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Abstract

This paper presents a vision-based tracking system

suitable for autonomous robot vehicle guidance. The

system includes a head with three on-board CCD cam-

eras, which can be mounted anywhere on a mobile ve-

hicle. By processing consecutive trinocular sets of pre-

cisely aligned and recti�ed images, the local 3D trajec-

tory of the vehicle in an unstructured environment can

be tracked. First, a 3D representation of stable fea-

tures in the image scene is generated using a stereo

algorithm. Second, motion is estimated by tracking

matched features over time. The motion equation with

6-DOF is then solved using an iterative least squares

�t algorithm. Finally, a Kalman �lter implementation

is used to optimize the world representation of scene

features.

1 Introduction

The problem of motion tracking for mobile robots
has been studied extensively, resulting in a variety of
methods. These methods vary based upon the sensor,
the environment and the user's prior knowledge of the
environment. Many of these systems are developed for
in-door structured environments, or they are based on
the recognition of prede�ned known landmarks. Most
of these systems however are limited to 2D planar mo-
tions [5] [9] [10].

At the University of British Columbia we are inves-
tigating the problem of 3D motion estimation (pose es-
timation) of mobile robots in unknown environments.
We assume that we have no prior knowledge of the en-
vironment and that there is not any speci�c landmark
in the scene. Further the scene is mostly constructed of
rigid objects, although if there are a few small moving
objects the system still relies on the static informa-
tion. The motion of the robot is also assumed to be
limited in acceleration. This allows the feature search
techniques to work on a small and predictable range
of possible matches.

Harris [4] has described a system that solves for full
6-DOF motion from a monocular camera, but it su�ers
from di�culties with initialization and accuracy, while
we are able to overcome these problems by integrating
stereo and motion solutions. Our approach consists of
several phases that are executed sequentially.

I. Feature Extraction: the extraction of meaningful
features from the scene that can be tracked over
a sequence of frames or over time.

II. Stereo Vision: the creation of a 3D representation
of the extracted features within the scene.

III. Feature Tracking: identi�cation and tracking of
identical features over time.

IV. Motion Estimation: the calculation of camera mo-
tion relative to tracked features in an absolute ref-
erence frame.

V. Position Re�nement: the re�nement of the 3D lo-
cations of world features by combining individual
measurements over a sequence of estimations.

Each one of these sub-tasks is studied in more detail
in the following sections and is followed with a study
of experimental results and conclusions.

2 Feature Detection

Choosing the type of feature is very important and
has a strong impact on the real-time performance of
the system. In systems based upon landmarks or
models, it is likely that no landmark may be visible
and so the motion estimation will not be accurate for
some percentage of the time. Choosing simple fea-
tures within the scene increases the reliability of the
solution, and enables the system to �nd an accurate
motion estimation most of time, unless the scene is
very uniform. We have chosen to work with corners,
because they are discrete and partially invariant to
scale and rotational changes.



The Harris and Stephens corner detector [3], a mod-
i�ed version of the Moravec [8] corner detector, is im-
plemented. Their method involves shifting a circular
patch of the image in di�erent directions. If the patch
includes a corner then shifting along all directions re-
sults in large changes. Therefore a corner can be de-
tected when a minimum of changes produced by any
of the shifts, is large enough:

E(x; y) = Wu;vjIx+u;y+v � Iu;vj
2 (1)

Iu;v presents the image intensity value at point (u; v)
and x and y introduce the shift amount of the circular
window Wu;v
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With the assumption of small displacements, Equa-
tion 2 is truncated by Taylor series to a linear term
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The quality of the corner then is measured from a cor-
ner response R,

R = Det(M ) �K(Tr(M ))2 (6)

A quick look at R shows that the response function
is very small within a uniform region, negative in edge
regions and positive in corner regions. The value K
in the response function is the maximum ratio of the
eigenvalues of M , for which the response function is
positive.

Figure 1 shows the result of corner detection on a
sample image.

3 Stereo Vision

Constructing the depth of the features is possible
using a stereo algorithm. At each point in time, our
CCD camera system, Triclops [11], captures a set of
three images which are precisely aligned horizontally
and vertically. These recti�ed images are used to con-
struct a sparse depth map for corner features. This
solution was chosen for the real-time performance of

Figure 1: A corner detection sample result.

O

L

C1C2
M

P
Q

d2d1

z-f

k

Τ

f

S

B

..

.

.

.

.

..

.

Figure 2: Depth construction by stereo images.

the system, since the number of corners is much lower
than the number of pixels in each image.

As shown in Figure 2, the depth of point O, z, can
be computed from the displacement of the correspond-
ing projected points on the stereo images, d1 � d2.

z =
f:B

d2 � d1
(7)

Here f is the focal length of the camera, B is base line
or separation of cameras and C1 and C2 are camera
centers.

Although constructing the depth is possible with
just two stereo images the use of three images enhances
the accuracy of the depth and motion estimation by
eliminating invalid match candidates. Figure 3 shows
a set of captured images. Corresponding corners are
shown with the identical numbers. Knowing the focal
length, camera separation and displacement for point
9 (29 pixels) the depth is computed to be 0.98m.

4 Feature Tracking

In this section corresponding 3D features are
tracked from one frame (at time=t) to the next frame
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Figure 3: Stereo matching result for a trinocular set
of images.

(at time=t + �t). Systems with more complicated
features or landmarks usually track the landmark
through di�erent frames, since detecting the landmark
or model from scratch may take more time. In our ap-
proach it is not possible to track identical corners from
frame to frame without detecting them in each set of
new images. Therefore for each corner a simple search
routine is applied in order to �nd all the possible match
candidates in the vicinity of the predicted position in
the next image frame. Accordingly, a similarity metric
function, the Normalized Sum of Squared Di�erences,
is implemented to measure the similarity of each pair
of match candidates [2].
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Where I1 and I2 present the image intensities with the
average values of �I1 and �I2.

The two corners within corresponding image search
regions with the highest similarity metric, S, are con-
sidered to be identical features. Figure 4 shows some
identical features that are tracked over two frames.

5 Motion Estimation

Having a set of corresponding corners between each
two consecutive images, the motion estimation be-
comes the problem of optimizing a 3D transformation

Identical features

Figure 4: Corresponding features are related and
tracked in two consecutive images.

that projects the world corners, constructed from the
�rst image, onto the second image. Although the 3D
construction of 2D features is a non-linear function,
the problem of motion estimation still is well-behaved.
This is because any 3D motion includes rotations and
translations.

� Rotations are functions of the cosine of the rota-
tion angles.

� Translation toward or away from the camera in-
troduce a perspective distortion as a function of
the inverse of the distance from the camera.

� Translation parallel to the image plane is almost
linear.

Therefore, the problem of 3D motion estimation is a
promising candidate for the application of Newton's
method, which is based on the assumption that the
function is locally linear. To minimize the probabil-
ity of converging to a false local minimum, we look
for outliers and eliminate them during the iteration
process.

In this method at each iteration a correction vector
x is computed that is subtracted from the current esti-
mate, resulting in a new estimate. If P (i) is the vector
of image coordinates (u; v) for iteration i, then

P (i+1) = P (i) � x (8)
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Given a vector of error measurements between the
world 3D features and their projections, we �nd the x
that eliminates (minimizes) this error.

The e�ect of each element of correction vector xi
on error measurement ei, is the multiplication of the
partial derivative of the error with respect to that pa-
rameter to the same correction vector; this is done by
considering the main assumption, local linearity of the
function

Jx = e Where Jij =
@ei

@xj
(9)

J is called the Jacobian matrix and ei presents the
error between the predicted location of the object and
actual position of the match found in image coordi-
nates. Each row of this matrix equation states that
one measured error ei, should be equal to the sum of
all changes in that error resulting from the parame-
ter correction [7]. Since the Equation 10 is usually
over-determined and therefore no unique solution ex-
ists, we �nd a vector x that minimizes the 2-norm of
the residual.

minkJx� ek2 (10)

Equation 10 has the same solution as the normal equa-
tion,

x = [JTJ ]
�1
JT e (11)

Therefore in each iteration of Newton's method, we
simply solve the normal Equation 11 for x using LU
decomposition [12].

The most computationally expensive aspect of im-
plementing the Newton method is calculating the par-
tial derivatives or the Jacobian matrix. The partial
derivatives with respect to the translation parameters
can be most easily calculated by �rst reparametrizing
the projection equations [6]. If the vector of motion
parameters is (Dx; Dy; Dz; �x; �y; �z), then the new
location of projected point (x; y; z) in the subsequent
image is

(u; v) = (
f(x +Dx)

z +Dz

;
f(y +Dy)

z +Dz

) (12)

Dx, Dy and Dz show the incremental translations and
�x, �y and �z are rotational increments about the x,
y and z. The partial derivatives in Jacobian matrix,

Equation 9, are calculated from
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The partial derivative of x, y and z with respect to
counterclockwise rotation parameters � (in radians)
can be found in Table 1. This table shows how easily

Table 1: The partial derivatives table.

x y z

�x 0 �z y

�y z 0 �x
�z �y x 0

and e�ciently we can compute the Jacobian matrix
elements in Equation 9.

6 Position Re�nement

For many systems each motion estimation from an
individual sample or set of samples contains a signi�-
cant amount of random error. If there is no signi�cant
systematic error, then these errors can be reduced by
�ltering the location information [4].

In our system each frame, within which a feature
is detected, gives an additional measurement for the
location of that feature. The Kalman �lter provides a
means to combine these noisy measurements to form a
continuous estimate of the current location of the fea-
ture. Each point in the world space is associated with
a Kalman �lter, which is updated using new motion
information. This process increases the accuracy of
location information of the feature points in the world
space. In our system we implemented a Kalman �lter
in a similar fashion to Shapiro's method [13].

This formulation is recursive and the least square
estimate of the world feature position w, and its co-
variance C, are given recursively by

C�1i = C�1i�1 + AT
i V

�1
i Ai (17)

wi = wi�1 + ki(bi � Aixi�1) (18)

ki = CiA
T
i V

�1
i (19)

4



Here Ci is the uncertainty in the estimation of wi,
which is the estimated world position of the feature at
frame i. ki is the �lter gain, bi is the current measure-
ment of the feature, Vi is the covariance matrix of the
errors and Ai is identity matrix.

Obviously the error vector for any given measure-
ment relies on the relative accuracy of that measure-
ment. Our corner detector's accuracy which is related
to the accuracy of our stereo system, originally 2 pix-
els, is improved by �tting a sub-sample estimator [1].
It is a simple quadratic estimator that locates the cor-
ner within a pixel. The method uses the neighboring
intensity values and �ts a second order curve on the
corner and its two neighbors. Since the depth con-
struction is very sensitive to noise, this estimator im-
proves the accuracy of the depth construction signi�-
cantly.

7 Experimental Results

To show the performance of the system, a motion
estimation experiment is carried out along a known
path by processing 87 image frames. Motion is deter-
mined while the robot moves from a starting point A,
toward an ending point H. In order to compare the
estimated motion at di�erent positions, with the real
values, a number of reference points are considered.
The position of these reference points are measured
in the world. By using these measurements we can
observe and analyze the accuracy of the estimation.

This experiment solves for all 6 degrees-of-freedom,
although the physical experiment environment in-
cluded only changes in 3 of the parameters, depth z, x
and the depth axis orientation �y. Figure 5 shows the
comparison of the real path and the estimated path
found by the system.

A study of the results shows that the depth con-
struction has 15% error at point B. This error is re-
duced to 10% when the system is moved to position C.
While moving toward points D, E and F, the z estima-
tion error is increased to 18%. This behavior can be ex-
plained by studying the experiment's environment. As
can be seen in Figure 6 at the beginning of the exper-
iment most of the objects within the scene are located
far from the camera system. This is the main source
of the inaccuracy in the z parameter. Distant features
have particularly poor depth information since they
are gained from limited resolution. This large error in
depth e�ectively displaces these points and can cause
error in localization of the mobile system as it tries to
solve the least squares �t, using data that has a very
systematic type of error in depth.

As the camera moves closer to objects, the depth
construction becomes more accurate. As soon as it
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Figure 5: The actual and estimated path.

starts rotating, the error in parameter z of the estima-
tion increases and continues to do so until the end of
the curve. This reaction can be clari�ed by noticing
the fact that further points show behavior under rota-
tion that is very similar to a sideway translation. This
causes the least squares �t to �nd a solution that has
a translation or rotation that is much larger than any
actual movement. In other words, there is e�ectively
a coupling between rotational and translational mo-
tion, due to these points. This source of error can be
reduced by using wide-angle optics on the camera, as
points imaged fromwidely separated angles will clearly
distinguish rotation from translation.

The results also demonstrate that the system esti-
mates the orientation with a very high accuracy. The
error in the worst case is not more than 3% over a 90
degree rotation.

8 Conclusions

In this paper we described a feature-based 3D tra-
jectory tracking system for the control of a mobile
robot equipped with a camera system. This system
reduces the computational cost e�ectively by process-
ing corner features of the scene. Also, using a stereo
algorithm to construct world features has enabled us
to perform 3D motion estimation, using 2D images.
Sub-pixel interpolation and Kalman �ltering have im-
proved the accuracy of the system compared to 2D
visual tracking systems. We have been unable to �nd
real-time performance of other 3Dmotion tracking sys-
tems based on 2D images. The performance of the sys-
tem is 1.1 seconds per motion estimation on an Intel r
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Figure 6: Sample images taken at reference points.

Pentiumr 150MHz processor and we believe this can
be improved to video rate in the future.
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