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Abstract— This article describes a vision-based system for 3D  One class of visual trajectory tracking methods, Motion-
localization of a mobile robot in a natural environment. The pased approaches, detect motion through optical flow tnacki

system includes a mountable head with three on-board CCD P ; ;
cameras that can be installed on the robot. The main emphasis and motion-energy estimation. They operate based on extrac

of this work is on the ability to estimate the motion of the robot |ng_ the velocity field and calculat_ing the temporal derivesi
independently from any prior scene knowledge, landmark or Of images. Methods based on this approach are fast, however

extra sensory devices. Distinctive scene features are iddied they cannot be used where the camera motion is more than
using a novel algorithm and their 3D locations are estimated a few pixels. Moreover, they are subject to noise, leading to

with high accuracy by a stereo algorithm. Using new two-stag  jjpracise values and often the pixel motion is detected but
feature tracking and iterative motion estimation in a symbiotic -
not quantified [1] [2].

manner, precise motion vectors are obtained. The 3D positits ) ) ]
of scene features and the robot are refined by a Kalman filterig Another class of visual trajectory tracking methods, Festu

approach with a complete error propagation modeling scheme based approaches, recognize an object or objects (landmiark
Experimental results show that good tracking and localizabn  scene structures) and extract the position in successivees.
can be achieved using the proposed vision system. The problem of recognition-based camera localization @an b

Index Terms— Vision based tracking, 3D trajectory tracking, divided into two general domains:
feature based tracking, visual motion tracking, visual trgectory 1) Landmark-Based MethodsMotion tracking in these
tracking, robot vision, 3D localization. methods is performed by detecting landmarks, followed by
camera position estimation based on triangulation. These
methods employ either predesigned landmarks that must be
placed at different but known locations in the environment,

EMOTELY controlled mobile robots have been a subje@r they automatically extract naturally-occuring landksar
of interest for many years. They have a wide range gfa a local distinctiveness criterion from the environment

applications in science and in industries such as aerospafiring a learning phase. Such systems usually require an
marine, forestry, construction and mining. A key requireinea priori map of the environment. For example, Sim and
of such control is the full and precise knowledge of thBudeck [3] used regions of the scene images with a high
location and motion of the mobile robot at each moment @fumber of edges as natural landmarks. MINERVA [4] is
time. a tour-guide robot that uses camera mosaics of the ceiling

This paper describes on-going research at the Universityaglbng with several other sensor readings for the locatimati
British Columbia on the problem of real-time purely visiontask. The main advantage of landmark-based methods is that
based 3D trajectory estimation for outdoor and unknowhey have a bounded cumulative error. However, they require
environments. The system includes an inexpensive trisocusome knowledge of the geometric model of the environment,
stereo camera that can be mounted anywhere on the robogititer built into the system in advance, or acquired using
employs existing scene information and requires no prigs,masensory information during movement, the learning phase, o
nor any modification to be made in the scene. Special attentisometimes a combination of both. This requirement senousl
is paid to the problems of reliability in different enviroemial limits the approach’s capability in unknown environments.
and imaging conditions. The main assumptions here are tividre examples about landmark based methods can be found
the scene provides enough features for matching and that mas5]—[7].
of the scene objects are static. Moreover, it is assumed thap) Natural Feature-Based Method®atural feature-based
the velocity of the robot is limited in such a way that therapproaches track the projection of preliminary features of
is some overlap between each two consecutive frames. Heene in a sequence of images. They find the trajectory and
system is mainly designed for use in autonomous navigationrhotion of the robot by tracking and finding relative changes
natural environments where a map or prior information aboigt the position of these features. The type of feature isligh
the scene is either impossible or impractical to acquire.  dependent on the working environment that the system is
designed for [8]. For instance, the centroid and diameter of
. circles are used by Harrekt al. [9], for a fruit tracking
A. Previous Work robot for harvesting. Rives and Borrelly [10] employ edge

In visual motion and trajectory tracking, the relative rooti features to track pipes with an underwater robot. The road-
between objects in a scene and the camera is determif@tbwing vehicle of Dickmannst al. [11] is also based on
through the apparent motion of objects in a sequence edge tracking. The main advantage of using local features
images. is that they correspond to specific physical features of the

I. INTRODUCTION



observed objects, and once these are correctly located @&mdpace was carried out by interpolation of the warped irsage
matched, they provide very accurate information concernithe accuracy of estimated motion was improved by abgut 8
the relative position between camera and scene. Also, daer doing interpolation in the unwarped space, and leads
systems based on landmarks or models, it is possible th@tlow errors in both translation and rotation in a complex
no landmark is visible, so the motion estimation cannot lmitdoor scene.

accurate for some percentage of the time, while estimations

based on scene features are potentially less likely to fasl dB. Objective

to the large number of features that can be available from . ) ) ) )
any point of view. The accuracy of these methods, however, is' '€ design presented in this paper is an exploration of the

highly dependent on the accuracy of the features. Even d snfg|€vantissues in creating a real-time on-board motiarking
amount of positional uncertainty can eventually result in $YStém for a natural environment using an active camera. The
significant trajectory drift. Due to limitations of procémgand SYStém is designed with the following assumptions:

sensory technologies, early work using natural scenerfestu  The scene includes mostly static objects. If there are a few
were limited to 2D estimations [12] [13]. Later attempts eer ~ Moving objects, the system is able to rely on static object
directed toward 3D tracking using monocular images [14][15  information, while information from moving objects can
These methods had poor overall estimation, limited motion be discarded as statistical outliers.

with small range tolerance and large long term cumulatives The camera characteristics are known. In particular, focal
error. Recently however more accurate systems are dewklope length and the baseline separation of the stereo cameras
using monocular camera systems [16], [17]. The use of multi- IS assumed to be known.

ple cameras, stereoscopy and multiple sensor fusion pedvid « The motion of the robot is assumed to be limited in
new tools for vision-based tracking methods [18] [19]. Jung @acceleration. This allows the match-searching techniques

and Lacroix [20] represent a system for high resolutioreierr to work on a predictable range of possible matches.
mapping using stereo images and naturally occurring terrai + The working environment is not a uniform scene and it
feature points. Recently, Se [21] introduced an indooresyist includes a number of objects and textures.

using scale invariant features, observed by a stereo cam€&he primary novelty of this work is a methodology for

system, and combining the readings of an odometer witibtaining camera trajectories for outdoors in the presarice

those of the vision system. Se’s use of an odometer has fessibly moving scene features without the need for odammete
advantage that it helps to reduce the search space for findargsensors other than vision.

feature match correspondences. It has the disadvantaggitho

tha_t any slippage would increase the error in the positiQfl_ Paper Outline

estimate and enlarge the search space. Since the proposed ) , :

work was ultimately intended for outdoor applications, we The basis of a novel binary corner detector, that is develope

anticipated considerable wheel slippage. In additiondoot for this work, is explained in Section II. S_ection Il de_skmis _
environments have a large number of corners due to foliaj¢ @PProach for the 3D world reconstruction problem in Wwhic
for example compared to most indoor environments. Not onfj¢ POsitional uncertainty resulting from the lens distort
can outdoor environments have more corner features, bufegioval process is minimized. Section IV addresses a two-

significant number of the corners can be moving (e.g. leaveiége approach for tracking world features that improves th
blowing in the wind) - a second issue not addressed in tRECUraCY by means of more accurate match correspondences
paper by Se et al. and a lower number of outliers. The 3D motion estimation is

Also recently, Olsoret al. [22] suggested an approach tghen described in Section V. Section VI represents the error

navigation that separated translational and rotatiomeseis. Modeling for the robot and features. Finally the experiraent

The translation estimates were determined from a visiéRSUlts are reported in Section VII. Conclusions and future
system and it was proposed that the rotation be obtained fr§ffrK are represented in Section VIIl.

some form of orientation sensor since the error in orieoiati

estimates with vision alone grew rapidly. Since various msea [I. BINARY FEATURE DETECTION

of orientation sensing are also susceptible to vibratidiuaed An important requirement of a motion tracking system is

by rough terrain, and based upon previous work we had fast performance. Processing all the pixels of an image,
done with narrow-angle cameras (FOV=pJielding similar from which only a small number carry information about

problems as those experienced by Olson et al, we selectegh@ camera’s motion, may not be possible with the real-time
wider angle of view of the camera (FOV=1Q4which better requirement for such systems. Therefore, special atterisio

separates rotation from translation (e.g. when image festupaid to selecting regions with higher information content.
in a narrow angle camera translate to the left, it is hard to

estimate whether that is due to a translation to the righg or

rotation to the right). Also not addressed in the work of @lso

et al, are large numbers of foliage corners and their dynamicPeciding on the feature type is critical and depends greatly

motion. on the type of input sensors used. Common features that are
Unlike either Se at al or Olson et al, the approach of tHgenerally used include the following [23]:

present paper, in which the 3D reconstruction of featurafsoi « Raw pixel values, i.e. the intensities.

. Features



« Edges, surfaces and contours that correspond to3i@al B(p) represents the binary image value at locatign, y).
structures in the scene. Now a total running sunn is generated from the output of

» Salient features, such as corners, line intersections afifl, p).
points of locally maximum curvature on contour lines.

. Statistical features, such as moment invariance, energy, n(po) = Y C(po,p) (4)
entropy and color histograms. w

Choosing simple features within the scene increases therepresents the area of the mask where the sign of the
reliability of the solution for motion tracking and enablée Laplacian of the image is the same as that of the central point
system to find answers to problems most of the time, unldsgr each pixel to be considered a potential corner, the value
the scene is very uniform. In the search for a feature tyé n must be smaller than at least half the size of the mask
that suits our application, a natural, unstructured emvivent W in pixels. This value is shown byin the corner response
with varying lighting conditions, corners were chosen,aee Equation (5).
they are discrete and partially invariant to scale and iatat

changes. Rip) — 4 MPo) i n(po) <, 5
(Po) {0 otherwise ®)
B. Binary Corner Detection (BCD) Similar to SUSAN, for each candidate witR(py) > 0, a

In our previous work [24], the Harris corner detector [25Tenter of gravity (centroidf?(po) is computed.

was used. The Harris corner detector involves several Gauss 2 2

smoothing processes that not only may displace a corner G(po) = \/9(w0)” +9(y0) (6)
from its real position but make the approach computatignall aore

expensive. A corner detector with higher positional accyra

SUSAN, was developed by [26]. A faster corner detector with E (zo — x) E (yo — v)

more precise localization can lead to a more accurate and/%r _ W _ W 7
: e (@) =—7—— + 9w)=——— (@)

faster motion estimation since the changes between consec- n(po) n(po)

utive frames are smaller. While the SUSAN corner detect
provides a more precise corner location, computationally i
more expensive. In order to take advantage of the positior@
accuracy of SUSAN corner detector, a novel binary corngt
detector was developed [27.]' This corner detec';or_ deﬁng points with close centers of gravity are filtered out oé th
corners similar to SUSAN using geometrical descriptiotss. | -
main emphasis however is on exploiting binary images arﬁ%mammg process.
substituting arithmetic operations with logicals. G(po) > |1y (8)

To generate a binary image, first a Gaussian smoothing is
applied to the original image. A& of 0.8 is chosen for the It was found that the two conditions in (5) and (8), proposed
smoothing process. By using this value farthe 1D kernel in [26], do not (by themselves) provide enough stability for
of the filter can be approximated by [0.25 0.5 1 0.5 0.25¢orner declaration. Therefore, in this work a new inspectio
Using this kernel every 4 multiplications can be substiutgs performed by computing the directional derivative of the
by 4 shift operations. The Laplacian is then approximated egntroid cell. First, the vector that connects the center of
each point(i, j + 1) of the smoothened intensity image by: gravity to the centroid of the cefh, is computed. Next, the
above vector is extended to pags and then the intensity
variation is examined. If the intensity variation is smdftien
po iS not a corner otherwise it is announced as a corner. That
is if:

Fhe center of gravity? provides the corner direction, as well

a condition to eliminate points with random distribugion
ndomly distributed binary patches tend to have a center
gravity fairly close to the center of the patch. Therefore

o1, o

922 + By ~ (Lic1j+ Lij—1 4+ Ligaj + Lijp1 — 41 5) (1)

I; ; represents the image intensity value at roand column
j. The binary image is then generated by the sign of the 11(po) — I(p)| > I, 9)
Laplacian value at each point.
o , wherel; represents the brightness variation threshold, a corner
Bi.j) = {1 if 55+ 5.5 >0, @ is detected.
" 0 otherwise Figure 1 displays the output of the proposed method on one
of the sample outdoor images. The Binary Corner Detector
Next, a circular masky, is placed on each point of the binarywas compared with the Harris and SUSAN corner detectors
image in the same manner as in SUSAN corner detector. TiRghe same manner as introduced by [28]. Harris exceeds the

binary value of each point inside the mask is compared WICD repeatability rate by 20%. In scenes like Figure 1 with

that of the central point. a large number of features, the loss does not affect overall
_ performance. However BCD performs 1.6 times faster than
C(po,p) = {1 ff B(p) = B(po), A3) Harris and 7.2 times faster than SUSAN with a running time of

0 if B(p) # B(po)- 23.293 millisecond on a 1.14 GHz AMD Athl&¥ Processor.



Fig. 1. Corners are found using Binary corner detector.

I11. 3D WORLD RECONSTRUCTION

b

Fig. 2. a)A warped image. b)The corresponding cut unwarpeabe.

C. Stereo correspondence matching rules

Systems with no prior information about a scene require

the 3D positi(_)ns of points in the scene be .det_ermined. ThisThe camera system, Digiclops [29], includes 3 stereo cam-
section describes the problem of optical projection, 3Dltvoreras that are vertically and horizontally aligned. The ldisg-

position reconstruction for feature points, and consiti@na
for increasing the system accuracy.

A. Camera Model

ment between the reference camera and the horizontal and the
vertical cameras is 10 centimeters. To fully take advantdge
the existing features in the three stereo images, the foilpw
constraints are employed in the stereo matching process:

A camera can be simply modeled using the classic pinholes Feature stability constraint I: For each feature in the
model. This leads to perspective projection equations for reference image that is located in the common regions
calculating where on an image plane a point in space will amongst the three stereo images, there should be two
appear. The projective transformations that project a avorl ~ correspondences, otherwise the feature gets rejected. 3D

point P(z,y, z) to its image poinp(u,v) are

w= fwg and, o= fy% (10)

where f, and f, represent the horizontal and vertical
focal lengths of the camera. Since a camera exhibits non-

locations of the features that pass this constraint are
estimated by the multiple baseline method [30]. the
multiple baseline method uses the two (or more) sets of
stereo images to obtain more precise distance estimates
and to eliminate false match correspondences that are not
persistent in the two set of stereo images.

ideal behavior, precise measurements from an image that ar¢ peatyre stability constraint Il: Features located on the
necessary in the 3D reconstruction process require a more zreas common to only the reference and horizontal or

sophisticated camera model than the ideal model.

B. Camera calibration

A camera model consists of extrinsic and intrinsic param-

eters. Some of the camera intrinsic parametersfarand f,
(horizontal and vertical focal lengths), aat} andC, (image

centers). The camera model transforms real world coorefénat

into their ideal image coordinates and vice versa.

to the reference and vertical images are reconstructed if
they pass the validity check by Fua’'s method [31]. The
validity check adds a consistency test via which false
match correspondences can be identified and eliminated
from the stereo process.

« Disparity constraint: The disparities of each feature from
the vertical and horizontal images to the reference image
have to be positive, similar (with maximum difference of
1 pixel), and smaller than 90 pixels. This constraint allows

Using camera intrinsic parameters a lookup table is gener- e construction of the points as close as 12.5cm from the
ated that transfers each pixel on the distorted image o8to it ~5mera for the existing camera system configuration.

location on the corresponding undistorted location. Fégua

shows an image, acquired by our camera system, that has a Epipolar constraint: The vertical disparity between the

104 field of view. In this image the distortion effect is more  matched features in the horizontal and reference images
noticeable on the curved bookshelves. Figure 2.b shows the must be within 1 pixel. The same rule applies to the

same image after removal of the lens distortion. It can be horizontal disparity for matches between the vertical and

clearly seen that the curved shelves on the original image ar reference match correspondences.

now straightened.



« Match uniqueness constraint: If a feature has more th#rat we find the feature points in the raw (warped) images first
one match candidate that satisfies all the above condllhe image coordinates of each feature are then unwarpeg! usin
tions, it is considered ambiguous and gets omitted froomwarping lookup tables. For constructing the 3D positions
the rest of the process. of the features, the unwarped locations are used. However,

The similarities between each feature and its correspgndiffhen later measuring the similarity of features, raw |amasi
candidates are measured by employing the Normalized Me&hthe warped image content are used. Performing a partial
Squared Differences metric [32]. After matching the feagyr Unwarping procedure for a small percentage of each image
a subset of features from the reference image is retainet, &0 improves the processing time of the system.
for each one, its 3D location with respect to the current gcame The 3D reconstruction of the feature points can be summa-
coordinate system is obtained using Equation 10. rized as having the following steps:

1. Two projection lookup tables using intrinsic camera
D. Depth construction with higher accuracy parameters for raw image projection onto the unwarped
One necessary step in stereo process is the unwarping image and vice versa.
process in which the images are corrected for the radial2. Detection of features in raw images.
lens distortion. During a conventional unwarping procéss t 3. Disparity measurement in raw images using the projec-
following occurs: tion lookup table.
. The image coordinates of each pixel, integer values, are?: 3D reconstruction of image features using the consgaint

transformed into the corresponding undistorted image N Equation 10.

coordinates in floating point, Figure 3.2.
II. An interpolation scheme is used to reconstruct the

image values at an integer, equally spaced, mesh grid,

Figure 3.3. IV. FEATURE TRACKING
[ll. The resultant image is cut to the size of the original raw

image, Figure 3.4. The measurement of local displacement between the 2D
projection of similar features in consecutive image franses
the basis for measuring the 3D camera motion in the world
coordinate system. Therefore, world and image features mus
be tracked from one frame (at timB=to the next frame (at
time= + At).

In order to take advantage of all the information acquired
while navigating in the environment, a database is created.
This database includes information about all the featuees s
since n frames before (a value aof = 5 is used for our
system). For each feature, the 3D location in the reference
coordinate system and the number of times it has been
observed are recorded. Each database entry also holdSa 3
covariance matrix that represents the uncertainty assokcia
with the 3D location of that feature. The initial camera feam
is used as the reference coordinate system, and all thedeatu
are represented in relation to this frame. After the world
features are reconstructed using the first frame, the mfere
world features, as well as the robot's starting positiore ar
Fig. 3. Conventional unwarping process: The raw image (b fw image jnjtialized. By processing the next frame, in which a new
right after the calibration (2). The calibrated image after interpolation(3). .

The final cut unwarped image(4). set of world features are created, relative to the currelmbtro
position, new entries are created in the database. Thibakda

Each one of these steps, although necessary, could izyypdated as the robot navigates in the environment.
some artifacts that can increase the uncertainty of thehdept
construction process. For instance, for our camera system,
28.8% of the unwarped image pixels would be merely guessed
at by the interpolation of the neighboring pixels. This ebulA. Similarity Measurement
create considerable distortion of the shape of smallerctdbje
located near the sides and increase the inaccuracy of the 3In order to measure the similarity of a feature with a
world reconstruction and the overall system. set of correspondence candidates, normalized mean-sfjuare
To minimize the error associated with the radial lens dislifferences [32] are employed. Each feature and its cateida
tortion removal process, instead of using the conventioraie first projected onto their corresponding image planks. T
method, we employed a partial unwarping process. This mearmsmalized mean-squared differences function, Equatibn 1




is then estimated for each pair: I. The position of each feature in the previous frame is
used to create a search boundary for corresponding

C(h, 1) = match candidates in the current frame. For this purpose
¥ ¥ B L, it is assumed that the motion of features from previous
S0 ((a(u,v) — 1) — (I (u,v) — L)) frame to the current frame do not have image projection
u==M y==M displacements more than pixels in all four directions.
~ » ~ ~ A value ofw = 70, used for this work, allows a feature
2z LN point to move up to70 pixels between frames. If a
_ _ .
Z Z (I (u,0) = 1) Z Z (L2 (u,v) — I2) feature does not have any correspondences, it cannot
_-M _ —-M _-M  _ —-M . . . .
u=—g- v="5- r="g Y=g be used at this stage and therefore is ignored until the
_ _ _ (11) end of first stage of the tracking.
Here, I, and I, are average gray levels over image patches  The normalized 1813 pixels cross-correlation with
of I; and I, with dimensions ofM x M (a value of M = validity check, as explained in Section IV-A, is then
13 is used in our system). After evaluation of the similarity evaluated over windows of 141141 search space. Using
metric for all pairs, the best match with the highest sinityar the established match correspondences between the two
is selected. _ _ frames, the motion of the camera is estimated. Due to the
The hlgheSt S|m|lar|ty as estimated by the cross-cor@hati |arge search WindOW, and therefore' a |arge number of

measurement does not, by itself, provide enough assurance match candidates, some of these match correspondences
for a true match. Since the patch sizes are fairly smallether  may pe false. In order to eliminate inaccuracy due to

may be cases where a feature (at timjeand its match faulty matches, the estimated motion is used as an initial
correspondence (at time=- At) do not correspond to an guess for the amount and direction of the motion to
identical feature in the space. In order to eliminate sutsefa facilitate a more precise motion estimation in the next
matched pairs, a validity check is performed. In this check,  stage.

after finding the best match for a feature, the roles of theat || ysing the found motion vector and the previous robot
and the feature are exchanged. Once again, all the canslidate |gcation, all the database features are transformed into
for the match are found on the previous frame (at tie= the current camera coordinate system. Regardless of the
The Slmllal’lty metric is evaluated for all candidate pairEia motion type or the distance of the features from the coor-
the most similar pair is chosen. If this pair is exactly thmea dinate center, features with a persistent 3D location end
as the one found before, then the pair is announced as a true yp on a very close neighborhood to their real matches on
match correspondence. Otherwise, the corner under inspect the current image plane. Using a small search window
gets eliminated from the rest of the process. (4x4) best match correspondence is found quickly with

A comparison of the validity check of the number of correct higher accuracy. If there are more than one match
match correspondences for two consecutive outdoor images candidate in the search window, the normalized cross-

is shown in Figure 4. Figures 4.a and 4.b, show the match  correlation and the image intensity values in the previous

Correspondence without the vaIidity check. FigureS 4.d,4d and current frames are used to find the best match
display the results of the matching process for the sameemag  correspondence. The new set of correspondences are
in the presence of a validity check. Clearly, the number is&fa used to estimate a motion correction vector that is added
matches are reduced after the validity check. to the previous estimated motion vector to provide the

final camera motion.

Figures 5.a and 5.b, show match correspondences on the two
frames for the first step and Figures 5.c and 5.d, show the

The objective of the feature matching process is to finflatches using the initial motion estimation from the firsjpst
and to match the correspondences of a feature in the B[t only does the number of false matches decrease when a
world on two consecutive image planes (the current and thgeugh motion estimate is used, but the total number of matche
previous frames) of the reference camera. At all times, & coipcreases dramatically.
of the previous image frame is maintained. Therefore, dms@ab
feature points in the reference global coordinate systeen ar V. MOTION ESTIMATION
transformed to the last found robot (camera) position. Tdrey ~ Given a set of corresponding features between a pair of
then projected onto the previous unwarped image plane usitansecutive images, motion estimation becomes the problem
the perspective projection transformation. Using the risge of optimizing a 3D transformation that projects the world
calibration lookup table the corresponding locations oa ttgorners, from the previous image coordinate system, oo th
raw image planes are found, if their coordinates fall inglte next image. With the assumption of local linearity the pewbl
image boundaries (columns [0 320] and rows [0 240]). Withf 3D motion estimation is a promising candidate for the
two sets of feature points, one in the previous image frande aapplication of Newton’s minimization method.
one in the current image frame, the goal becomes to establish S
a one to one correspondence between the members of bdtH-€ast-squares minimization
sets. The matching and tracking process is performed using &ather than solving this directly for the camera motion with
two-stage scheme. 6 DoF, the iterative Newton’s method is used to estimate

B. Feature Matching



Fig. 4. Validity checking reduces the number of false matotrespondences. In this figure feature points are shown itewdots. Matched features in the
first frame with no validity check are shown in circles (a). thtafeatures in the second frame are shown with arrows thatemt their previous positions
into their current positions (b). Matched features in thetfframe with validity check are shown in circles (c). Matdatures with validity check in the
second frame are shown with arrows that connect their pusvimsitions into their current positions (d).

a correction vectorz with 3 rotational and 3 translationalB. Setting up the equations
components, that if subtracted from the current estimate,yih the assumption that the rotational components of the

results in the new estimate [33]. IP() is the vector of otion vector are small, the projection of the transformed
parameters for iteratiofy then point (z,y, z) in space on the image plane can be approxi-
pl+) _ pli) _ & (12) mated by:

_ flz+Dy) fly+Dy)

Gi f b h iecti (u,v) = ( ) )
iven a vector of error measurements between the projection 2+ D, 2+ D,

of 3D world features on two consecutive image framesa
vectorz is computed that minimizes this error [34].

(16)

Here D,, D, and D, are the incremental translations afid
is the focal length of the camera. The partial derivatives in
(13) rows 2n and2n + 1 of the Jacobian matri¥, in Equation 13,
that corresponds to the’th matched feature are calculated

The effect of each correction vector elemesf, on error as shown in [36]. After setting up Equation 15, it is solved

Jr=e

measurement; is defined by iteratively until a stable solution is obtained.
de; i =1...6, C. Implementati iderati
Jij = e ' (14) C. Implementation consideration
i jo=1..2n In order to minimize the effect of faulty matches or scene

Heree; is the error vector between the predicted location gfynamlc features on the final estimated motion, the follgwin

the object and the actual position of the match found in ima&gn&deratlo_ns are taker] |nt_o account during implementati
coordinates.n represents the number of matched features.s The estimated motion is allowed to converge to a more

Since Equation (13) is usually over-determinéds estimated §table state by running the first three consecutive itera-
to minimize the error residual (miw'z — e|?) [35]. tions.
« At the end of each iteration the residual error for each
3= [JTJ]”JTE (15) matched pair in both coordinate directiors, and E,,,

are computed.
Z includes two rotational and translational vector compasien « From the fourth iteration, the motion is refined by elim-
of (Di,Ri)T. ination of outliers. For a feature to be considered an



Fig. 5. Two-stage tracking improves the accuracy of theresttd motion. Motion vectors for the matched features aosvshn the previous and current
images. Figures a and b show these vectors in the first sthgewfite arrows show correct matches and the black arrows fise match correspondences.
Figures ¢ and d show same images with their match correspoasgeausing the estimated motion of the first stage. Not ongsdbe number of correct match
correspondences increase but the number of false matobsponrdences is decreased.

TABLE |
ITERATION RESULTS ALONG WITH THE ERROR RESIDUALIN PIXELS, FOR

outlier, it must have a large residual erref,E,> + E, .
On each iteration, at mod0% of the features with the

. . . . . ONE MOTION ESTIMATION.
residual error higher than 0.5 pixels, will be discarded as

outliers. Number D,.Dy. D, Bz Py P2 Error
« The minimization is repeated for up to 10 iterations if _©°f (Cm, Cm, Cm) (Deg Deg Deg) | residual
. matches (Pixel)

changes in the variance of the error residual vector

: . o 188 [ (—6.06,—0.06, —0.23) | (=0.04,0.12,—1.04) [ 19.79
more thanl0%. During this process the estimation moves—gg 5.97,0.01, —0.20 (0.11,0.00, —1.01) | 10.52

gradually toward the best solution. 188 5.97,0.01, —0.20 (0.11,0.09, —1.01) 10.48
« The minimization process stops if the number of inliers_170 6.41,0.06, —0.49) | (~0.03,0.57,-0.34) | 4.40

(= )
e )
153 (—6.40,0.09, —0.41) (0.02,0.53, —0.20) 2.40
drops to 40 or less matches. 138 (—6.46,0.11, —0.45) | (—0.03,0.54, —0.12) | 1.55
(= )
(= )
(= )
(= )

It is important to note that if the number of features from 125 6.53,0.14, —0.42 (0.05,0.58, —0.05) 1.19
dynamic objects is more than that of the static features, the }ég ggg’g-}gﬁg-ig E*gg?’g-g;ﬁg-g% (1)58
robustness of the system could be compromised and thereferey; 651013 0.0 (C0.01.0.56. —0.07) | 0.63

false trajectory estimation will be resulted.

D. Motion estimation results prediction and observation of each feature and the robot’s

The results of an entire motion estimation cycle, for gotjon.
distance of about 5cm in the outdoor environment, is present
in Table I. « The position and uncertainty matrix for features that are
As shown in this table, the error is reduced in a consistent €xpected to be seen and have corresponding matches are
manner and the final error residual is less than a pixel. updated. Their count increases by 1.

Generally the error residual is only a fraction of a pixel. . Features that are expected to be seen but have no unique
matches are updated. The uncertainty for these features
E. Feature Update increases by a constant rate of%0and their count

After the motion parameters are found, the database in- decreases by 1.

formation must be updated. This is performed based on the New features, with no correspondence in the reference



world, are initialized in the database and their count Bnd F' is a constanii2 x 12 matrix and is defined by:

setto 1. 1T 0 0 0 0 0000 0 0

O 1 7 0 0 0 0O 0 OO0 O0O0

O 0o 1.7 0 0 0O 0O0OOO0O

. 00 01 7T 0 0 O0O0OO0OO0OTO

F. Feature Retirement 0000 17000000

After updating global feature points, an investigation is F' = g g 8 g 8 (1] :f 8 g g 8 8 (20)

carried out to eliminate those features that have not been 000000010000

seen over some distance. For this purpose, feature points 000000001000

with a count value of-5, indicating that they have not been 000000000100
observed for at leasy consecutive frames, which for our

system corresponds to a distance of 50cm, are eliminatésl. Th 0.0 0000000010

o 0 0 0 0 0 0 0 0 0 01

condition removes some of the remaining unstable featheds t L .
falsely pass the stability and disparity conditions in theren In matrix F', T is the sampling rate and is set to&,. and
matching process in spite of their poor conditions. are respectively the (unknown) system and observatioresaois
H is a6 x 12 matrix and is defined byI N] ,wherel is a
6 x 6 identity andN is a6 x 6 zero matrices.

V1. POSITION ERRORMODELING B. Prediction

) ) ) ) ) ) Using the standard Kalman filter notation [39], the state

The noise associated with an image is considered to BFediction is made by
white and Gaussian [37]. The disparity measurement using
such an image inherits this noise. Since the 3D estimation z(k + 1|k) = Fz(klk) (21)
of each feature in space is a linear function of the 'nv_e_rﬂeP(k\k) represents the process covariance, the process co-
disparity, a Kalman filter estimator seems to be a promising . o prediction is
model for reducing the system error associated with the
existing noise [38]. Therefore, a Kalman filtering scheme is P(k +1|k) = FP(k|E)FT + Q(k) (22)
incorporated into the system, that uses the many measutem

of a feature over time and smooths out the effects of noise" shows the noise associated with the process covariance and

the feature positions, as well as in the robot’s trajectory. IS defined by

For each feature an individual Kalman filter is generated. 0.05 0.00 0.00 0.00 0.00 0.00
Each Kalman filter includes ax31 mean positionS -, vector 0.00 0.05 0.00 0.00 0.00 0.00
and a 3«3 covariance matrixy. i, that respectively represent 0.00 0.00 0.05 0.00 0.00 0.00
the mean position and the positional uncertainty assatiate 0.00 0.00 0.00 0.03 0.00 0.00
with that feature in space. A Kalman filter is also created 0.00 0.00 0.00 0.00 0.03 0.00
for the robot mounted camera, that includes position and the ¢z 0.00 0.00 0.00 0.00 0.00 0.03
uncertainty associated with it. 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
A. Camera Position Uncertainty 0.000.00 0.00 0.00 0.00 0.00
| 0.00 0.00 0.00 0.00 0.00 0.00
_ The robot’s position is updated usmg_t_he_ espmateq mo- 0.00 0.00 000 000 0.00 0.00 ]
tion vector found by the least-squares minimization. Fag th 000 000 000 000 000 0.00
purpose, a simple Kalman filter model is employed. The 0.00 0.00 000 0.00 0.00 0.00
ion that is made for this model is that the robot moves ' ' ' ' ' '

assumption t . . . 0.00 0.00 0.00 0.00 0.00 0.00
with a constant velocity. Following equations represerd th

Kal fil del f hi lication: 0.00 0.00 0.00 0.00 0.00 0.00
alman filter model for this application: 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.00 0.00 0.00 0.00 0.00 (23)
Try1 = Fop + & (17) 0.00 0.05 0.00 000 0.00 0.00
2 = Hap + 1k (18) 0.00 0.00 0.05 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.00 0.00

. 0.00 0.00 0.00 0.00 0.03 0.00
wherez;, represents the state variable at fraime 0.00 0.00 0.00 0.00 0.00 0.03

L Matrix @) is a constant matrix and is found experimentally.
Tk = [2,Y,2, 00, Gy, G20 830, 2, Gur By D2) (19) ; ; : L . X
k U525 Pas Py Pz T, Y5 25 P> Pys Pz In this matrix, the associated uncertainties with the ot
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components of the state variable are defined to be smalgégure 6 represents a graphical presentation of the Kalman
than those of the translational parameters. This is mairfiltering model that is used for the linear motion of the camer
due to the fact that the accuracy of the estimated rotational
parameters of the maotion is higher. These values however are
defined to be larger than the estimated uncertainties atedci

with the measurements as shown in Equation 26. Such larger.s +
uncertainties emphasize the fact that the measuremergssalu

are more reliable under normal circumstances. However, if

for any reason, the least-squared minimization for estirgat

the motion parameters fails, then the covariance matrixef t
measurements in Equation 26 is changed to an identity matrix
forcing the system to give larger weight to the predictedi®al Fig. 6. Camera position Kalman filtering model.

x(k+1|k+1)

x(k+11k)

C. Measurement
The measurement prediction is computed as

2(k+ 1|k) = Hz(k + 1|k) (24) E. Feature Position Uncertainty

The new position of the robat; 5, is obtained by updating its ~ Uncertainties in the image coordinatés, v), and disparity
previous positiongz(k|k), using estimated camera motion payalues,d, of the features from the stereo algorithm propagate

rameters by the least squares minimization from Equatign 18 Uncertainty in the features’ 3D positions. A first-ordeoe
& = [Ds, Ra]". propagation model [40] is used to compute the positional

uncertainties associated with each feature in space.

z1s = [R;].[z(k|k)] + [Ds] (25) 5 vy g Y .
_ . . ) b2 o bz(C’j +u2)o?q  b2o2,
The covarianceR,s for the measurement is obtained by e = T -+ 7 + PR
computing the inverse of ”'.J [33] in Section V-A. b2o2 PR0? + 0202 b0
Matrix 26 represents a typicét, s that is computed by our o?, = 2C’J n Y +—5 Y (28)
system during one of the tracking processes. d be(g 9 d
a
0.000001  0.000000  0.000000 0%, = Td

0.000000 0.000000  —0.000000 .
0.000000  —0.000000  0.000001 (C:,Cy), b and f represent the image center, stereo camera

Ris = 0.000001  0.000001  0.000001 s‘eparations‘and camera focal lengtfi,., o%,, o%., o%c,,
—0.000002  —0.000001  —0.000001 o’c, and .ozd are the variances of, Y, 2 Cp, Cy _and
0.000001 —0.000000 —0.000001 d, respectively. Based on the results given in Section V-C,

where the mean of error in the least-squares minimization is
0.000001—0.000002 " —0.000001 less than one pixel, assumptions are made #iat = 0.5,
ggggggi _ggggggi _gggggg? o’c, = 05, 0*; = 1, *, = 1 ando?, = 1. Therefore,
: - - (26) variances of each feature’s 3D position, in the current came

0.000005 ~ —0.000004  —0.000004 frame coordinate, are computed according to the above error
—0.000004  0.000006 0.000005 propagation formula.

—0.000004  0.000005 0.000007

If for any reason, a feasible result for the measuremegat
vector x1¢ is not found by the least-squared minimization
procedure,Rys is set to a6 x 6 identity matrix. A Rps

Feature Update
Each time a feature is observed, a new set of measurements

with larger components, comparing¢h causes the system tOis obtained for that feature in the space. Therefore, at the

give the prediction values a higher weight than the unknov?r?d of each fra_lme and after estimating the motion, world
measurements that are set to zero. eatures found in the current frame are used to update the

existing global feature set. This requires that these featu
D. Update be transformed into the global coordinate system first. Next
}I]tée positional mean and covariance of each feature are com-
bined with corresponding matches in the global set. The 3D
uncertainty of a feature in the current frame is computed as
described by 28. However, when this feature is transformed

The Kalman filtering process can be presented by t
following set of relationships:

P(0]0) = Var(xo)

P(k+1|k) = FP(k[E)F" + Q(k) into the global coordinate system the uncertainty of theionot
W(k+1)=Pk+1k)H"[HP(k+1/k)H" + Rp5] ™" estimation and robot position propagates to the featur®’'s 3
Plk+1k+1) = P(k+1|k) — W(k + 1)HP(k + 1|k) position uncertainty in the global frame. Therefore, befor

combining the measurements, the 3D positional unceréginti
ok + 1|k) = Fu(k|k) of the feature are updated first.

z(k+ 1|k +1) = z(k + 1[k) + W(k + 1)(zrs — 2(k+ 1|k))  From the least-squares minimization procedure, the ctirren
k=1,2,... robot pose, as well as its covariance, can be obtained [33].
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The current position of the features can be transfered heo t
reference frame by

Pacw = (Ry (Rx (Rz(Pany))) + T (29) =

where P,,, and P,., are the observed 3D position of a
feature in the current frame and the corresponding tramsfdr
position in the reference frame respectively/,. R, Rx and

Ry represent the location and orientation of the camera heac
system in the reference frame respectively. 150

G. Feature covariance update

The goal is to obtain the covariance of the features in*®
the reference coordinate system,(,), given the diagonal
uncertainty matrix for each observed feature in the current
frame consisting 062, 0, ando?.. Since each feature point
undergoes a rotation and a translation when transformong fr Fig. 7. Positional uncertainties associated with featimethe image plane.
the local coordinate system to the global coordinate system
the corresponding covariances of,, ¢, and ¢, must
be transformed using the same transformation. Considerip@sitional uncertainties associated with them. Theseelarg
that each motion estimation consists of a rotational andpasitional uncertainties imply incorrect depth estimatior
translational component the updated covariance of eatiréea those features.

50 100 150 200 250 300

after the transformation is defined by: To get a closer look at 3D scene features and their positional
> 9 o0 uncertainties Figure 8 is generated. It demonstrates a top
7x -I view of world features and their associated uncertainties.

0 2J (30) As clearly displayed, associated positional uncertagntih
97 features grow in dimensions as these features move away
(in depth) from the camera plane and as they move to the

where the first termA,_4. 4,, represents the covariance duéides (from the camera center). In this figure, dotted ellgfs

to rotation and the second term represents the translatioR@oW the original and the solid ellipsoids show the updated

covariance. Components of the translational covariandgxna uncertainties.

(0%, 0}, 0%), are the translational uncertainties associated Z[m]

with the estimated motion by the least square minimization. T
Details for computation of\;_4 4, are presented in Ap-

pendix, Section A.

Ynew = Ao.g.0, + [ 0 oy 0
0

35r-

H. Feature position update 25l

To update the 3D position of a feature [41], the transformed
covariance matrixy,...,, is combined with the existing covari-
ance of the matching global featueg r, to obtain the new 15}
covariance matrixy ..

N
T

1

Sxr = (Cxr + Soew) (31) 7
The new global position of the featursy, ., is then found
using the covariances, the transformed position (usingaEqu O s T I S T
tion 29) and the previous position. X[m]
Sicr = Sicr (S Sxr + SdyPacw)  (32)

Fig. 8. Original and updated positional uncertainties ofldideatures.

| Experimental Results Results of the Kalman filters incorporated with the trajegcto

Figure 7 shows the projection of estimated uncertainti@gcking system are presented in Section VII.
associated with world features on the image plane. In this

figure, the uncertainties associated with closer objects ar
very small and therefore appear as bright dots. As expected
farther features, for instance features around windows onThis section contains the experimental results obtainzu fr
the upper right corner of the scene, have larger projectedplementing the solution strategies put forth in previous
uncertainties. Some of the closer features also have lagpetions.

VIl. EXPERIMENTAL RESULTS
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A. Camera System: Digiclop$ highlighted with a dark line and the facing of the camera is

The Digiclops stereo vision camera system is designed a$iePWn using a white arrow. The robot starts the forward motio
implemented by Point Grey Research [29]. It provides redf®m point A to point B. At point B the backward motion
time digital image capture for different applicationsriciudes Pegins until point A is reached.
three monochrome cameras, each VL-ICX084 Sony ccpsAlthough the scene includes some structures from the
with VL-2020 2.0 mm Universe Kogaku America lenses, angUilding, but most of the features, over 0 belong to
a software system with the IEEE-1394 interface. These thrbl¢ unstructured objects of the scene. Figure 10 shows the
cameras are rigidly positioned so that each adjacent pairPiErall estimated trajectory along the entire path. In this
horizontally or vertically aligned. figure the gradual motion the camera system is displayed

In this work, the intrinsic camera parameters are aldtsing a graphical interface that is written in Visual C++ and

provided by Point Grey Research. The camera system captufeg 4. The estimated trajectory at each frame is shown

gray scale images of 32(40 pixels. In order to reduce theWith the dark sphere and the orientation is displayed with

ambiguity between the yaw rotation and lateral translatioff'€ light color cone. The center of the reference camera is
a set of wide angle lenses with a TOdield of view is considered as the center of the motion. Table Il displays the

used. These lenses incorporate information from the Sid€Smmmmrarmme - . I
of the images that behave differently under translatiomal a
rotational movements.

B. Trajectory Estimation

The performance of the system is evaluated based on i
cumulative trajectory error or positional drift. For thiarnpose
experiments are performed on closed paths. On a closed pa
the robot starts from an initial point with an initial posefteéy
roving around, it returns to the exact initial point. To eresu
returning to the exact initial pose, an extra set of images ar
acquired at the starting position, right before the robattst
its motion. This set is used as the last set and with it the
starting point and the ending point are projected onto actexa
physical location. In an ideal condition the expected cuanul
tive positional error must be zero and therefore anythisg el
represents the system’s drift.

C. Experiment 1:

In this experiment the robot moves along an outdoor patt.

The scene was a natural environment including trees, leafés 10. The graphic representation of the traced path iesxent VII-C
using Visualization Toolkit 4.

cumulative trajectory error in this experiment. From tlable

TABLE I
3D DRIFT FOR A6 METER LONG TRANSLATION.

Cumulative Ep,.Ep,.Ep, Ey, Eg,.Ey.
error (Cm,Cm,Cm) (Deg,Deg,Deg)
[ Experiment 1] —1.930, 1.745, 0.529 || —0.066,0.008,—1.009 |

the translation error is about 2.651cm which is only%.df
the overall translation.

D. Experiment 2:

In this experiment the robot moves on a closed circular

Fig. 9. The outdoor scene for experiment VII-C. path including a full 360 yaw rotation. The orientation of the

camera is toward the ground. During this experiment, 101 raw
and building structures that were located in distances éxtw images are captured and processed. Figure 11 represents the
0.1 to 20 meters from the camera image plane. The traversegrview of the environment in this scenario.
path was 6 meter long and along the path 172 raw (warped)Figure 12 represents the overall estimated trajectory faom
images were captured and processed. Figure 9 shows ¢hleser distance. The cumulative error in this case is reptes
scene in this experiment. In this figure the traversed pathimsTable III.
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TABLE IV
COMPARISON OF THE REDUCTION OF3D DRIFT FOR A6 METER LONG
PATH USING KALMAN FILTER.

Kalman Er Eo
filter (Cm) | (Deg)
On 2.66 1.01

Off 6.31 0.39

translational error with Kalman filter is considerably I¢lsan
that without Kalman filtering algorithm. The Rotational @rr

Fig. 11. The outdoor scene used for the rotational motion. with the Kalman filtering is slightly more. However, both siee
values,1.01 and 0.39 degrees, are very small and they can
=82 easily be due to the noise in the estimation process. Fidires

represents the estimated trajectories in the presenceeof th
Kalman filtering scheme. As shown at the top of this figure
the robot moves along{ for 3 meters and then it returns
to its starting point. The overall translational error fdwist
experiment is abou2.66 centimeters.

L L
140 160 180
Frame Number
‘ ‘

1 1
0 20 40 60 80 100 120

0 20 40 60 80 100 120 140 160 180
Frame Number
‘

0 20 40 60 80 100 120 140 160 180
Fig. 12. A closer view of the circular path with a radius of B0dn Frame Number

experiment 2. . ) . ) .
Fig. 13. Estimated distances for a 6 meter long path with lealrfilter.

TABLE Il
3D DRIFT FOR A MOTION WITH 360° ROTATION ON A CIRCULAR PATH Figure 14 represents the estimated orientation for this ex-
periment. The cumulative orientation error for this expesnt
is about 2. As represented in the second row of Table IV,

Cumulative I Ep, .Ep,. Ep. By, Ly, Ey. the positional error is increased 6031 centimeters when the
error (Cm . Cm, Cm) (Deg . Deg. Deg) Kalman filter is turned off
[ Experiment 2] 1.030, —0.252, 0.603 | —1.071,-2.599, 1.182 | '

WITH A RADIUS OF 60CM.

F. Trinocular and Binocular Stereo Comparison

. . N . Establishing accurate match correspondences in a stereo
. From this table the overall rotational e_rrormthls t_axpezrrm system is a key issue in 3D reconstruction and trajectory
is about 3.341 or 0.9% and the translational error is 1'22m}racking problems. The physical arrangement of the cameras
or 0.6%. in stereo vision plays an important role in the corresponden
matching problem. The accuracy of the depth reconstruction
E. Trajectory Estimation Refinement by Kalman Filtering nas a direct relationship with the baseline and it can be
Comparison of the estimated trajectory with and withoutmproved by choosing a wider separation between the stereo
a Kalman filtering scheme is represented through the cofenses. On the other hand a narrower baseline facilitates a
parison of the cumulative error in 3D trajectory parameterfaster search scheme when establishing the corresporslence
This comparison is studied for represented case in VII-C, in the stereo image pair. The use of more than one stereo
which the traversed path is 6 meter long. Table IV represem@smera was originally introduced to compensate for thestrad
the results of this comparison.In this tablé; and E, off between the accuracy and ease of the match correspon-
represent overall translational and rotational errorg dverall dences [42].
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under Microsoft Window® operating system. The camera

° ' ' ' ' ' | system captures gray scale images of 3280 pixels. An
e effort has been made to optimize the code and modularize
-1k . . .
the system in order to obtain fast subsystems with less
o 2 “ & o w0 a0 10 ey COMMunication cost and required memory.

S oo The most severe drawback of the system is its high com-
. putational requirement. Currently for outdoor scenes & Aa
| rate of 8.4 seconds per frame and for indoor scenes it pesform
at a rate of 2.4Hz [43]. The number of features has a great
_ m @ W w W e o impact in the speed of our system.rifrepresents the number
S Frame Number ¢t orners, the stereo matching and construction stages hav
<

0 : : : : : : : complexities ofO(n?). Trackingn 3D features from one frame
1M 1 to another frame has also a complexity@n?). This is due
-2r 2l to the fact that both tracking and stereo processes arelfeavi
% 20 20 % 80 10 10 w0 10 1m0 involved in the use of the normalized mean-squared diffezsn
Frame Number  f,nction for the purpose of measuring similarities. Fotanse
Fig. 14. Estimated orientations for a 6 meter long path widinkan filter When we moved from indoor to outdoor the number of our
on. features (1200 corner points) became 4 times larger than the

indoor scene (300 corner points). This factor increases the

The stereo baselines are almost identical in length fopning time of the tracking and stereo tasks alone by a

Digiclops camera system. Therefore the improvement of gR@nimum factor of 16. As expected the running times of these

accuracy by means of multi-baseline stereo matching isxzot gwo procedures increased o 5.1 and 1.35 seconds (from 0.21
nd 0.057 seconds for our indoor scene).

ected. However, the non-collinear arrangement of theekené . .
P 9 IT’le Theoretically having three correct matches must be enough
Ri

adds a multiple view of the scene that could improve t . . S
provide an answer for the motion estimation problem

robustness and therefore the long term system accuracy. : L .
using least-squared minimization. However, during ourkwor

is mainly because: ) . .
Y . L we noticed that a minimum number of 40 match inliers are
« Generally a wider scope of the scene is viewable by ﬂﬁ%cessary for a reliable solution

three images increasing the number of the features. It is important to see the trade off between the system

* Mprgovgr, the third image is used for a consistency Checp.}JYocessing rate with the motion rate and search window
eliminating a number of unstable features that are due dfnensions in the tracking process. A smaller motion, betwe

shad0w§ and light effects. ] two consecutive frames, results in smaller displacemefits o
The above improvement however could potentially causejfage features in two corresponding image frames. In such

slow down in the system as each time there is one extra ima&ﬁmditions, corresponding features can be found by seagchi

to be processed. . _ ~over smaller regions. Smaller windows speed up the system
To assess the effectiveness of trinocular stereo versos-bin rocessing rate. Therefore, through a slower moving robot a

ular, an experiment was undertaken in which a closed path gk;q, performance can be achieved.

!ength 3 meters) is traversed. Once again the cumulative err e computational cost may be reduced by creating an
is used as a measure of system performance. Table V sh@wgge resolution pyramid. Features can be detected on the
the resultant error in the both cases. In this table and coarser level and using them a rough motion estimation is

TABLE V obtained that can be_refined by moving to a fine_r pyramid
COMPARISON OF THE CUMULATIVE ERROR FOR TRINOCULAR AND level. Another way to improve the processing rate Is to selec
BINOCULAR STEREOS and process only selected patches of each image instead of th
entire image. Employment of specific hardware (e.g. FPGA'’S)
Camera|  Ep,.Ep,.Ep. Eozr Eoy » Fy. Er | Fo that allows the system to perform bitwise parallel operstio
number Cm, Cm, Cm Deg, DegDeg Cm Deg .
can also improve the speed of the system.
Three —1.14,—-0.03, —0.23 0.18,0.01,0.19 1.16 0.26
Two —1.77, —0.40 ,0.58 —0.06,0.14, —0.03 1.91 0.15

VIII. CONCLUSIONS

This paper has presented the successful development of a
Eo represent overall translational and rotational erroreseh general purpose 3D trajectory tracking system. It is applie
values clearly show the similarity of estimated motionst t to unknown indoor and outdoor environments and it requires
two systems. Considering that the cost and the complicafionno modifications to be made to the scene. The primary novelty
a binocular system is less than a trinocular stereo, thechlao  of this work is a methodology for obtaining camera trajeiet®r
stereo might be a better solution for some applications.  for outdoors in the presence of possibly moving scene featur
without the need for odomtery or sensors other than vision.

G. Computational Cost Contributions of this work can be summarized as:

The presented system is implemented in Microsoft Visual« A novel fast feature detection algorithm named the
Ct* 6.0 language, on a 1.14 GHz AMD Athlb/ processor Binary Corner Detector (BCD) has been developed. A
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60% performance improvement is gained by substitutinigy [44]:
arithmetic operations with logical ones. Since the main

assumption for the whole system has been that temporal - X000
changes between consecutive frames are not large, a faster X OT 0 -I Ap 0 0 X 0
feature detector leads to less temporal changes betweln' = [ 0 X OT PJ [ 0 Ax} 0 0 X
the consecutive frames and therefore resulting in a higher 0 0 X -
accuracy in the overall system. P (34)

« Due to imperfect lenses, the acquired images include
some distortions that are corrected through the calibrism Equation 34, the first matrix is 8 x 12, the second is
tion process. Not only is the image calibration at eachh 12 x 12 and the third, which is the transpose of the first
frame for the trinocular camera images a time consumimgatrix, is al2 x 3 matrix. With the assumption that at each
process but it could add positional shifts (error) to imagime the three rotation angles are small and therefore inde-
pixels. This process degrades 3D reconstruction resutisndent, the transformation proceeds, in order, for tati
and increases the cumulative error in the overall trajgctog. (roll), ¢, (pitch), ¢, (yaw) first. Variances oerE, 0(2%
tracking process. To remove this undesired effect, hdo? are already found during the last motion estimation.
calibration map for each of the cameras is construct®equired transformations for each stage and how the poaltio
that defines the relationship between the integer positigncertainties propagate are explained next.
of the uncalibrated pixels with the corresponding floating 2) Roll transformation: The roll transformation is defined
point location on the calibrated image. Operating on ths:
warped (raw) images allows one to work with sharper

details. It also provides a faster processing time by cos(¢:)  —sin(¢z) O
eliminating the calibration process for three individual Rz = |sin(¢.) cos(¢.) 0 (35)
images. 0 0 1

- Correct identification of identical features, depends Ogjith the assumption that noise associated with the rotation

several factors such as search boundaries, similar'gMg|eS is Gaussian and of zero mean. 8he 9 covariance
measurement window size, and a robot's motion rang@atrix for the roll transformation is computed by

Expanding search boundaries and the window size for
similarity evaluation can improve the accuracy by adding
more correct matches. They can however slow down
the performance, leading to a larger motion for the
same camera speed, between two consecutive frames. A
larger motion introduces more inaccuracy into the system.
To improve the accuracy, a two-stage tracking scheme
is introduced in which the match correspondences are
first found using a large search window and a smaller
similarity measurement window. Through this set of
correspondences a rough estimation of the motion Vlvsh
obtained. These motion parameters are used in the secon
stage to find and track identical features with higher 4 — variance(cosg.) = E(cos®¢.) — E*(cosd.) (37)

accuracy. The process increases the tracking accuracy by, . ) _ 9N 2
up to 30%. B = Variance(sing,) = E(sin“¢,) — E*(sing,) (38)

|
o o
% o]
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The expected value ofos?¢, is computed [45], with the
assumption that. has a Gaussian distribution, by

APPENDIX
1 oo 92 1 4 cos2¢
i i E(cos? y) = ——— / e e TR P
A. Feature Uncertainty Computation (cos™2) Varon 5 ¢
1) Rotational covariance computatiorGiven two points _1 + 1(2,2021 (39)
X and X' with the following relationship: T2 2 “
e
X'— PY (33) E(cos¢,) =e 2 (40)
. . . . o therefore
whereP is a3 x 3 transformation matrix, rotation matrix in our
case, we would like to compute th_e uncer.tainty associatéd wi A= 1(1 +e 2. — 2¢7%.) (41)
X' given the uncertainties associated with tkie (o2, o2, %
02.). Here the old and new positiods and X' are vectors of B= 5(1 - 6*2035) (42)

(9 x 9 covariance forP) and,Ax (3 x 3 covariance forX), Using Equation 34 and the rotational transformation eguati
the 3 x 3 covariance of the resulting vectdf’ is computed the covariance matrix after the rob,, rotation is computed
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from defined by

o2 02,C08¢,
- p— 2 y
Az® + By® + olcos’¢. T2 SiNPs
—203 Cco8®, sing., , , ,
Y, .¢2 ¢ o, cos¢, Cy® + Dz*
+oysin"¢. y 22 2.2
’ A _ | —oi.sind:  +o,co8 ¢ + 08N Py
(A— B)ay $zd — —20;2005¢z3in¢z
Ay, = 2 2 T
: +o05,(cos ¢, — sin“ ¢,
7 %( 2¢ ) ¢:) al,sing, (C —D)yz
+(05 — 0y)sing.cosp. 5 2 2 ;
+0,.c08¢,  +(oy — oz)cosqﬁzsz‘nqﬁz
o2, cosps i +0§Z(cosz¢z — si'nz¢z)
L 7052‘%‘”‘!’2 ) - (45)
(43) azgslmﬁz
(A - B)zy o2,co8¢, +02:0080z
+03y(cosz¢z — si'nz¢z) foizsi'nqﬁz C—D
+(¢7fJ 705).%'71/(1)2(:03(;52 9 ( 2_ Jyz )
+(0y — 02)cospe sind,
Ay® + Bz® + olsin’¢.  ol.sing. +0y.(cos* ¢z — sin’a)
+202ysin¢zcos¢; +U§ZCOS¢; 5 5
+o2cos’p Cz"+ Dy
v +o2sin’ ¢, + o2cos’ P
y T z ©
o2, sing +207,.c08¢,5ing,
+0’§ZCOS¢; o? ]
whereC and D are defined by
Here, ¢, y, 2) is the 3D global location of the feature in the
. T . . . 1 ) )
current frame. ;Smce 2th|s |s2the first tlme_thc_a transfqrmauo C=—(1+4e 2% —2¢ %) (46)
is carried outo;, = o;, = o,, = 0 as the initial covariance
matrix of the observation is a diagonal matrix. Applying the D=:(1- 67203%) (47)

roll transformation to the initial position of the featunmpides
the transformed position of the feature. This new posit®n i
used for the next stage. The uncertainty associated with thi

position is the recent covariance matrix &f_ . ) L ) o
In this formula,aém is found from the last motion estimation.

) o ) ) (z, y, z) is the transformed 3D location of the feature after
3) Pitch transformation:Given the pitch transformation, ha 1ol transformation and?, o2, o2, o2, o2, ando?, are
from the covariance matriA,,. Applying the pitch transform
provides the transformed position of the feature, whichsisdu
in the next stage together with this new feature covariance.

4) Yaw transformation:The 9 x 9 covariance matrix after

Ry = [g 0 .1 -I the yaw rotation
X = cos(¢,) —sin(¢y) (44)
[0 sin(¢z)  cos(¢y) J

[ cos(¢y) 0 szn(@,)-‘

Ry = 0 1 0 (48)
[*9“7(@;) 0 COS(‘%)J

the 9 x 9 covariance matrix for the pitch rotation,, is com-

puted in a similar way, as shown in Equation 36. Once again,

substituting the pitch rotational transform in Equation&8

the covariance matrix in 44, the new covariance matrix can leecomputed by



[20]
i Ez? + F2* azycos¢y
+o2cos’py, + alsin’d, +a§zsin¢y
+202, sing, cosg, (11]
A _ 02, COSPy [12]
9z0a0y +a§zsin¢y aZ
) [13]
(E— F)zz o2, sing,
+(0? — o2)singycospy, —0n.co8p, [14]
L +02,(cos’ ¢, — sin’¢,)
(49)
(E— F)zz [15]
+(02 — 02)sing,cosg, [16]
+U§z(0032¢y - Sin2¢y) [17]
Uizcos¢y70§ysi'n¢y [18]
.EZ2 + .F‘.’L‘2 [19]
+o2sin’ ¢, + olcos’P,
—202, sing, cosd, [20]
E and F' are defined by:
. [21]
9.2 2
E=2(1+ e 270y — 2e Teu) (50)
1 b2 [22]
F=3(1=e%) (51)

and oéy is the variance of, estimated earlier in the motion !

estimation processz( y, z) is the transformed 3D location of
the feature after the pitch transformation arid o2, 02, 02,, 124l
o2, ando?, are from the covariance matrik;. 4, .
[25]
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