.25=1.3863 \tag{21}
\end{align*}
$$

Solving these two inequalities, we get

$$
\begin{equation*}
0.4037 \leq \zeta<1 \tag{22}
\end{equation*}
$$

From (16) and (20), we have

$$
\begin{equation*}
\frac{25+a}{2} \geq 46.052 \tag{23}
\end{equation*}
$$

Therefore,

$$
a \geq 67.104
$$

From (16) and (22), we obtain

$$
\begin{equation*}
\frac{25+a}{2}<\omega_{n}=\frac{25+a}{2 \zeta} \leq \frac{25+a}{2 \times 0.4037} \tag{24}
\end{equation*}
$$

Hence, based on (15), we have

$$
\begin{equation*}
\left(\frac{a+25}{2}\right)^{2}<25 a+100 K \leq 1.534(a+25)^{2} \tag{26}
\end{equation*}
$$

Solve the left inequality, we have

$$
K>4.4318
$$

Solve the right inequality, we have

$$
K \leq 113.35
$$

In summary,

$$
\begin{aligned}
a & \geq 67.104 \\
4.4318 & <K \leq 113.35
\end{aligned}
$$

MATLAB Code:

$\mathrm{a}=67.10399$;
$K=113.3546$;
num $=100 * \mathrm{~K}$;
den $=\left[125+\mathrm{a} 25^{*} \mathrm{a}+100 * \mathrm{~K}\right]$;
sys1 = tf(num, den);
step(sys1)

Figure 1: Unit step response in 3.24
3.41 The characteristics equation is

$$
1+G(s)=0
$$

Therefore, we have the following characteristics equation:

$$
s^{5}+1.9 s^{4}+5.1 s^{3}+6.2 s^{2}+(2+K) s+4 K=0
$$

The corresponding Routh array is

$$
\begin{array}{cccc}
s^{5} & 1 & 5.1 & 2+K \\
s^{4} & 1.9 & 6.2 & 4 K \\
s^{3} & 1.8368 & \frac{3.8-2.1 K}{1.9} & 0 \\
s^{2} & \frac{2.1 K+7.5882}{18368} & 4 K & 0
\end{array}
$$

Therefore, in order to guarantee the stability of the system, we need

$$
\begin{align*}
\frac{2.1 K+7.5882}{1.8368} & >0 \tag{28}\\
\frac{4.41 K^{2}+33.59632 K-28.83516}{-1.9(2.1 K+7.5882)} & >0 \tag{29}\\
4 K & >0 \tag{30}
\end{align*}
$$

The above conditions can be summarized as

$$
\begin{align*}
K & >0 \tag{31}\\
4.41 K^{2}+33.59632 K-28.83516 & <0 \tag{32}
\end{align*}
$$

Solving the above two inequalities, we obtain

$$
0<K<0.77868
$$

The result can be verified by using the Matlab code:
$\mathrm{K}=0.77869$;

roots(p)
The roots of the polynomial are

$$
\begin{array}{r}
-0.27747373339235+1.91214415607866 i \\
-0.27747373339235-1.91214415607866 i \\
-1.34505326426898 \\
0.00000036552684+0.78757891093995 i \\
0.00000036552684-0.78757891093995 i
\end{array}
$$

where two poles are in the right hand side of y-coordinates.
When $K=0$, there exists a pole equal to 0 , which also causes unstable.

