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ABSTRACT
Corner extraction is an important task in many computer
vision systems. The quality of the corners and the effi-
ciency of the detection method are two very important as-
pects that can greatly impact the accuracy, robustness and
real-time performance of the corresponding corner-based
vision system. In this paper we introduce a fast corner de-
tector based on local binary-image regions. We verify the
performance of the proposed method by measuring the re-
peatability rate under various illumination, scale and mo-
tion conditions. Our experimental results show that while
the quality of the features are comparable with other con-
ventional methods, ours delivers a faster performance.

1. MOTIVATION

A real-time feature-based motion tracking system can be
greatly effected by the efficiency of the feature extraction
method. In our previous work [1], we developed a 3D tra-
jectory tracking system suitable for autonomous robot vehi-
cle. The system includes a head with three on-board CCD
cameras, which can be mounted anywhere on a mobile ve-
hicle. By processing consecutive trinocular sets of precisely
aligned and rectified images, the local 3D trajectory of the
vehicle in an unstructured environment can be tracked. First,
a 3D representation of stable features in the image scene is
generated using a stereo algorithm. Second, motion is es-
timated by tracking matched features over time. The mo-
tion equation with 6-DOF is then solved using an iterative
least squares fit algorithm. Finally, a Kalman filter is used
to optimize the world representation of scene features. Fig-
ure 1 represents a simple block diagram of this system. In
this system the computational cost is reduced effectively by
processing scene corners using Harris method [2]. However
still a great portion of the processing time was spent on ex-
traction of the corners of the stereo images. Not only did
this prevent the system from performing in real-time, but
due to the lost frames it also impacted the accuracy and ro-
bustness of the motion estimation. For this reason the possi-
bility of the a faster corner detection algorithm was studied
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Fig. 1. The overview of the existing 3D motion tracking system.

that led to a simple and fast corner detector with acceptable
robustness. In our system the speed of the corner detection
is of outmost importance for real-time operation. Improv-
ing the speed of the corner extraction algorithm can lead
to a higher frame rate processing, which leads to smaller
changes between consecutive frames allowing for a better
motion estimation.

2. INTRODUCTION

Many vision based tracking systems estimate the camera
motion by measuring the relative changes on the projection
of the identical scene features in different image frames. Al-
though globally all points in the scene convey some infor-
mation about the motion, locally not all the pixels of the im-
age carry valuable motion information. For example, edges,
occlusions or areas of uniform intensity, locally can convey,
at best, only partial information about the motion. For this
reason, special attention is paid to selecting regions with
higher information content. There have been many differ-
ent criteria for choosing such regions, mostly based on areas
with high second-order derivatives or high frequency con-
tent. In spite of the fact that these methods deliver traceable
features, there are several characteristics that make some of
them more reliable than the others. For instance, good lo-



calization, robustness with respect to noise and illumination
changes, and efficiency of the detection can lead to a more
accurate and/or faster estimation.
In this paper a binary corner detector is introduced that is
more efficient to implement than the existing conventional
corner detectors such as Harris [2] and SUSAN [3] and yet
quantitatively is comparable with them. The paper is orga-
nized as follows. Section 2 presents the details of the binary
corner detector. Section 3 explains the measurement for
qualitative comparison of the performance. Section 4 and
5 demonstrate the results under various imaging conditions
and compare them with those of Harris and SUSAN. Sec-
tion 6 inspects the computational complexity, and finally,
the conclusion is presented in section 7.

3. BINARY CORNER DETECTOR

Much of the work on detection of image 2D structures is
dedicated to corners. This is mainly due to the their dis-
creteness and invariance with respect to scale , rotation, and
point of view. In the next section a brief overview of several
corner detection algorithms along with the principal of the
proposed method are described.

3.1. Corner detection basis

One simple definition for a corner is a point at high cur-
vature boundaries where the two regions of an image with
distinctive intensity values meet. Such a definition has lead
to an extensive number of edge curvature based corner de-
tectors. Kitchen and Rosenfeld [4] find points in the image
where the product of the gradient magnitudes and edge con-
tour curvatures are maximum. Wang and Brady [5] define
corners as points with maximum gradient on the direction
perpendicular to the edge curvature. Another definition for
a corner is points with large intensity variations in all the
directions. Moravec [6] presents a method based on com-
puting the intensity autocorrelation on four directions over
a small window. Features with the local minimum auto-
correlations are declared as corners. Harris and Stephens [2]
improve Moravec’s method by computing auto-correlation
for the squared first order image derivatives. The auto-correlation
values over all the possible directions are computed through
a transformation whose eigen values are proportional to the
principal curvatures of the auto-correlation. Points with high
curvature values are declared as corners. Smith and Brady [3]
introduce a significantly different low level corner detector
by measuring the similarity of the related parts of the image
to each individual pixel. They associate each pixel with its
local image regions with the similar brightness. Distinctive
features are detected by minimizing these image regions.

3.2. Binary corner detector

The main emphasis of this work is on exploiting binary im-
ages and substituting arithmetic operations with logicals. To
generate a binary image that contains a good low-level in-
formation content, first the Laplacian is computed at each
point of the intensity image. Horn [7] approximates the im-
age Laplacian value by:

���

���
�
���

���
� ����������������������������������� (1)

���� stands for the image intensity value at row � and column
�. Such an approximation for 2D Laplacian is separable and
is implemented efficiently by logical operations. The binary
image is then generated by the invariance of the sign of the
Laplacian value at each point. Figure 2 shows a typical im-
age and the corresponding binary image.

At this point a circular mask is placed on each point of

Fig. 2. An image and its binary sign of Laplacian image.

the binary image. The binary value of each point inside the
mask is compared with that of the central point.
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��� represents the binary image value at location ���	 ��.
Now a total running sum � is generated from the output of
����	 ��.
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� represents the area of the mask where the sign of the
Laplacian of the image is the same as that of the central
point. For each pixel to be considered a potential corner,
the value of � should be smaller than at least half the size of
the mask . This value is shown as by � in corner response
equation (4).
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At this point for each candidate with ����� � �, a center of
gravity ����� is computed.
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The center of gravity �, provides the corner direction, as
well as a condition to eliminate points with random distri-
butions. Random distributed binary patches tend to have
a center of gravity fairly close to the center of the patch.
Therefore, all points with close center of gravities are fil-
tered out from the remaining process.

����� � ��� � (7)

The two conditions in (4) and (7) by themselves do not pro-
vide enough stability. Therefore a third inspection is per-
formed by computing the directional derivative along the
corner direction for the remaining candidates. Once again
points with small directional intensity variations are elimi-
nated. This condition is shown by:

������� ����� � �� (8)

�� represents the brightness variation threshold. Figure 3.a
to 3.e illustrate the principal of the binary corner detector
through different cases. Figure 3.a shows a circular mask
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Fig. 3. Illustration of different cases for a corner.

on an ideal corner. The response ����� for this corner is
smaller than half the mask size and the center of gravity �

is located in a fair distance from center of the mask ��. Fur-
thermore the intensity variation of the mask center along
����� is large. Figure 3.b and 3.c demonstrate cases where
the mask centers are located either on an edge or on an area
of uniformity. For such cases, ����� fails in equation (4).
Figure 3.d represents an example where pixels on the mask
have a random distribution. Although the initial verification
in equation (4) may be satisfied, the condition on a distant
center of gravity in (7) fails. Finally, Figure 3.e shows an
instance where the first two tests are fully fulfilled, but the
intensity variation along vector ����� fails to provide a suffi-
ciently large value, condition (8).

4. EVALUATION METRIC

Schmid et.al. [8] [9] introduce an evaluation metric to ver-
ify the performance of several feature detectors. This mea-
surement is defined as the percentage of the total detected
corners that are repeated in the two images, and is called
the repeatability rate. A scene point � with projection � �

in image �� is repeated, if the corresponding point �� is de-
tected in image �� . In computing this rate, points that are
seen in one image but due to the existing transformation,
��� , between the two frames are out of the other one, are
not counted. Also since the corresponding point to � �, �� ,
is usually not detected at the exact predicted position �� but
rather in a neighborhood of �, the repeatability rate is de-
fined as a function of such a neighborhood by:
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where

���� � ����	 �����������	 ������ � �� (10)

�� represents the number of the corners in image � � that can
be potentially observed in image �� .

5. REPEATABILITY RESULTS

In this section, the performance of the algorithm under dif-
ferent imaging conditions is presented. A reliable compu-
tation of repeatability in this part involves a careful regis-
tration of image frames. For this purpose first the registra-
tion parameters between each image pair are roughly esti-
mated by solving the registration equations for some man-
ually found correspondences. Second, through a recursive
least square minimization, the registration parameters are
refined until an error residual smaller than half a pixel is
attained.

5.1. Camera noise

Camera noise effect is studied by processing images of a
static scene that are captured under identical conditions but
at different moments. The results have been shown in Fig-
ure 4. In this experiment Harris delivers the highest robust-
ness and is followed closely by binary method. SUSAN
method however does not retain a good rate mainly due to
the elimination of the Gaussian smoothing.

5.2. Rotation

The behavior of the method under rotation is studied by pro-
cessing a set of images that are acquired while the camera
was rotated near to its optical axis. Due to the limited ro-
tation mechanism the transformations between the frames
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Fig. 4. Repeatability result for camera noise.

were not purely rotational and included translation as well.
Figure 5 shows the repeatability results for neighborhoods
0.5 and 1.5 pixels. This experiment covers rotations be-
tween 0Æ to 180Æ with steps of 10Æ. As the rotation an-
gle increase the repeatability of Harris and binary become
closer to each other. Since in many real-time applications
the rotation between the two consecutive frames is small,
another experiment has performed to test the methods for
smaller rotations covering a range of 0Æ to 10Æ, Figure 7.
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Fig. 5. Repeatability rate under rotation.

Fig. 6. Images of a scene under different rotations.

5.3. Scale

The scale change is accomplished by moving the camera in
the direction perpendicular to the image plane. The scale
change over 1.8 is not experimented due to the high sensi-
tivity and poor performance of the methods. Figure 8 rep-
resents the repeatability rate for the set of images shown in
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Fig. 7. Repeatability rate under small rotations.
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Fig. 8. Repeatability rate for different scales.

Figure 9. The results show that all the methods perform
better in a larger neighborhood, (� � ���). This can be
explained by the fact that at different scales identical fea-
tures of the scene project onto areas with different resolu-
tions. Therefore, although corners are considered invariant
to scale change, their positional precision and their repeata-
bility are highly scale dependent.

Fig. 9. Images of a scene under different scales.

5.4. Illumination

In this part the sensitivity of the proposed method on image
intensity variation is studied.

5.4.1. Uniform change

Uniform illumination change is simulated for this part due
to the existing limitation on changing our camera’s aper-
ture. For this purpose first a set of images from a static



scene with an identical point of view at different moments is
acquired, Figure 11; then, the average grey level of each im-
age is manually changed. Figure 10 displays the computed

Fig. 10. Images of a scene with linear illumination change.

repeatabilities. In these graphs reveals that as the relative
gray level with respect to the reference image changes, the
number of repeating features decreases in these methods.
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Fig. 11. Repeatability rate under uniform illumination change.

5.4.2. Directional change

One of the important features of a good corner detector is its
robustness under a more complex lighting condition. There-
fore, the method’s stability is evaluated under directional il-
lumination variations in which the light source lightens the
scene from different directions. Figure 12 represents some
of the processed image taken under the above condition.
The light source is moved with a step of 10Æ and covers a
range of 0Æ to 90Æ. As the light source moves from a direc-

Fig. 12. Images of a scene under changing illumination.

tion perpendicular to the camera plane (0Æ), the left image
in Figure 12, to its side (90Æ�, the right image in Figure 12,
shadow effect becomes stronger. Such shading effect causes

object boundaries to move toward the light source. This no-
tably impacts the repeatability by a great amount specially
for small neighborhoods. Figure 13 represents the results of
this experiment.
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Fig. 13. Repeatability rate for changing illumination.

6. DISCUSSION

As presented in the previous section, in average the repeata-
bility of the Binary method is a bout 20	 less than Harris
and 15	 more than SUSAN. This might seem to be a prob-
lem at first but as will be discussed in here for many vision
based applications including our trajectory tracking system,
it is effecting the reliability. There are two important as-
pects that make the Binary corner detector still suitable as
following:

� If the acquired images are processed faster, the trans-
formation between the two consecutive frames is smaller.
A smaller difference between the two frames can par-
tially compensate for the lower repeatability rate of
the Binary method.

� One of the questions that we tried to answer in our
previous work [1] was that how many corners are needed
for a reliable motion estimation. It was observed that
the motion parameters can be determined from a min-
imum of 30 to 40 corners. However a number be-
tween 50 and 100 guarantees a reliable motion esti-
mation. For a typical outdoor image Harris detects
about 400 corners. Losing 20	 of the corners in Bi-
nary method results in 300 corners that is still plenty
to provide sufficient information for a reliable motion
estimation.

Next section provides a discussion of the efficiency.

7. COMPUTATIONAL COMPLEXITY

As it is customary in existing research, we compare the
computational complexity of all the methods by compar-
ing their running time under the same conditions. We use
images of 240	320 pixels and average the running time for
one thousand executions on a 1.4 GHz AMD Athlon(tm)



Processor R
. The results of this comparison are presented
in Table 1. As shown in this table SUSAN algorithm has the

Table 1. Comparison of the time complexity of the three methods.

Method Execution time (msec)

Binary ������

Harris ������

SUSAN �����	�

slowest performance. Details of the SUSAN corner detector
suggest a simple computational complexity. This is due to
the fact that most of the computations and evaluations are
performed on a selection of pixels that are considerably less
than the total pixels of the image. However the initial in-
spections for nominating such candidates include a consid-
erable number of the operations, causing SUSAN algorithm
to have the slowest performance.
Harris method performs significantly faster than SUSAN,
however 60	 of its time is spent on the Gaussian smooth-
ing of each image and its corresponding squared first order
derivatives. This is in spite the fact that all the 2D Gaussian
filters are approximated by two 1Ds and a large number of
the arithmetic operations are approximated by logical oper-
ations through a sigma of 0.8.
Binary corner detector performs 1.64 times faster than Har-
ris and 7.23 times faster than SUSAN. Moreover, about 70	
of all the employed operations can be substituted by bitwise
operations for an even faster implementation.

8. CONCLUSIONS

In this paper we described a fast corner detector for se-
lecting informative pixels of an image. We evaluated our
method by computing the repeatability rate and compar-
ing them with those of Harris and SUSAN corner detec-
tors. All the experiments are performed on images of out-
door scenes including natural geometric shapes. The faster
performance of this method may allow for a better real-
time performance of feature based vision systems. On av-
erage, the repeatability rate for our method is about 20	
less than Harris. As mentioned earlier, the estimated mo-
tion is concluded from a small subset of the image points,
usually about 10	 to 5	 image size. A decrease of 20	
in that number still provides more than enough points and
delivers the same motion parameters. Also as system per-
forms faster, the changes between consecutive frames are
less that cause a higher repeatability rate. Moreover those
features that are not repeated in the next image may ap-
pear in the later frames. Through the use of Kalman fil-
tering these points in the world can be maintained for a
while even if they are not physically in the scene or just

simply missed from the detection algorithm. Furthermore
generating the binary images, creates another opportunity
for accelerating the process of similarity measurement. As
presented in [10], substitution of an expensive SSD with
a binary XOR-correlation can speed up the comparison at
least by a factor of 3.63, while maintaining a 92.7	 accu-
racy. The future work includes inspecting the improvement
of the accuracy and real-time performance of the existing
3D motion tracking system while employing the proposed
method.
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